ABSTRACT
Candida auris is an emerging Candida sp. that has rapidly spread all over the world. The evidence regarding its origin and emerging resistance is still unclear. The severe infection caused by this species results in significant mortality and morbidity among the elderly and immunocompromised individuals. The development of drug resistance is the major factor associated with the therapeutic failure of existing antifungal agents. Previous studies have addressed the antifungal resistance profile and drug discovery for C. auris. However, complete coverage of this information in a single investigation is not yet available. In this review, we have mainly focused on recent developments in therapeutic strategies against C. auris. Based on the available information, several different approaches were discussed, including existing antifungal drugs, chemical compounds, essential oils, natural products, antifungal peptides, immunotherapy, antimicrobial photodynamic therapy, drug repurposing, and drug delivery systems. Among them, synthetic chemicals, natural products, and antifungal peptides are the prime contributors. However, a limited number of resources are available to prove the efficiency of these potential therapies in clinical usage. Therefore, we anticipate that the findings gathered in this review will encourage further in vivo studies and clinical trials.
ABSTRACT
Introduction: Invasive candidiasis is a global public health problem as it poses a significant threat in hospital-settings. The aim of this study was to evaluate C14R, an analog derived from peptide BP100, as a potential antimicrobial peptide against the prevalent opportunistic yeast Candida albicans and the emergent multidrug-resistant yeast Candida auris. Methods: Antifungal susceptibility testing of C14R against 99 C. albicans and 105 C. auris clinical isolates from Colombia, was determined by broth microdilution. Fluconazole was used as a control antifungal. The synergy between C14R and fluconazole was assessed in resistant isolates. Assays against fungal biofilm and growth curves were also carried out. Morphological alterations of yeast cell surface were evaluated by scanning electron microscopy. A permeability assay verified the pore-forming ability of C14R. Results: C. albicans and C. auris isolates had a geometric mean MIC against C14R of 4.42 µg/ml and 5.34 µg/ml, respectively. Notably, none of the isolates of any species exhibited growth at the highest evaluated peptide concentration (200 µg/ml). Synergistic effects were observed when combining the peptide and fluconazole. C14R affects biofilm and growth of C. albicans and C. auris. Cell membrane disruptions were observed in both species after treatment with the peptide. It was confirmed that C14R form pores in C. albicans' membrane. Discussion: C14R has a potent antifungal activity against a large set of clinical isolates of both C. albicans and C. auris, showing its capacity to disrupt Candida membranes. This antifungal activity remains consistent across isolates regardless of their clinical source. Furthermore, the absence of correlation between MICs to C14R and resistance to fluconazole indicates the peptide's potential effectiveness against fluconazole-resistant strains. Our results suggest the potential of C14R, a pore-forming peptide, as a treatment option for fungal infections, such as invasive candidiasis, including fluconazole and amphotericin B -resistant strains.
Subject(s)
Antifungal Agents , Candidiasis, Invasive , Candidiasis , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida albicans , Fluconazole/pharmacology , Fluconazole/therapeutic use , Candida auris , Peptides/pharmacology , Microbial Sensitivity Tests , Drug Resistance, FungalABSTRACT
Cryptococcus neoformans is a multidrug-resistant pathogen responsible for infections in immunocompromised patients. Here, itraconazole (ITR), a commercial antifungal drug with low effectiveness against C. neoformans, was combined with different synthetic antimicrobial peptides (SAMPs), Mo-CBP3-PepII, RcAlb-PepII, RcAlb-PepIII, PepGAT, and PepKAA. The Mo-CBP3-PepII was designed based on the sequence of MoCBP3, purified from Moringa oleifera seeds. RcAlb-PepII and RcAlb-PepIII were designed using Rc-2S-Alb, purified from Ricinus communis seed cakes. The putative sequence of a chitinase from Arabidopsis thaliana was used to design PepGAT and PepKAA. All SAMPs have a positive liquid charge and a hydrophobic potential ranging from 41-65%. The mechanisms of action responsible for the combined effect were evaluated for the best combinations using fluorescence microscopy (FM). The synthetic peptides enhanced the activity of ITR by 10-fold against C. neoformans. Our results demonstrated that the combinations could induce pore formation in the membrane and the overaccumulation of ROS on C. neoformans cells. Our findings indicate that our peptides successfully potentialize the activity of ITR against C. neoformans. Therefore, synthetic peptides are potential molecules to assist antifungal agents in treating Cryptococcal infections.
ABSTRACT
The synthetic peptide SmAPα1-21 (KLCEKPSKTWFGNCGNPRHCG) derived from DefSm2-D defensin α-core is active at micromolar concentrations against the phytopathogenic fungus Fusarium graminearum and has a multistep mechanism of action that includes alteration of the fungal cell wall and membrane permeabilization. Here, we continued the study of this peptide's mode of action and explored the correlation between the biological activity and its primary structure. Transmission electron microscopy was used to study the ultrastructural effects of SmAPα1-21 in conidial cells. New peptides were designed by modifying the parent peptide SmAPα1-21 (SmAPH19R and SmAPH19A, where His19 was replaced by Arg or Ala, respectively) and synthesized by the Fmoc solid phase method. Antifungal activity was determined against F. graminearum. Membrane permeability and subcellular localization in conidia were studied by confocal laser scanning microscopy (CLSM). Reactive oxygen species (ROS) production was assessed by fluorescence spectroscopy and CLSM. SmAPα1-21 induced peroxisome biogenesis and oxidative stress through ROS production in F. graminearum and was internalized into the conidial cells' cytoplasm. SmAPH19R and SmAPH19A were active against F. graminearum with minimal inhibitory concentrations (MICs) of 38 and 100 µM for SmAPH19R and SmAPH19A, respectively. The replacement of His19 by Ala produced a decrease in the net charge with a significant increase in the MIC, thus evidencing the importance of the positive charge in position 19 of the antifungal peptide. Like SmAPα1-21, SmAP2H19A and SmAP2H19R produced the permeabilization of the conidia membrane and induced oxidative stress through ROS production. However, SmAPH19R and SmAPH19A were localized in the conidia cell wall. The replacement of His19 by Ala turned all the processes slower. The extracellular localization of peptides SmAPH19R and SmAPH19A highlights the role of the His19 residue in the internalization.
ABSTRACT
Cryptococcus neoformans is a human-pathogenic yeast responsible for pneumonia and meningitis, mainly in patients immunocompromised. Infections caused by C. neoformans are a global health concern. Synthetic antimicrobial peptides (SAMPs) have emerged as alternative molecules to cope with fungal infections, including C. neoformans. Here, eight SAMPs were tested regarding their antifungal potential against C. neoformans and had their mechanisms of action elucidated by fluorescence and scanning electron microscopies. Five SAMPs showed an inhibitory effect (MIC50) on C. neoformans growth at low concentrations. Fluorescence microscope (FM) revealed that SAMPs induced 6-kDa pores in the C. neoformans membrane. Inhibitory assays in the presence of ergosterol revealed that some peptides lost their activity, suggesting interaction with it. Furthermore, FM analysis revealed that SAMPs induced caspase 3/7-mediated apoptosis and DNA degradation in C. neoformans cells. Scanning Electron Microscopy (SEM) analysis revealed that peptides induced many morphological alterations such as cell membrane, wall damage, and loss of internal content on C. neoformans cells. Our results strongly suggest synthetic peptides are potential alternative molecules to control C. neoformans growth and treat the cryptococcal infection.
ABSTRACT
Caspofungin and other echinocandins have been used for the treatment of human infections by the opportunistic yeast pathogen, Candida albicans. There has been an increase in infections by non-albicans Candida species such as Candida glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei, and Candida auris in clinical or hospital settings. This is problematic to public health due to the increasing prevalence of echinocandin resistant species/strains. This review will present a summary on various studies that investigated the inhibitory action of caspofungin on 1,3-ß-D-glucan synthesis, on cell wall structure, and biofilm formation of C. albicans. It will highlight some of the issues linked to caspofungin resistance or reduced caspofungin sensitivity in various Candida species and the potential benefits of antimicrobial peptides and other compounds in synergy with caspofungin.
Subject(s)
Antifungal Agents , Candida albicans , Antifungal Agents/pharmacology , Candida , Candida albicans/genetics , Caspofungin/pharmacology , Drug Resistance, Fungal , Echinocandins/pharmacology , Humans , Lipopeptides/pharmacology , Microbial Sensitivity TestsABSTRACT
The prevalence of fungal infections is increasing worldwide, especially that of aspergillosis, which previously only affected people with immunosuppression. Aspergillus fumigatus can cause allergic bronchopulmonary aspergillosis and endangers public health due to resistance to azole-type antimycotics such as fluconazole. Antifungal peptides are viable alternatives that combat infection by forming pores in membranes through electrostatic interactions with the phospholipids as well as cell death to peptides that inhibit protein synthesis and inhibit cell replication. Engineering antifungal peptides with nanotechnology can enhance the efficacy of these therapeutics at lower doses and reduce immune responses. This manuscript explains how antifungal peptides combat antifungal-resistant aspergillosis and also how rational peptide design with nanotechnology and artificial intelligence can engineer peptides to be a feasible antifungal alternative.
ABSTRACT
Usually caused by Candida albicans, buccal candidiasis begins with the morphological transition between yeast and hyphal cells. Over time and without the correct treatment, it can be disseminated through the bloodstream becoming a systemic infection with high mortality rates. C. albicans already shows resistance against antifungals commonly used in treatments. Therefore, the search for new drugs capable of overcoming antifungal resistance is essential. Histatin 5 (Hst5) is an antimicrobial peptide of the Histatin family, that can be found naturally in human saliva. This peptide presents high antifungal activity against C. albicans. However, Hst5 action can be decreased for interaction with enzymes and metal ions present in the oral cavity. The current work aims to bring a brief review of relevant aspects of the pathogenesis and resistance mechanisms already reported for C. albicans. In addition, are also reported here the main immune responses of the human body and the most common antifungal drugs. Finally, the most important aspects regarding Histatin 5 and the benefits of its interaction with metals are highlighted. The intention of this review is to show the promising use of Hst5 metallopeptides in the development of effective drugs.
Subject(s)
Antifungal Agents/immunology , Candida albicans , Candidiasis , Drug Resistance, Fungal , Histatins/immunology , Saliva/immunology , Animals , Candida albicans/immunology , Candida albicans/physiology , Candidiasis/drug therapy , Candidiasis/immunology , HumansABSTRACT
Fusarium graminearum is the etiological agent of Fusarium head blight (FHB), a disease that produces a significant decrease in wheat crop yield and it is further aggravated by the presence of mycotoxins in the affected grains that may cause health problems to humans and animals. Plant defensins and defensin-like proteins are antimicrobial peptides (AMPs); they are small basic, cysteine-rich peptides (CRPs) ubiquitously expressed in the plant kingdom and mostly involved in host defence. They present a highly variable sequence but a conserved structure. The γ-core located in the C-terminal region of plant defensins has a conserved ß-hairpin structure and is a well-known determinant of the antimicrobial activity among disulphide-containing AMPs. Another conserved motif of plant defensins is the α-core located in the N-terminal region, not conserved among the disulphide-containing AMPs, it has not been yet extensively studied. In this report, we have cloned the putative antimicrobial protein DefSm2, expressed in flowers of the wild plant Silybum marianum. The cDNA encodes a protein with two fused basic domains of an N-terminal defensin domain (DefSm2-D) and a C-terminal Arg-rich and Lys-rich domain. To further characterize the DefSm2-D domain, we built a 3D template-based model that will serve to support the design of novel antifungal peptides. We have designed four potential antifungal peptides: two from the DefSm2-D α-core region (SmAPα1-21 and SmAPα10-21) and two from the γ-core region (SmAPγ27-44 and SmAPγ29-35). We have chemically synthesized and purified the peptides and further characterized them by electrospray ionization mass spectrometry (ESI-MS) and Circular dichroism (CD) spectroscopy. SmAPα1-21, SmAPα10-21, and SmAPγ27-44 inhibited the growth of the phytopathogen F. graminearum at low micromolar concentrations. Conidia exposure to the fungicidal concentration of the peptides caused membrane permeabilization to the fluorescent probe propidium iodide (PI), suggesting that this is one of the main contributing factors in fungal cell killing. Furthermore, conidia treated for 0.5h showed cytoplasmic disorganization as observed by transmission electron microscopy (TEM). Remarkably, the peptides derived from the α-core induced morphological changes on the conidia cell wall, which is a promising target since its distinctive biochemical and structural organization is absent in plant and mammalian cells.
ABSTRACT
AIMS: According to the WHO, 20-25% of people worldwide are affected by skin infections caused by dermatophytes, such as those of the Trichophyton genus. Additionally, several dermatophytes have developed resistance to drugs such as griseofulvin and itraconazole. This study tested 2S albumins-derived antimicrobial peptides (AMPs) as alternative antidermatophytic molecules. MAIN METHODS: Membrane pore formation assays, tests to detect overproduction of ROS, scanning electron microscopy (SEM) and fluorescence microscopy (FM) were carried out to provide insight into the mechanisms of antidermatophytic action. KEY FINDINGS: All AMPs (at 50 µg mL-1) tested reduced the mycelial growth of T. mentagrophytes and T. rubrum by up to 95%. In contrast, using a concentration 20-fold higher, griseofulvin only inhibited T. mentagrophytes by 35%, while itraconazole was not active against both dermatophytes. Scanning electron and fluorescence microscopies revealed that the six AMPs caused severe damage to hyphal morphology by inducing cell wall rupture, hyphal content leakage, and death. Peptides also induced membrane pore formation and oxidative stress by overproduction of ROS. Based on the stronger activity of peptides than the commercial drugs and the mechanism of action, all six peptides have the potential to be either employed as models to develop new antidermatophytic drugs or as adjuvants to existing ones. SIGNIFICANCE: The synthetic peptides are more efficient than conventional drug to treat infection caused by dermatophytes being potential molecules to develop new drugs.
Subject(s)
Antifungal Agents/pharmacology , Arthrodermataceae/drug effects , Griseofulvin/pharmacology , Itraconazole/pharmacology , Peptide Fragments/pharmacology , Antifungal Agents/chemical synthesis , Arthrodermataceae/physiology , Chemistry Techniques, Synthetic , Griseofulvin/chemical synthesis , Humans , Itraconazole/chemical synthesis , Peptide Fragments/chemical synthesisABSTRACT
Candida albicans is a common microorganism of human's microbiota and can be easily found in both respiratory and gastrointestinal tracts as well as in the genitourinary tract. Approximately 30% of people will be infected by C. albicans during their lifetime. Due to its easy adaptation, this microorganism started to present high resistance to antifungal agents which is associated with their indiscriminate use. There are several reports of adaptive mechanisms that this species can present. Some of them are intrinsic alteration in drug targets, secretion of extracellular enzymes to promote host protein degradation and efflux receptors that lead to a diminished action of common antifungal and host's innate immune response. The current review aims to bring promising alternatives for the treatment of candidiasis caused mainly by C. albicans. One of these alternatives is the use of antifungal peptides (AFPs) from the Histatin family, like histatin-5. Besides that, our focus is to show how nanotechnology can allow the application of these peptides for treatment of this microorganism. In addition, our intention is to show the importance of nanoparticles (NPs) for this purpose, which may be essential in the near future.
ABSTRACT
Venoms from ants comprise a rich source of bioactive peptides, including antimicrobial peptides. From the proteome and peptidome of the giant ant Dinoponera quadriceps venom, members of five known classes of antimicrobial peptides were disclosed (e.g., dermaseptin-, defensin-, ICK-, pilosulin- and ponericin-like types). Based on comparative analysis, these family members have structural determinants that indicate they could display antimicrobial activities. In previous works, pilosulin- and ponericin-like peptides were demonstrated to be active against bacteria, fungi, and parasites. Herein, the antifungal activity of ponericin- and pilosulin-like peptides were assessed, aiming at the expansion of the knowledge about AMPs in predatory ants and the development of new microbicide strategies to deal with difficult-to-treat fungal infections. Synthetic pilosulin- (Dq-2562, Dq-1503, and Dq-1319) and ponericin-like (Dq-3162) peptides were evaluated for their fungicide and fungistatic activities against different species of Candida, including a drug-resistant clinical strain. The MICs and MLCs were determined for all peptides individually and in combination with general antifungal drugs by the microdilution method. The time-kill kinetic curves were set up by means of a luminescent reagent, of which the light signal is proportional to the number of viable cells. The candicidal synergism observed by the combination of subinhibitory concentrations of peptides and general antimycotic drugs were quantified by the checkerboard test and fluorescent dye permeation assay. The influence of ergosterol on the antifungal activity was verified by supplementation of culture medium. The pilosulin- (Dq-2562 and Dq-1503) and ponericin-like (Dq-3162) were the most active peptides, displaying a broad spectrum of antifungal activity in vitro, with MICs in the range of 0.625 to 10 µM. The combination of peptides and conventional antimycotic drugs displayed a synergistic reduction in the MIC values of individual peptides and drugs, while soluble ergosterol in the culture medium increased the MICs. The fungicide and fungistatic activity of the individual peptides and peptides in combination with antimycotics were time-dependent with a rapid onset of action and long-lasting effect, which involved membrane disruption as an underlying mechanism of their action. Altogether, pilosulin- and ponericin-like peptides from the giant ant D. quadriceps venom display a broad-spectrum of candicidal activity, what allows their inclusion in the row of the antifungal peptides and gives support for further studies on the development of strategies to fight candidiasis.
ABSTRACT
Infections caused by invasive fungal biofilms have been widely associated with high morbidity and mortality rates, mainly due to the advent of antibiotic resistance. Moreover, fungal biofilms impose an additional challenge, leading to multidrug resistance. This fact, along with the contamination of medical devices and the limited number of effective antifungal agents available on the market, demonstrates the importance of finding novel drug candidates targeting pathogenic fungal cells and biofilms. In this context, an alternative strategy is the use of antifungal peptides (AFPs) against fungal biofilms. AFPs are considered a group of bioactive molecules with broad-spectrum activities and multiple mechanisms of action that have been widely used as template molecules for drug design strategies aiming at greater specificity and biological efficacy. Among the AFP classes most studied in the context of fungal biofilms, defensins, cathelicidins and histatins have been described. AFPs can also act by preventing the formation of fungal biofilms and eradicating preformed biofilms through mechanisms associated with cell wall perturbation, inhibition of planktonic fungal cells' adhesion onto surfaces, gene regulation and generation of reactive oxygen species (ROS). Thus, considering the critical scenario imposed by fungal biofilms and associated infections and the application of AFPs as a possible treatment, this review will focus on the most effective AFPs described to date, with a core focus on antibiofilm peptides, as well as their efficacy in vivo, application on surfaces and proposed mechanisms of action.
ABSTRACT
INTRODUCTION: Superficial infections involving the skin and mucosa are the most common fungal disease in humans. Fungi can also produce invasive infections (IFI), which are increasing in incidence among the growing population of immunocompromised patients, and are characterized by a high mortality rate. Amphotericin B, new triazoles and echinocandins have improved treatment options in IFI. However, the frequency of less common and more resistant fungi, the limited activity of available antifungal drugs and their undesirable side effects reflect the urgent need for the development of new therapeutic strategies. Areas covered: This review summarizes the patents granted from August 2013 to June 2016 for antifungal compounds, reflecting the advances made by pharmaceutical companies and research groups in the discovery of new natural or synthetic antifungal compounds as well as the improvement of previously patented structures with antifungal activity. Expert opinion: in the period covered here, progress has been in the development of new antifungal compounds or analogs of existing drugs with broad spectrum of activity, more favorable pharmacokinetic profiles or better bioavailability. However, the development of more promising approaches as antifungal compounds with broader antifungal activity and fungal-specific mechanisms of action are a high priority.