Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Eur J Med Chem ; 276: 116625, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38991300

ABSTRACT

The rapid emergence of antibiotic resistance and the scarcity of novel antibacterial agents have necessitated an urgent pursuit for the discovery and development of novel antibacterial agents against multidrug-resistant bacteria. This study involved the design and synthesis of series of novel indole-benzosulfonamide oleanolic acid (OA) derivatives, in which the indole and benzosulfonamide pharmacophores were introduced into the OA skeleton semisynthetically. These target OA derivatives show antibacterial activity against Staphylococcus strains in vitro and in vivo. Among them, derivative c17 was the most promising antibacterial agent while compared with the positive control of norfloxacin, especially against methicillin-resistant Staphylococcus aureus (MRSA) in vitro. In addition, derivative c17 also showed remarkable efficacy against MRSA-infected murine skin model, leading to a significant reduction of bacterial counts during this in vivo study. Furthermore, some preliminary studies indicated that derivative c17 could effectively inhibit and eradicate the biofilm formation, disrupt the integrity of the bacterial cell membrane. Moreover, derivative c17 showed low hemolytic activity and low toxicity to mammalian cells of NIH 3T3 and HEK 293T. These aforementioned findings strongly support the potential of novel indole-benzosulfonamide OA derivatives as anti-MRSA agents.

2.
Appl Environ Microbiol ; 90(6): e0016224, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38775468

ABSTRACT

The emergence of drug-resistant bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE), has increased the need to discover novel antimicrobial agents that are effective against these species. Here, we describe the identification and purification of the mutacin BHT-B-like gene locus and bacteriocin peptide from Streptococcus ursoris, which is closely related to Streptococcus ratti; hence, we named this bacteriocin ursoricin. Ursoricin is a cationic, chromosome-encoded peptide that has potent antimicrobial effects against Gram-positive pathogens, including MRSA and VRE, with minimum inhibitory concentrations in the micromolar range. Ursoricin also inhibits the biofilm formation of high biofilm-forming S. aureus. Antibacterial activity was retained after treatment at 100°C for 60 min at a pH range of 3-9 and was partially reduced by treatment with proteinase K for 2 h (63% residual activity). The potent anti-MRSA, anti-VRE, and antibiofilm effects of ursoricin suggest that it is a possible candidate for the treatment of MRSA, VRE, and biofilm-associated infections. IMPORTANCE: The emergence of multidrug-resistant bacteria worldwide has posed a significant public health threat and economic burdens that make the identification and development of novel antimicrobial agents urgent. Bacteriocins are promising new agents that exhibit antibacterial activity against a wide range of human pathogens. In this study, we report that the bacteriocin produced by Streptococcus ursoris showed good antibacterial activity against a wide range of Staphylococcus aureus and enterococcus strains, particularly methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and high biofilm-forming S. aureus. Interestingly, this bacteriocin had a stronger effect on S. aureus than on Staphylococcus epidermidis, which is a major commensal bacterium in human skin; this result is important when considering the disturbance of bacterial flora, especially on the skin, mediated by the application of antibacterial agents.


Subject(s)
Anti-Bacterial Agents , Bacteriocins , Biofilms , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Streptococcus , Vancomycin-Resistant Enterococci , Bacteriocins/pharmacology , Bacteriocins/genetics , Anti-Bacterial Agents/pharmacology , Vancomycin-Resistant Enterococci/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Biofilms/drug effects , Streptococcus/drug effects
3.
J Ethnopharmacol ; 331: 118327, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38750987

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Rohdea pachynema F.T.Wang & Tang (R. pachynema), is a traditional folk medicine used for the treatment of stomach pain, stomach ulcers, bruises, and skin infections in China. Some of the diseases may relate to microbial infections in traditional applications. However few reports on its antimicrobial properties and bioactive components. AIM OF THE STUDY: To identify its bioactive constituents against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo, and its mechanism. MATERIALS AND METHODS: The anti-MRSA ingredient 6α-O-[ß-D-xylopyranosyl-(1 â†’ 3)-ß-D-quinovopyranosyl]-(25S)-5α-spirostan-3ß-ol (XQS) was obtained from R. pachynema by phytochemical isolation. Subsequently, XQS underwent screening using the broth microdilution method and growth inhibition curves to assess its antibacterial activity. The mechanism of XQS was evaluated by multigeneration induction, biofilm resistance assay, scanning electron microscopy, transmission electron microscopy, and metabolomics. Additionally, a mouse skin infection model was established in vivo. RESULTS: 26 compounds were identified from the R. pachynema, in which anti-MRSA spirostane saponin (XQS) was reported for the first time with a minimum inhibitory concentration (MIC) of 8 µg/mL. XQS might bind to peptidoglycan (PGN) of the cell wall, phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) of the cell membrane, then destroying the cell wall and the cell membrane, resulting in reduced membrane fluidity and membrane depolarization. Furthermore, XQS affected MRSA lipid metabolism, amino acid metabolism, and ABC transporters by metabolomics analysis, which targeted cell walls and membranes causing less susceptibility to drug resistance. Furthermore, XQS (8 mg/kg) recovered skin wounds in mice infected by MRSA effectively, superior to vancomycin (8 mg/kg). CONCLUSIONS: XQS showed anti-MRSA bioactivity in vitro and in vivo, and its mechanism association with cell walls and membranes was reported for the first, which supported the traditional uses of R. pachynema and explained its sensitivity to MRSA.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Saponins , Animals , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Mice , Saponins/pharmacology , Saponins/isolation & purification , Spirostans/pharmacology , Spirostans/isolation & purification , Biofilms/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Female , Fishes , Male
4.
Eur J Med Chem ; 271: 116399, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38640868

ABSTRACT

The structural optimization of B14, an antibacterial agent we previously obtained, has led to the discovery of a new class of CH2-linked quinolone-aminopyrimidine hybrids with potent anti-MRSA activities. Surprisingly, the hybrids lacking a C-6 fluoro atom at the quinolone nucleus showed equal or even stronger anti-MRSA activities than their corresponding 6-fluoro counterparts, despite the well-established structure-activity relationships (SARs) indicating that the 6-fluoro substituent enhances the antibacterial activity in conventional fluoroquinolone antibiotics. Moreover, these new hybrids, albeit structurally related to conventional fluoroquinolones, showed no cross-resistance with fluoroquinolone drugs. The most active compound, 15m, exhibited excellent activities with a MIC value of 0.39 µg/mL against both fluoroquinolone-sensitive strain USA500 and -resistant MRSA isolate Mu50. Further resistance development studies indicated MRSA is unlikely to acquire resistance against 15m. Moreover, 15m displayed favorable in vivo half-life and safety profiles. These findings suggest a rationale for further evolution of quinolone antibiotics with a high barrier to resistance.


Subject(s)
Anti-Bacterial Agents , Fluoroquinolones , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Pyrimidines , Quinolones , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Methicillin-Resistant Staphylococcus aureus/drug effects , Structure-Activity Relationship , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Fluoroquinolones/pharmacology , Fluoroquinolones/chemistry , Fluoroquinolones/chemical synthesis , Quinolones/pharmacology , Quinolones/chemistry , Quinolones/chemical synthesis , Molecular Structure , Drug Resistance, Bacterial/drug effects , Dose-Response Relationship, Drug , Animals , Humans
5.
ACS Infect Dis ; 10(2): 350-370, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38232301

ABSTRACT

The emergence of multi-drug-resistant bacteria is threatening to human health and life around the world. In particular, methicillin-resistant Staphylococcus aureus (MRSA) causes fatal injuries to human beings and serious economic losses to animal husbandry due to its easy transmission and difficult treatment. Currently, the development of novel, highly effective, and low-toxicity antimicrobials is important to combat MRSA infections. Thiazole-containing compounds with good biological activity are widely used in clinical practice, and appropriate structural modifications make it possible to develop new antimicrobials. Here, we review thiazole-containing compounds and their antibacterial effects against MRSA reported in the past two decades and discuss their structure-activity relationships as well as the corresponding antimicrobial mechanisms. Some thiazole-containing compounds exhibit potent antibacterial efficacy in vitro and in vivo after appropriate structural modifications and could be used as antibacterial candidates. This Review provides insights into the development of thiazole-containing compounds as antimicrobials to combat MRSA infections.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Animals , Humans , Thiazoles/pharmacology , Thiazoles/chemistry , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology
6.
Daru ; 32(1): 177-187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38246975

ABSTRACT

BACKGROUND: In previous studies, authors have completed the total synthesis of several phloroglucinol natural products and synthesized a series of their derivatives, which were tested with good biological activities. OBJECTIVES: To discover anti-MRSA lead compound and study their mechanism of action. METHODS: Phloroglucinol derivatives were tested to investigate their activities against several gram-positive strains including Methicillin-resistant Staphylococcus aureus (MRSA). The mechanism study was conducted by determining extracellular potassium ion concentration, intracellular NADPH oxidase content, SOD activity, ROS amount in MRSA and MRSA survival rate under A5 treatment. The in vitro cytotoxicity test of A5 was conducted. RESULTS: The activity of monocyclic compounds was stronger than that of bicyclic compounds, and compound A5 showed the best MIC value of 0.98 µg/mL and MBC value of 1.95 µg/mL, which were 4-8 times lower than that of vancomycin. The mechanism study of A5 showed that it achieved anti-MRSA effect through membrane damage, which is proved by increased concentration of extracellular potassium ion after A5 treatment. Another possible mechanism is the over ROS production induced cell death, which is suggested by observed alternation of several reactive oxygen species (ROS) related indicators including NADPH concentration, superoxide dismutase (SOD) activity, ROS content and bacterial survival rate after A5 treatment. The cytotoxicity results in vitro showed that A5 was basically non-toxic to cells. CONCLUSION: Acylphloroglucinol derivative A5 showed good anti-MRSA activity, possibly via membrane damage and ROS-mediated oxidative stress mechanism. It deserves further exploration to be a potential lead for the development of new anti-MRSA agent.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Phloroglucinol , Reactive Oxygen Species , Methicillin-Resistant Staphylococcus aureus/drug effects , Phloroglucinol/pharmacology , Phloroglucinol/chemistry , Phloroglucinol/analogs & derivatives , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Reactive Oxygen Species/metabolism , Humans , Superoxide Dismutase/metabolism
7.
Expert Opin Drug Saf ; : 1-11, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38251915

ABSTRACT

This study investigated the patterns of hematological adverse events related to daptomycin (DAP), tigecycline (TIG), vancomycin (VAN) and linezolid (LIN) in the FDA Adverse Event Reporting System (FAERS). Adverse event associations were analyzed through calculating reporting odds ratio (ROR), proportional reporting ratio (PRR), multiple gamma Poisson shrinkage (MGPS), and Bayesian confidence propagation neural network (BCPNN). A comprehensive descriptive analysis was also conducted considering factors such as age, gender, daily dose, cumulative dose, and time to onset. The leading hematologic adverse events were eosinophilia for daptomycin, coagulation abnormalities and thrombocytopenia for tigecycline, thrombocytopenia, neutropenia, and anemia for linezolid, and thrombocytopenia, eosinophilia, and neutropenia for vancomycin. Most of the affected patients were over 55 years old. Daily doses for the tigecycline and daptomycin groups exceeded the standard daily dose. The times to onset were 14.00 days for daptomycin (interquartile range [IQR], 4.00-21.00), 6.00 days for tigecycline (IQR, 2.00-9.00), 10.00 days for linezolid (IQR, 4.00-16.5), and 10.00 days for vancomycin (IQR,5.00-20.00). It is essential to intensify early monitoring and identification of these adverse events, especially in the context of off-label dosages and for elderly patients and individuals taking medication for over one week.

8.
Chem Biodivers ; 21(3): e202301900, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38282171

ABSTRACT

The emergence of multi-drug-resistant microbial strains spurred the search for antimicrobial agents; as a result, two distinct approaches were combined: four in vitro studies and four corresponding molecular docking investigations. Antituberculosis, anti-methicillin-resistant Staphylococcus aureus (anti-MRSA), antifungal, and larvicidal activities of the crude extract, two fractions, and seven isolated compounds from Aspergillus terreus derived from Morus alba roots were explored. The isolated compounds (5 butyrolactones and 2 orsellinic acid derivatives) showed potent to moderate antitubercular activity with MIC values ranging from 1.95 to 62.5 µg/mL (compared to isoniazid, 0.24 µg/mL) and promising anti-MRSA potential with inhibition zone diameters ranging from 8 to 25 mm. Additionally, the in silico study proved that the isolated compounds bind to the two corresponding proteins' active sites with high to moderate -(C-Docker interaction energies) and stable interactions. The isolated compounds displayed antifungal activities against different fungal strains at diverse degrees of activity, among them compound (8"S,9")-dihydroxy-dihydrobutyrolactone I eliciting the best antifungal activity. Meanwhile, all isolated compounds, fractions, and the crude extract demonstrated extremely selective potent to moderate activity against Cryptococcus neoformans. The isolated five butyrolactone derivatives could develop potential mosquito larvicidal agents as a result of promising docking outcomes in the larval enzyme carboxylesterase.


Subject(s)
Anti-Infective Agents , Aspergillus , Methicillin-Resistant Staphylococcus aureus , Morus , Resorcinols , Animals , Antifungal Agents/pharmacology , Molecular Docking Simulation , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Fungi , Complex Mixtures , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
9.
Mol Biotechnol ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042757

ABSTRACT

Multidrug resistance to pathogens has posed a severe threat to public health. The threat could be addressed by antimicrobial peptides (AMPs) with broad-spectrum suppression. In this study, Brevibacillus halotolerans 7WMA2, isolated from marine sediment, produced AMPs against Gram-positive and Gram-negative bacteria. The AMPs were precipitated by ammonium sulfate 30% (w/v) from culture broth and dialyzed by a 1 kDa membrane. Tryptone Soy Agar (TSA) was used for the cultivation and resulted in the largest bacteria-inhibiting zones under aerobic conditions at 25 °C, 48 h. An SDS-PAGE gel overlay test revealed that strain 7WMA2 could produce AMPs of 5-10 kDa and showed no degradation when held at 121 °C for 30 min at a wide pH 2-12 range. The AMPs did not cause toxicity to HeLa cells with concentrations up to 500 µg/mL while increasing the arbitrary unit up to eight times. The study showed that the AMPs produced were unique, with broad-spectrum antimicrobial ability.

10.
J Adv Res ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37931657

ABSTRACT

INTRODUCTION: Methicillin-resistant Staphylococcus aureus (MRSA)-caused infections greatly threaten public health. The discovery of natural-product-based anti-MRSA agents for treating infectious diseases has become one of the current research focuses. OBJECTIVES: This study aims to identify promising anti-MRSA agents with a clear mechanism based on natural norharmane modified by quaternization or dimerization. METHODS: A total of 32 norharmane analogues were prepared and characterized. Their antibacterial activities and resistance development propensity were tested by the broth double-dilution method. Cell counting kit-8 and hemolysis experiments were used to assess their biosafety. The plasma stability, bactericidal mode, and biofilm disruption effects were examined by colony counting and crystal violet staining assays. Fluorescence microscopy, metabolomic analysis, docking simulation and spectra titration revealed its anti-MRSA mechanisms. The mouse skin infection model was used to investigate the in vivo efficacy. RESULTS: Compound 5a was selected as a potential anti-MRSA agent, which exhibited potent anti-MRSA activity in vitro and in vivo, low cytotoxicity and hemolysis under an effective dose. Moreover, compound 5a showed good stability in 50% plasma, a low tendency of resistance development and capabilities to disrupt bacterial biofilms. The mechanism studies revealed that compound 5a could inhibit the biosynthesis of bacteria cell walls, damage the membrane, disturb energy metabolism and amino acid metabolism pathways, and interfere with protein synthesis and nucleic acid function. CONCLUSIONS: These results suggested that compound 5a is a promising candidate for combating MRSA infections, providing valuable information for further exploiting a new generation of therapeutic antibiotics.

11.
PeerJ ; 11: e16143, 2023.
Article in English | MEDLINE | ID: mdl-37810790

ABSTRACT

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is listed as a highly prioritized pathogen by the World Health Organization (WHO) to search for effective antimicrobial agents. Previously, we isolated a soil Brevibacillus sp. strain SPR19 from a botanical garden, which showed anti-MRSA activity. However, the active substances were still unknown. Methods: The cell-free supernatant of this bacterium was subjected to salt precipitation, cation exchange, and reversed-phase chromatography. The antimicrobial activity of pure substances was determined by broth microdilution assay. The peptide sequences and secondary structures were characterized by tandem mass spectroscopy and circular dichroism (CD), respectively. The most active anti-MRSA peptide underwent a stability study, and its mechanism was determined through scanning electron microscopy, cell permeability assay, time-killing kinetics, and biofilm inhibition and eradication. Hemolysis was used to evaluate the peptide toxicity. Results: The pure substances (BrSPR19-P1 to BrSPR19-P5) were identified as new peptides. Their minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) against S. aureus and MRSA isolates ranged from 2.00 to 32.00 and 2.00 to 64.00 µg/mL, respectively. The sequence analysis of anti-MRSA peptides revealed a length ranging from 12 to 16 residues accompanied by an amphipathic structure. The physicochemical properties of peptides were predicted such as pI (4.25 to 10.18), net charge at pH 7.4 (-3 to +4), and hydrophobicity (0.12 to 0.96). The CD spectra revealed that all peptides in the water mainly contained random coil structures. The increased proportion of α-helix structure was observed in P2-P5 when incubated with SDS. P2 (NH2-MFLVVKVLKYVV-COOH) showed the highest antimicrobial activity and high stability under stressed conditions such as temperatures up to 100 °C, solution of pH 3 to 10, and proteolytic enzymes. P2 disrupted the cell membrane and caused bacteriolysis, in which its action was dependent on the incubation time and peptide concentration. Antibiofilm activity of P2 was determined by which the half-maximal inhibition of biofilm formation was observed at 2.92 and 4.84 µg/mL for S. aureus TISTR 517 and MRSA isolate 2468, respectively. Biofilm eradication of tested pathogens was found at the P2 concentration of 128 µg/mL. Furthermore, P2 hemolytic activity was less than 10% at concentrations up to 64 µg/mL, which reflected the hemolysis index thresholds of 32. Conclusion: Five novel anti-MRSA peptides were identified from SPR19. P2 was the most active peptide and was demonstrated to cause membrane disruption and cell lysis. The P2 activity was dependent on the peptide concentration and exposure time. This peptide had antibiofilm activity against tested pathogens and was compatible with human erythrocytes, supporting its potential use as an anti-MRSA agent in this post-antibiotic era.


Subject(s)
Anti-Infective Agents , Brevibacillus , Methicillin-Resistant Staphylococcus aureus , Humans , Staphylococcus aureus , Hemolysis , Peptides/chemistry , Anti-Infective Agents/pharmacology , Biofilms
12.
Pharmaceutics ; 15(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37896146

ABSTRACT

Propolis is a naturally occurring substance with beneficial properties; bees produce it from various plant sources, and it is an anti-inflammatory and therapeutic resinous substance. This study aimed to enhance the biological features of propolis extract by loading it onto active film. Firstly, extraction was performed using three solvent systems, and their total phenolic, flavonoid, and antioxidant activity was measured. Propolis ethanol extract (EEP) was evaluated for phenolic fraction content and then chosen to prepare a chitosan-loaded emulsion with several concentrations. The antibacterial, anti-mycotic, and anti-mycotoxigenic properties of the extract and nanoemulsion were assessed. PPE's cytotoxicity and nanoemulsion were evaluated using brine shrimp and cell line assays. Results indicate higher phenolic (322.57 ± 4.28 mg GAE/g DW), flavonoid (257.64 ± 5.27 mg QE/g DW), and antioxidant activity of the EEP. The phenolic fraction is distinguished by 18 phenolic acids with high p-hydroxybenzoic content (171.75 ± 1.64 µg/g) and 12 flavonoid compounds with high pinocembrin and quercetin content (695.91 ± 1.76 and 532.35 ± 1.88 µg/g, respectively). Phenolic acid derivatives (3,4-Dihydroxybenzaldehyde, 3,4-Dihydroxyphenol acetate, and di-methoxy cinnamic) are also found. Concentrations of 50, 100, 150, and 200 ng EEP loaded on chitosan nanoemulsion reflect significant antibacterial activity against pathogenic bacteria, particularly methicillin-resistant Staphylococcus aureus (MRSA) and toxigenic fungi, particularly Fusarium. Among the four EEP-loaded concentrations, the nanoemulsion with 150 ng showed outstanding features. Using a simulated medium, 150 and 200 ng of EEP-loaded chitosan nanoemulsion concentrations can stop zearalenone production in Fusarium media with complete fungi inhibition. Also, it reduced aflatoxins production in Aspergillus media, with fungal inhibition (up to 47.18%). These results recommended the EEP-chitosan application for pharmaceutics and medical use as a comprehensive wound healing agent.

13.
Nat Prod Res ; : 1-7, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37695019

ABSTRACT

There is growing evidence that bioactive substances produced by microbial endophytes have applicability in medicine, agriculture and industry. To enrich the bioactive substances, in our search for new bioactive metabolites from fungi Aspergillus, the phytochemical reinvestigation on the Aspergillus sp. 0338 was carried out, and this led to the isolation of three new (1-3) and five known alkaloids (4-8). Their structures were elucidated by spectroscopic analysis, including extensive 1D and 2D NMR techniques, as well as comparison with literature values. Additionally, compounds 1-3 were evaluated for their anti-MRSA activities. The results revealed that compounds 1-3 exhibited good inhibitions with IZD of 15.2 ± 1.8, 14.6 ± 2.0, and 13.4 ± 2.2 mm, respectively.

14.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37765112

ABSTRACT

Antibiotic resistance is a public health problem with increasingly alarming data being reported. Gram-positive bacteria are among the protagonists of severe nosocomial and community infections. The objective of this review is to conduct an extensive examination of emerging treatments for Gram-positive infections including ceftobiprole, ceftaroline, dalbavancin, oritavancin, omadacycline, tedizolid, and delafloxacin. From a methodological standpoint, a comprehensive analysis on clinical trials, molecular structure, mechanism of action, microbiological targeting, clinical use, pharmacokinetic/pharmacodynamic features, and potential for therapeutic drug monitoring will be addressed. Each antibiotic paragraph is divided into specialized microbiological, clinical, and pharmacological sections, including detailed and appropriate tables. A better understanding of the latest promising advances in the field of therapeutic options could lead to the development of a better approach in managing antimicrobial therapy for multidrug-resistant Gram-positive pathogens, which increasingly needs to be better stratified and targeted.

15.
Microorganisms ; 11(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37630465

ABSTRACT

Studies indicated potential harm from empirical broad-spectrum therapy. A recent study of hospitalizations for community-acquired pneumonia suggested that empirical anti-methicillin-resistant Staphylococcus aureus (MRSA) therapy was associated with an increased risk of death and other complications. However, limited evidence supports empirical anti-MRSA therapy for older patients with aspiration pneumonia. In a nationwide Japanese database, patients aged ≥65 years on admission with aspiration pneumonia were analyzed. Patients were divided based on presence of respiratory failure and further sub-categorized based on their condition within 3 days of hospital admission, either receiving a combination of anti-MRSA agents and other antibiotics, or not using MRSA agents. An inverse probability weighting method with estimated propensity scores was used. Out of 81,306 eligible patients, 55,098 had respiratory failure, and 26,208 did not. In the group with and without respiratory failure, 0.93% and 0.42% of the patients, respectively, received anti-MRSA agents. In patients with respiratory failure, in-hospital mortality (31.38% vs. 19.03%, p < 0.001), 30-day mortality, and 90-day mortality were significantly higher, and oxygen administration length was significantly longer in the anti-MRSA agent combination group. Anti-MRSA agent combination use did not improve the outcomes in older patients with aspiration pneumonia and respiratory failure, and should be carefully and comprehensively considered.

16.
Int J Mol Sci ; 24(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569391

ABSTRACT

Brevibacillus sp. SPR20 produced potentially antibacterial substances against methicillin-resistant Staphylococcus aureus (MRSA). The synthesis of these substances is controlled by their biosynthetic gene clusters. Several mutagenesis methods are used to overcome the restriction of gene regulations when genetic information is absent. Atmospheric and room temperature plasma (ARTP) is a powerful technique to initiate random mutagenesis for microbial strain improvement. This study utilized an argon-based ARTP to conduct the mutations on SPR20. The positive mutants of 40% occurred. The M27 mutant exhibited an increase in anti-MRSA activity when compared to the wild-type strain, with the MIC values of 250-500 and 500 µg/mL, respectively. M27 had genetic stability because it exhibited constant activity throughout fifteen generations. This mutant had similar morphology and antibiotic susceptibility to the wild type. Comparative proteomic analysis identified some specific proteins that were upregulated in M27. These proteins were involved in the metabolism of amino acids, cell structure and movement, and catalytic enzymes. These might result in the enhancement of the anti-MRSA activity of the ARTP-treated SPR20 mutant. This study supports the ARTP technology designed to increase the production of valuable antibacterial agents.


Subject(s)
Brevibacillus , Methicillin-Resistant Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/genetics , Brevibacillus/genetics , Temperature , Proteomics , Mutagenesis , Anti-Bacterial Agents/pharmacology
17.
Biomed Mater ; 18(4)2023 06 20.
Article in English | MEDLINE | ID: mdl-37307854

ABSTRACT

Based on the promising development of carbon dots in antibacterial applications, Girard's reagent T-based carbon dots (GRT-CDs) with a mean size of 2.41 nm and excellent antibacterial performance were synthesized through a one-step method. The minimum inhibitory concentration ofGRT-CDswas 200 µg ml-1for bothEscherichia coli (E. coli)andStaphylococcus aureus (S. aureus). The bacterial growth curves showed that the inhibitory effect ofGRT-CDson bacterial multiplication was strongly concentration-dependent. The bactericidal effect ofGRT-CDswas further demonstrated by the large differences in bacterial fluorescence staining plots. Zeta potential measurements and scanning electron microscope images indicated thatGRT-CDsformed complexes with bacteria, which affected the normal physiological activities of bacteria, causing their rupture and death. In addition,GRT-CDsefficiently inhibited biofilm formation and removed mature biofilms. Furthermore,GRT-CDsalso exhibited a remarkable inhibitory activity on MRSA. Cytotoxicity experiments showed thatGRT-CDshad good cytocompatibility and even promoted cell proliferation at low concentrations. Therefore, theGRT-CDsobtained from a one-precursor and one-pot synthesis show good prospects for antibacterial applications.


Subject(s)
Carbon , Staphylococcus aureus , Escherichia coli , Anti-Bacterial Agents/pharmacology , Biofilms , Bacteria , Microbial Sensitivity Tests
18.
Chem Biodivers ; 20(4): e202300010, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36876631

ABSTRACT

Aspergetherins A-D (1-4), four new chlorinated biphenyls, were isolated from the rice fermentation of a marine sponge symbiotic fungus Aspergillus terreus 164018, along with seven known biphenyl derivatives (5-11). The structures of four new compounds were determined by a comprehensive analysis of the spectroscopic data, including HR-ESI-MS and 2D NMR data. All 11 isolates were evaluated for their anti-bacterial activity against two strains of methicillin-resistant Staphylococcus aureus (MRSA). Among them, compounds 1, 3, 8 and 10 showed anti-MRSA activity with MIC values of 1.0-128 µg/mL. Preliminary structure-activity relationship analysis unveiled that both chlorinated substitution and esterification of 2-carboxylic acid could impact the antibacterial activity of biphenyls.


Subject(s)
Anti-Bacterial Agents , Aspergillus , Biphenyl Compounds , Porifera , Animals , Anti-Bacterial Agents/chemistry , Aspergillus/chemistry , Methicillin-Resistant Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , Molecular Structure , Porifera/microbiology , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology
19.
Molecules ; 28(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36985547

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) continues to be one of the main causes of hospital-acquired infections in all regions of the world, while linezolid is one of the only commercially available oral antibiotics available against this dangerous gram-positive pathogen. In this study, the antibacterial activity from 32 analogues of synthetic gamma-lactam heterocycles against MRSA was determined. Amongst screened analogues for the minimum inhibitory concentration (MIC) assay, compound MFM514 displayed good inhibitory activity with MIC values of 7.8-15.6 µg/mL against 30 MRSA and 12 methicillin-sensitive S. aureus (MSSA) clinical isolates, while cytotoxicity evaluations displayed a mean inhibitory concentration (IC50) value of > 625 µg/mL, displaying a potential to becoming as a lead compound. In subsequent animal studies for MFM514, a single-dose oral acute toxicity test revealed an estimated mean lethal dose (LD50) value of <5000 mg/kg, while in the mice infection test, a mean effective dose (ED50) value of 29.39 mg/kg was obtained via oral administration. These results suggest that gamma-lactam carbon skeleton, particularly MFM514, is highly recommended to be evaluated further as a new safe and efficacious orally delivered antibacterial agent against MRSA.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Animals , Mice , Staphylococcus aureus , Lactams/pharmacology , Anti-Bacterial Agents/pharmacology , Linezolid/pharmacology , Microbial Sensitivity Tests
20.
Molecules ; 28(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903365

ABSTRACT

Four new germacrane sesquiterpene dilactones, 2ß-hydroxyl-11ß,13-dihydrodeoxymikanolide (1), 3ß-hydroxyl-11ß,13-dihydrodeoxymikanolide (2), 1α,3ß-dihydroxy-4,9-germacradiene-12,8:15,6-diolide (3), and (11ß,13-dihydrodeoxymikanolide-13-yl)-adenine (4), together with five known ones (5-9) were isolated from the aerial parts of Mikania micrantha. Their structures were elucidated on the basis of extensive spectroscopic analysis. Compound 4 is featured with an adenine moiety in the molecule, which is the first nitrogen-containing sesquiterpenoid so far isolated from this plant species. These compounds were evaluated for their in vitro antibacterial activity against four Gram-(+) bacteria of Staphyloccocus aureus (SA), methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus (BC) and Curtobacterium. flaccumfaciens (CF), and three Gram-(-) bacteria of Escherichia coli (EC), Salmonella. typhimurium (SA), and Pseudomonas Solanacearum (PS). Compounds 4 and 7-9 were found to show strong in vitro antibacterial activity toward all the tested bacteria with the MIC values ranging from 1.56 to 12.5 µg/mL. Notably, compounds 4 and 9 showed significant antibacterial activity against the drug-resistant bacterium of MRSA with MIC value 6.25 µg/mL, which was close to reference compound vancomycin (MIC 3.125 µg/mL). Compounds 4 and 7-9 were further revealed to show in vitro cytotoxic activity toward human tumor A549, HepG2, MCF-7, and HeLa cell lines, with IC50 values ranging from 8.97 to 27.39 µM. No antibacterial and cytotoxic activity were displayed for the other compounds. The present research provided new data to support that M. micrantha is rich in structurally diverse bioactive compounds worthy of further development for pharmaceutical applications and for crop protection in agricultural fields.


Subject(s)
Antineoplastic Agents , Methicillin-Resistant Staphylococcus aureus , Mikania , Humans , Mikania/chemistry , Sesquiterpenes, Germacrane , HeLa Cells , Anti-Bacterial Agents/chemistry , Bacteria , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...