Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage Clin ; 28: 102393, 2020.
Article in English | MEDLINE | ID: mdl-32916467

ABSTRACT

Multiple Sclerosis (MS) is characterized by demyelination and neurodegeneration of the central nervous system and causes excessive fatigue in more than 80% of the patients. The pathophysiologic mechanisms causing fatigue are still largely unknown. In 46 right-handed patients with relapsing-remitting MS and 25 right-handed controls, we performed diffusion MRI and applied streamline based probabilistic tractography to derive unilateral anatomical connectivity maps for the white matter of the right and left hemispheres. The maps provide an indication how often a streamline has passed through a given voxel. Since tractography based anatomical connectivity mapping (ACM) is sensitive to disease-induced changes in anatomical connectivity, we used ACM to test whether motor fatigue is associated with altered ipsi-hemispherical anatomical connectivity in the major motor output pathway, the corticospinal tract (CST). Patients had higher mean ACM values in the CST than healthy controls. This indicated that a higher number of streamlines, starting from voxels in the same hemisphere, travelled through the CST and may reflect an accumulated disease-induced disintegration of CST. The motor subscale of the Fatigue Scale for Motor and Cognitive functions (FSMCMOTOR) was used to define sub-groups with (n = 29, FSMCMOTOR score ≥ 27) and without motor fatigue (n = 17, FSMSMOTOR score ≤ 26). Patients without fatigue only showed higher ACM values in right CST, while mean ACM values were unaltered in left CST. The higher the mean ACM values in the left relative to the right CST, the more patients reported motor fatigue. Left-right asymmetry in anatomical connectivity outside the CST did not scale with individual motor fatigue. Our results link lateralized changes of tractography-based microstructural properties in the CST with motor fatigue in relapsing-remitting MS.


Subject(s)
Multiple Sclerosis , White Matter , Diffusion Tensor Imaging , Hand , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Pyramidal Tracts/diagnostic imaging
2.
Mult Scler ; 19(9): 1161-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23325589

ABSTRACT

BACKGROUND: Brain disconnection plays a major role in determining cognitive disabilities in multiple sclerosis (MS). We recently developed a novel diffusion-weighted magnetic resonance imaging (DW-MRI) tractography approach, namely anatomical connectivitity mapping (ACM), that quantifies structural brain connectivity. OBJECTIVE: Use of ACM to assess structural connectivity modifications in MS brains and ascertain their relationship with the patients' Paced-Auditory-Serial-Addition-Test (PASAT) scores. METHODS: Relapsing-remitting MS (RRMS) patients (n = 25) and controls (n = 25) underwent MRI at 3T, including conventional images, T1-weighted volumes and DW-MRI. Volumetric scans were coregistered to fractional anisotropy (FA) images, to obtain parenchymal FA maps for both white and grey matter. We initiated probabilistic tractography from all parenchymal voxels, obtaining ACM maps by counting the number of streamlines passing through each voxel, then normalizing by the total number of streamlines initiated. The ACM maps were transformed into standard space, for statistical use. RESULTS: RRMS patients had reduced grey matter volume and FA, consistent with previous literature. Also, we showed reduced ACM in the thalamus and in the head of the caudate nucleus, bilaterally. In our RRMS patients, ACM was associated with PASAT scores in the corpus callosum, right hippocampus and cerebellum. CONCLUSIONS: ACM opens a new perspective, clarifying the contribution of anatomical brain disconnection to clinical disabilities in MS.


Subject(s)
Cognition Disorders/pathology , Diffusion Tensor Imaging/methods , Multiple Sclerosis, Relapsing-Remitting/pathology , Neural Pathways/pathology , Adult , Anisotropy , Cognition Disorders/etiology , Cognition Disorders/physiopathology , Female , Humans , Image Interpretation, Computer-Assisted , Male , Multiple Sclerosis, Relapsing-Remitting/complications , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Neural Pathways/physiopathology , Neuropsychological Tests
3.
Hum Brain Mapp ; 34(12): 3158-67, 2013 Dec.
Article in English | MEDLINE | ID: mdl-22711258

ABSTRACT

A previous preliminary investigation based on a novel MRI approach to map anatomical connectivity revealed areas of increased connectivity in Alzheimer's disease (AD) but not in mild cognitive impairment patients. This prompted the hypothesis tested here, that these areas might reflect phenomena of brain plasticity driven by acetylcholinesterase inhibitors (AChEIs). Thirty-eight patients with probable AD (19 under medication with AChEIs and 19 drug-naïve) were recruited together with 11 healthy controls. All subjects had MRI scanning at 3T, including volumetric and diffusion-weighted scans. Probabilistic tractography was used to initiate streamlines from all parenchymal voxels, and anatomical connectivity maps (ACMs) were obtained by counting, among the total number of streamlines initiated, the fraction passing through each brain voxel. After normalization into standard space, ACMs were used to test for between-group comparisons, and for interactions between the exposure to AChEIs and global level of cognition. Patients with AD had reduced ACM values in the fornix, cingulum, and supramarginal gyri. The ACM value was strongly associated with the AChEI dosage-x-duration product in the anterior limb (non-motor pathway) of the internal capsule. Tractography from this region identified the anterior thalamic radiation as the main white matter (WM) tract passing through it. The reduced connectivity in WM bundles connecting the hippocampi with the rest of the brain (fornix/cingulum) suggests a possible mechanism for the spread of AD pathology. An intriguing explanation for the interaction between AChEIs and ACM is related to the mechanisms of brain plasticity, partially driven by neurotrophic properties of acetylcholine replacement.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Antipsychotic Agents/therapeutic use , Brain/drug effects , Cholinesterase Inhibitors/therapeutic use , Aged , Aged, 80 and over , Alzheimer Disease/complications , Antipsychotic Agents/pharmacology , Brain Mapping , Cholinesterase Inhibitors/pharmacology , Cognition Disorders/drug therapy , Cognition Disorders/etiology , Diffusion Magnetic Resonance Imaging , Female , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Neuropsychological Tests , Psychiatric Status Rating Scales , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL