Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.287
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 636-644, jul. 2024. graf, tab
Article in English | LILACS | ID: biblio-1538072

ABSTRACT

Thechemical composition, antioxidant and antimicrobial activities of the essential oil from aerial parts (leaves and flowers) of Chuquiraga arcuataHarling grown in the Ecuadorian Andes were studied. One hundred and twenty-six compounds were identified in the essential oil. Monoterpene hydrocarbons (45.8%) and oxygenated monoterpenes (44.1%) had the major percentages. The most abundant compounds were camphor (21.6%), myrcene (19.5%), and 1,8-cineole (13.4%). Antioxidant activity was examined using DPPH, ABTS,and FRAP assays. The essential oil had a moderate scavenging effect and reduction of ferric ion capacity through FRAP assay. Antimicrobial activity of the essential oil was observed against four pathogenic bacteria and a fungus. The essential oil exhibited activity against all microorganism strains under test, particularly against Candida albicansand Staphylococcus aureuswith MICs of 2.43-12.10 µg/mL.


Se estudió la composición química, actividades antioxidantes y antimicrobianas del aceite esencial procedente de las partes aérea (hojas y flores) de Chuquiraga arcuataHarling cultivadas en los Andes ecuatorianos. Se identificaron 126 compuestos en el aceite esencial. Los hidrocarburos monoterpénicos (45,8%) y los monoterpenos oxigenados (44,1%) tuvieron el mayor porcentaje. Los compuestos más abundantes fueron alcanfor (21,6%), mirceno (19,5%) y 1,8-cineol (13,4%). La actividadantioxidante se examinó mediante ensayos DPPH, ABTS y FRAP. El aceite esencial tuvo un efecto eliminador moderado y una reducción de la capacidad de iones férricos mediante el ensayo FRAP. Se observó actividad antimicrobiana del aceite esencial contra cuatro bacterias y un hongo patógenos. El aceite esencial mostró actividad contra todas las cepas de microorganismos bajo prueba, particularmente contra Candida albicansy Staphylococcus aureuscon CMI de 2,43-12,10 µg/mL.


Subject(s)
Oils, Volatile/chemistry , Plant Extracts/chemistry , Antioxidants/chemistry , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Flowers/chemistry , Ecuador , Antioxidants/pharmacology
2.
Cureus ; 16(4): e57824, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38721202

ABSTRACT

Background Dental caries stands out as a significant global infectious disease, with oral diseases posing substantial health concerns primarily due to bacterial, fungal, and yeast infections. Kalanchoe pinnata demonstrates antimicrobial, anticancer, antiparasitic, and hepatoprotective properties, with applications in various ailments. Piper longum exhibits potent antimicrobial effects against bacterial and viral pathogens due to the bioactive compounds within the plant. This study aims to assess the antimicrobial efficacy of P. longum and K. pinnata formulation against oral pathogens and evaluate its other biomedical potential. Methodology The agar well diffusion method was employed to assess the antimicrobial activity of the formulation containing P. longum and K. pinnata against oral pathogens. The protein leakage assay was employed to assess the ability of the prepared formulation to cause protein release from oral pathogens. The other biomedical potentials of the prepared formulation including cytotoxic effects, antioxidant, and anti-inflammatory properties were investigated using in vitro assays. Results The prepared P. longum and K. pinnata formulation demonstrated significant antimicrobial activity against tested oral pathogens, with inhibition zones observed for Staphylococcus aureus (32 mm), Streptococcus mutans (22 mm), and Candida albicans (12 mm). However, no inhibition was observed on Enterococcus faecalis at the highest concentration of 100 µL. Additionally, the formulation demonstrated significant antioxidant activity with percentages of 89.22%, 84.4%, and 86.93% in 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), and ferric (Fe3+)-reducing antioxidant power assays, respectively, at the maximum concentration of 50 µL. Furthermore, the formulation exhibited potential anti-inflammatory activity, as evidenced by 79% inhibition in bovine serum albumin (BSA) denaturation assay and 77% inhibition in egg albumin (EA) denaturation assay at the highest concentration of 50 µL. Additionally, the formulation displayed low cytotoxic effects, even at the highest concentration of 80 µL. Conclusion K. pinnata and P. longum formulation demonstrated potential antimicrobial efficacy against oral pathogens and exhibited diverse therapeutic potentials. Thus, the developed formulation could be used as a potential alternative for pharmaceutical drugs against oral pathogens.

3.
Int J Biol Macromol ; : 132186, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38723815

ABSTRACT

Trigonella foenum-graecum, known as fenugreek, belongs to the leguminous family of wild growth in Western Asia, Europe, the Mediterranean, and Asia; its ripe seeds contain a pool of bioactive substances with great potential in the food industry and medicine. In this study, fenugreek seed mucilage (FSM) was extracted and characterized in its structural properties by X-ray diffraction, nuclear magnetic resonance, and high-performance liquid chromatography. Then, the applicability of FSM as an antimicrobial agent was demonstrated via the development of novel, active, edible FSM-based biofilms containing carboxymethyl cellulose and rosemary essential oil (REO). Incorporating REO in the biofilms brought about specific changes in Fourier-transform infrared spectra, affecting thermal degradation behavior. Scanning electron microscopy and atomic force microscopy morphography showed an even distribution of REO and smoother surfaces in the loaded films. Besides, the solubility tests evidenced a reduction in water solubility with increasing REO concentration from 1 to 3 wt%. The biological assay evidenced the antimicrobial activity of REO-loaded biofilms against Staphylococcus aureus and Escherichia coli. Finally, whole apples were dip-coated with FSM-based solutions to showcase future edible systems. The REO-loaded biofilms extended the shelf life of apples to 30 days, demonstrating their potential for sustainable and active coatings.

4.
Braz J Microbiol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744770

ABSTRACT

OBJECTIVE: To evaluate the antimicrobial activity of Brazilian honeys against oral microorganisms. DESIGN: Organic honeys (OH-1 to OH-8) were diluted (%-w/v) and sterilized by filtration. Antimicrobial activity was defined by determining MIC and CBM against oral Streptococcus. The component responsible for the antimicrobial action was defined by a catalase assay. Antibiofilm activity was evaluated against the monospecies biofilm of Streptococcus mutans  (ATCC 700610). RESULTS: OHs showed antimicrobial activity principally OH-1, OH-2, OH-3, and OH-7 with MIC values ​​ranging between 10 and 25%. The mechanism of action occurs mainly by hydrogen peroxide produced by honey enzymes. OH-1, OH-2, and OH-7 showed total biofilm destruction at low concentrations. CONCLUSION: Brazilian honeys have promising antimicrobial and antibiofilm activity with the potential to control oral microbiota.

5.
Pest Manag Sci ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747671

ABSTRACT

BACKGROUND: The discovery of antimicrobial ingredients from natural products could be an effective way to create novel fungicides. Rubia cordifolia L., a traditional Chinese herb, may have antimicrobial effects on plant pathogens according to our previous screening study. RESULTS: Rubia cordifolia L. extracts had moderate inhibitory effects on apple Valsa canker (Valsa mali) and tomato grey mould (Botrytis cinerea) at a concentration of 10 mg mL-1. With the use of bioguided isolation methods, eight compounds (1-8) were obtained, including the new compound 2,2,6-trimethyl-6-(4-methylphenyl)-tetrahydropyrano- 3-ol (7), and seven quinone derivatives. Two compounds, mollugin (1) and 1,3,6-trihydroxy-2-methylanthraquinone (6), were found to exhibit outstanding antifungal activities against V. mali and Phytophthora capsici Leon. The half maximal effective concentration (EC50) of compound 1 and compound 6 against V. mali were 79.08 and 81.78 µg mL-1, respectively, and the EC50 of compound 6 against P. capsici was 4.86 µg mL-1. Compound 1 also showed excellent activity against tobacco mosaic virus (TMV). The inactive, inductive, protective and curative activities against TMV were 84.29%, 83.38%, 86.81%, and 60.02%, respectively, at a concentration of 500 µg mL-1, which were all close to or greater than that of the positive control (100 µg mL-1 chitosan oligosaccharide, COS). CONCLUSION: Mollugin and 1,3,6-trihydroxy-2-methylanthraquinone are potentially valuable active compounds that lay a foundation for research on botanical fungicide products derived from R. cordifolia L. and provide lead structures for quinone derivative synthesis and structural modification. © 2024 Society of Chemical Industry.

6.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731426

ABSTRACT

The use of by-products as a source of bioactive compounds with economic added value is one of the objectives of a circular economy. The olive oil industry is a source of olive pomace as a by-product. The olive pomace used in the present study was the exhausted olive pomace, which is the by-product generated from the air drying and subsequent hexane extraction of residual oil from the olive pomace. The objective was to extract bioactive compounds remaining in this by-product. Various types of green extraction were used in the present study: solvent extraction (water and hydroalcoholic); ultrasound-assisted extraction; Ultra-Turrax-assisted extraction; and enzyme-assisted extraction (cellulase; viscoenzyme). The phenolic profile of each extract was determined using HPLC-DAD and the total phenolic content (TPC) and antioxidant activity (ABTS, DPPH, and ORAC) were determined as well. The results showed significant differences in the yield of extraction among the different methods used, with the enzyme-assisted, with or without ultrasound, extraction presenting the highest values. The ultrasound-assisted hydroethanolic extraction (USAHE) was the method that resulted in the highest content of the identified phenolic compounds: 2.021 ± 0.29 mg hydroxytyrosol/100 mg extract, 0.987 ± 0.09 mg tyrosol/100 mg extract, and 0.121 ± 0.005 mg catechol/100 mg extract. The conventional extraction with water at 50 °C produced the best results for TPC and antioxidant activity of the extracts. The extracts from the USAHE were able to inhibit Gram-positive bacteria, especially Bacillus cereus, showing 67.2% inhibition at 3% extract concentration.


Subject(s)
Antioxidants , Olive Oil , Plant Extracts , Polyphenols , Olive Oil/chemistry , Polyphenols/isolation & purification , Polyphenols/chemistry , Polyphenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Green Chemistry Technology/methods , Olea/chemistry , Chromatography, High Pressure Liquid/methods , Solvents/chemistry
7.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731430

ABSTRACT

The root of Carlina acaulis L. has been widely used in traditional medicine for its antimicrobial properties. In this study, the fractionation of methanol extract from the root was conducted. Four fractions (A, B, C, and D) were obtained and tested against a range of bacteria and fungi. The results showed promising antibacterial activity, especially against Bacillus cereus, where the minimal inhibitory concentration (MIC) was determined to be equal to 0.08 mg/mL and 0.16 mg/mL for heptane (fraction B) and ethyl acetate (fraction C), respectively. In the case of the methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 strain, the same fractions yielded higher MIC values (2.5 and 5.0 mg/mL, respectively). This was accompanied by a lack of apparent cytotoxicity to normal human BJ foreskin fibroblasts, enterocytes derived from CaCo2 cells, and zebrafish embryos. Further analyses revealed the presence of bioactive chlorogenic acids in the fractionated extract, especially in the ethyl acetate fraction (C). These findings support the traditional use of the root from C. acaulis and pave the way for the development of new formulations for treating bacterial infections. This was further evaluated in a proof-of-concept experiment where fraction C was used in the ointment formulation, which maintained high antimicrobial activity against MRSA and displayed low toxicity towards cultured fibroblasts.


Subject(s)
Anti-Bacterial Agents , Bacillus cereus , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Plant Extracts , Plant Roots , Methicillin-Resistant Staphylococcus aureus/drug effects , Bacillus cereus/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Roots/chemistry , Animals , Caco-2 Cells , Methanol/chemistry , Chemical Fractionation , Zebrafish
8.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731619

ABSTRACT

This study aims to investigate the vegetative buds from Picea abies (spruce), naturally found in a central region of Romania, through a comprehensive analysis of the chemical composition to identify bioactive compounds responsible for pharmacological properties. Using HPLC/derivatization technique of GC-MS and quantitative spectrophotometric assays, the phenolic profile, and main components of an ethanolic extract from the buds were investigated. The essential oil was characterized by GC-MS. Moreover, the antioxidant activity with the DPPH method, and the antimicrobial activity were tested. Heavy metal detection was performed by graphite furnace atomic absorption spectrometry. The main components of the alcoholic extract were astragalin, quercetin, kaempferol, shikimic acid, and quinic acid. A total content of 25.32 ± 2.65 mg gallic acid equivalent per gram of dry plant (mg GAE/g DW) and of 10.54 ± 0.083 mg rutin equivalents/g of dry plant (mg RE/g DW) were found. The essential oil had D-limonene, α-cadinol, δ-cadinene, 13-epimanool, and δ-3-carene as predominant components. The spruce vegetative buds exhibited significant antioxidant activity (IC50 of 53 µg/mL) and antimicrobial effects against Staphylococcus aureus. Furthermore, concentrations of heavy metals Pb and Cd were below detection limits, suggesting that the material was free from potentially harmful contaminants. The results confirmed the potential of this indigenous species to be used as a source of compounds with pharmacological utilities.


Subject(s)
Anti-Infective Agents , Antioxidants , Oils, Volatile , Phytochemicals , Picea , Plant Extracts , Picea/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry , Romania , Phenols/analysis , Phenols/pharmacology , Phenols/chemistry
9.
Foods ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731715

ABSTRACT

Honey is a natural sweetener made by bees that exhibits antimicrobial activity, mainly related to its H2O2 content. The aim of this work was to research the H2O2 concentration of 24 Spanish honeys from different botanical origins, studying their possible correlation with glucose oxidase (GOx), catalase (CAT), and anti-Staphylococcus aureus activities (minimal inhibition concentration (MIC), minimal bactericidal concentration (MBC), and percentage of inhibition at 5% (w/v) honey against Staphylococcus aureus), as well as possible correlations among all the analyzed parameters. The results showed that the H2O2 concentration did not depend on the botanical origin of the honeys. There were neither correlations between the H2O2 concentration and the activities of GOx and CAT, nor between GOx and antimicrobial activity. However, CAT and antimicrobial activities were positively correlated. Therefore, CAT could be successfully used as a possible marker of the antimicrobial activity of honeys against Staphylococcus aureus. Furthermore, a linear regression model has been fitted to explain the antimicrobial activity from CAT and GOx activity and H2O2 concentration. Although H2O2 is one of the compounds involved in honey's antibacterial activity, this capacity also strongly depends on other honey components (such as low water activity, acidity, osmolarity, and phenolic compounds). The very high anti-Staphylococcus aureus activity exhibited by all samples could be interesting for commercial honey-based formulations also helping to promote local beekeeping.

10.
Polymers (Basel) ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732714

ABSTRACT

The aim of this work was to develop active packaging based on polypropylene (PP) and polylactic acid (PLA) matrices using a high value by-product extracted from orange peel as an active compound for food packaging applications. Different films with and without orange peel extract (OPE) based on PP and PLA were obtained via cast extrusion and characterized in terms of their mechanical, thermal, optical, and sealing properties. The films obtained were transparent, but when OPE was incorporated, the transmittance spectrum decreased, causing slight coloration. Mechanical properties were affected by the incorporation of OPE, as elongation at break and tensile strength increased in the cross-direction of the PP film, although the main differences found were related to the polymer itself. In addition, sealing strength also increased via the incorporation of OPE in the PP matrix. However, thermal properties were not affected by OPE in the PP matrix but slightly decreased stability in PLA. Regarding antimicrobial activity in in vitro studies, no inhibition of the growth of Listeria innocua, Saccharomyces cerevisiae, Aspergillus niger, or Escherichia coli was observed. Finally, antioxidant activity was observed in in vitro studies with 2,2-Diphenyl-1picrylhydrazyl (DPPH) radical. The results of this study showed that the obtention of materials with OPE incorporated into the PLA and PP matrix is feasible. The new materials obtained can be used for applications of oxidation-sensitive fresh products.

11.
Biochem Pharmacol ; 225: 116269, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38723723

ABSTRACT

Antimicrobial peptides (AMPs), which have a low probability of developing resistance, are considered the most promising antimicrobial agents for combating antibiotic resistance. Feleucin-K3 is an amphiphilic cationic AMP that exhibits broad-spectrum antimicrobial activity. In our previous research, the first phenylalanine residue was identified as the critical position affecting its biological activity. Here, a series of Feleucin-K3 analogs containing hydrophobic D-amino acids were developed, leveraging the low sensitivity of proteases to unnatural amino acids and the regulatory effect of hydrophobicity on antimicrobial activity. Among them, K-1dF, which replaced the phenylalanine of Feleucin-K3 with its enantiomer (D-phenylalanine), exhibited potent antimicrobial activity with a therapeutic index of 46.97 and MICs between 4 to 8 µg/ml against both sensitive and multidrug-resistant Acinetobacter baumannii. The introduction of D-phenylalanine increased the salt tolerance and serum stability of Feleucin-K3. Moreover, K-1dF displayed a rapid bactericidal effect, a low propensity to develop resistance, and a synergistic effect when combined with antibiotics. More importantly, it exhibited considerable or superior efficacy to imipenem against pneumonia and skin abscess infection. In brief, the K-1dF obtained by simple and effective modification strategy has emerged as a promising candidate antimicrobial agent for tackling multidrug-resistant Acinetobacter baumannii infections.

12.
Food Sci Nutr ; 12(5): 3068-3079, 2024 May.
Article in English | MEDLINE | ID: mdl-38726420

ABSTRACT

Recently, the use of D-amino acids as food preservatives has attracted considerable attention because these natural compounds do not have adverse effects on human health. In addition, D-amino acids such as D-tryptophan can reduce the harmful effects of other treatments. For instance, the use of D-tryptophan in food reduces the requirement for high temperatures and their damaging effects on nutrients such as proteins and vitamins. The purpose of this systematic review was to investigate the antimicrobial effect of D-tryptophan on food-borne pathogens in vitro and in food models. To identify related studies, scientific digital databases such as PubMed, Science Direct, and Google Scholar were searched from January 2000 to February 2023. The results of the studies showed that when D-tryptophan was used with other stresses such as using different salt concentrations, refrigeration, or high temperatures, it showed significant antimicrobial effects on Gram-positive and Gram-negative food-borne pathogens, and antibiofilm impacts were also observed with D-tryptophan. Since studies have shown that the antimicrobial activity of D-tryptophan depends on several factors, including the pathogen strain, the type of stress, and the concentration of D-tryptophan, and every article has focused on one of these factors, there is a need for a systematic review that summarizes and concludes the effect of all these factors on the antimicrobial activity of D-tryptophan against food-borne pathogens.

13.
Acta Biomater ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38692469

ABSTRACT

Bacterial infection poses a significant impediment in wound healing, necessitating the development of dressings with intrinsic antimicrobial properties. In this study, a multilayered wound dressing (STPU@MTAI2/AM1) was reported, comprising a surface-superhydrophobic treated polyurethane (STPU) sponge scaffold coupled with an antimicrobial hydrogel. A superhydrophobic protective outer layer was established on the hydrophilic PU sponge through the application of fluorinated zinc oxide nanoparticles (F-ZnO NPs), thereby resistance to environmental contamination and bacterial invasion. The adhesive and antimicrobial inner layer was an attached hydrogel (MTAI2/AM1) synthesized through the copolymerization of N-[2-(methacryloyloxy)ethyl]-N, N, N-trimethylammonium iodide and acrylamide, exhibits potent adherence to dermal surfaces and broad-spectrum antimicrobial actions against resilient bacterial strains and biofilm formation. STPU@MTAI2/AM1 maintained breathability and flexibility, ensuring comfort and conformity to the wound site. Biocompatibility of the multilayered dressing was demonstrated through hemocompatibility and cytocompatibility studies. The multilayered wound dressing has demonstrated the ability to promote wound healing when addressing MRSA-infected wounds. The hydrogel layer demonstrates no secondary damage when peeled off compared to commercial polyurethane sponge dressing. The STPU@MTAI2/AM1-treated wounds were nearly completely healed by day 14, with an average wound area of 12.2 ± 4.3 %, significantly lower than other groups. Furthermore, the expression of CD31 was significantly higher in the STPU@MTAI2/AM1 group compared to other groups, promoting angiogenesis in the wound and thereby contributing to wound healing. Therefore, the prepared multilayered wound dressing presents a promising therapeutic candidate for the management of infected wounds. STATEMENT OF SIGNIFICANCE: Healing of chronic wounds requires avoidance of biofouling and bacterial infection. However developing a wound dressing which is both anti-biofouling and antimicrobial is a challenge. A multilayered wound dressing with multifunction was developed. Its outer layer was designed to be superhydrophobic and thus anti-biofouling, and its inner layer was broad-spectrum antimicrobial and could inhibit biofilm formation. The multilayered wound dressing with adhesive property could easily be removed from the wound surface preventing the cause of secondary damage. The multilayered wound dressing has demonstrated good abilities to promote MRSA-infected wound healing and presents a viable treatment for MRSA-infected wound.

14.
Cureus ; 16(4): e58562, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38770461

ABSTRACT

Background Glass ionomer cement (GIC) plays a vital role in dental restorative procedures, serving purposes such as filling, luting, and adhesion. However, its inadequate mechanical properties pose challenges, especially in areas experiencing significant stress. To overcome this limitation, nanohydroxyapatite (nHA), known for its bioactive phosphate content, is added to the GIC at specific concentrations to improve its properties. Aim  We aim to evaluate the antimicrobial property and compressive strength of green-mediated nHA-incorporated GIC. Material and methods Green synthesis of hydroxyapatite nanoparticles was prepared using Moringa oleifera extract in a solvent form and eggshell waste served as the calcium source. These nHA powders were then integrated into the GIC at varying concentrations (3%, 5%, and 10%) designated as Group I, Group II, and Group III, respectively, while Group IV (control) consisted of conventional GIC. Specimens were fabricated and subjected to chemical structure analysis through Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), and scanning electron microscopy (SEM). The antimicrobial activity and compressive strength of all groups were investigated. The antimicrobial activity against Streptococcus mutans and Lactobacillus was evaluated through the minimum inhibitory concentration (MIC) test, while compressive strength was evaluated by measuring the maximum force endured by the specimen before fracturing. Data analysis utilized IBM SPSS Statistics software, employing repeated measures ANOVA to determine mean MIC values and compressive strength, with Tukey's posthoc test for pairwise comparisons. Results The results of the study showed that the antimicrobial efficacy of nHA GIC improved with increasing weight percent (% wt) of the additive, exhibiting significantly enhanced activity against Streptococcus mutans and Lactobacillus compared to the control group (Group IV) with statistical significance (p < 0.05). Moreover, the compressive strength exhibited notable enhancements in the modified groups, including Group I (172.55 ± 0.76), Group II (178.16 ± 0.760), and Group III (182.45 ± 0.950), when compared to the control (162.46 ± 1.606), with statistically significant differences (p < 0.05). Conclusion The study demonstrates that the incorporation of green-mediated nHA-containing GIC results in superior antimicrobial efficacy and compressive strength compared to the control group (Group IV). In particular, the highest concentration of nHA-modified GIC (10%) exhibited the most favorable antimicrobial properties along with increased strength. Therefore, utilizing green-mediated nHA in the GIC shows promise as an effective restorative material. Future investigations should delve into the molecular chemistry and bonding mechanisms to further explore its potential.

15.
Int J Mol Sci ; 25(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732250

ABSTRACT

One previously undescribed alkaloid, named penifuranone A (1), and three known compounds (2-4) were isolated from the mangrove endophytic fungus Penicillium crustosum SCNU-F0006. The structure of the new alkaloid (1) was elucidated based on extensive spectroscopic data analysis and single-crystal X-ray diffraction analysis. Four natural isolates and one new synthetic derivative of penifuranone A, compound 1a, were screened for their antimicrobial, antioxidant, and anti-inflammatory activities. Bioassays revealed that penifuranone A (1) exhibited strong anti-inflammatory activity in vitro by inhibiting nitric oxide (NO) production in lipopolysaccharide-activated RAW264.7 cells with an IC50 value of 42.2 µM. The docking study revealed that compound 1 exhibited an ideal fit within the active site of the murine inducible nitric oxide synthase (iNOS), establishing characteristic hydrogen bonds.


Subject(s)
Alkaloids , Nitric Oxide , Penicillium , Penicillium/chemistry , Penicillium/metabolism , Mice , Animals , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , RAW 264.7 Cells , Nitric Oxide/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Nitric Oxide Synthase Type II/metabolism , Molecular Docking Simulation , Lipopolysaccharides , Antioxidants/pharmacology , Antioxidants/chemistry , Molecular Structure
16.
AMB Express ; 14(1): 44, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722390

ABSTRACT

Phoenix dactylifera L. and its wastes are known to be high in nutrients that are beneficial to human health. The study aimed to evaluate the antimicrobial, antibiofilm, and antiviral properties of Phoenix dactylifera L. pits extract (PDPE) in vitro. Gas chromatography-mass spectrometry (GC-MS) analysis indicated phenol, 2,5-bis(1,1-dimethyl ethyl), tetradecanoic acid, octaethylene glycol monododecyl ether, á-D-glucopyranosiduronic acid, and heptaethylene glycol monododecyl ether existence. The PDPE influenced pathogenic microorganisms, with inhibition zone diameters (IZDs) ranging from 10.0 to 35.0 mm. Staphylococcus aureus ATCC 5638 had the highest IZD, while Salmonella typhi DSM 17058 and Shigella sonnei DSM 5570 had the lowest. The antifungal effect observed only in spore failure or conidia formation. PDPE showed a 100% antibacterial spectrum against bacteria, with MIC values between 250 and 1000 µg/ml. MIC was only indicated with S. aureus of 500 µg/ml. MBC values ranged from 500 to 1000 g/ml, with MBC values of 500 g/ml for B. cereus, E. faecalis, S. typhi, and S. sonnei. The activity was 66.7% at 500 µg/ml, further concentrations of 125-250 g/ml had no antibacterial effect. PDPE biofilm inhibition % had the highest percentage of inhibition (98.59%) with S. aureus, B. cereus (94.12%), and E. coli (74.46%). With 50% (CC50) viral activity, the highest non-toxic PDPE dose was found to be at 123.0 µg/ml.

17.
3 Biotech ; 14(6): 155, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38766325

ABSTRACT

Curcuma caesia Roxb. is an ethnomedicinally important, essential oil (EO) yielding aromatic plant. A total of twelve accessions of this plant rhizome were collected from six different agro-climatic zones of West Bengal, India and evaluated for their antimicrobial activities against eight disease-causing, multi-drug-resistant pathogenic strains of urinary-tract infection and respiratory-tract infection. The EO and extracts demonstrated antibacterial activity, with the highest inhibition zone of 18.00 ± 0.08 and 17.50 ± 0.14 mm against Klebsiella pneumoniae by accession 06, even where all the broad-spectrum antibiotics failed to respond. In this study, we employed high-performance thin-layer chromatography (HPTLC) to quantify curcumin, the primary secondary metabolite of C. caesia, and the highest 0.228 mg/gm of curcumin resulted from accession 06. Hence, on the basis of all aspects, accession 06 was identified as the elite chemotype among all twelve accessions. The chemical profiling of EO from accession 06 was done using gas chromatography-mass spectroscopy (GC-MS). Conceivably, about 13 medicinally significant compounds were detected. As this plant species is seasonal and has difficulties in conventional breeding due to dormancy, it must be conserved through in vitro tissue culture for a steady supply throughout the year in massive amounts for agricultural demand. A maximum number of 19.28 ± 0.37 shoots has been obtained in MS medium fortified with 6-Benzylaminopurine, Kinetin, and Naphthalene acetic acid. The genetic uniformity of the plants has been studied through Start Codon Targeted Polymorphism. Therefore, this study must help meet the need for essential phytoactive compounds through a simple, validated, and reproducible plant tissue culture protocol throughout the year.

18.
Cureus ; 16(4): e58660, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38774172

ABSTRACT

Background Carbapenem-resistant Acinetobacter baumannii (CRAB) are difficult to eradicate from the environment and are virtually immune to all antibiotics. Consequently, CRAB may culminate in severe outbreaks and fatal infections among people attending hospitals and nursing homes. Salvadora persica has been used as an herbal remedy and chewing sticks for dental cleansing. Evaluating S. persica's efficacy against CRAB may provide an alternative approach to treating CRAB infections in healthcare environments, considering its traditional application in dental hygiene. Employing S. persica as an herbal remedy could be a part of a more sustainable approach to control CRAB infections. Aim To investigate the phytochemical composition of S. persica and evaluate its antimicrobial properties. Materials and methods The roots were extracted by Soxhlet apparatus using n-hexane, chloroform, and methanol. Each extract was analyzed using gas chromatography-mass spectrometry (GCMS) and characterized using WN908.L and National Institute of Standards and Technology (NIST) libraries. The antimicrobial activity of each extract against CRAB was evaluated using a broth microdilution assay to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results The GCMS analysis of different solvent extracts of S. persica roots showed the presence of various phytochemical compounds such as steroids, phenolic compounds, fatty acids, alcohols, terpenoids, and vitamin E. Both chloroform and hexane extracts showed the most effective antimicrobial activity with a MIC value of 3.13 mg/mL and an MBC value of 12.50 mg/mL, respectively. Benzoic acid was the major phytochemical compound identified from S. persica extract. N-hexane, chloroform, and methanol extracts exhibited maximum antimicrobial activity due to the presence of active compounds in them. Conclusion Chloroform and hexane extracts showed the most potent antibacterial activities against CRAB.

19.
Chem Biodivers ; : e202400569, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770783

ABSTRACT

A new series of isatin-Schiff base linked 1,2,3-triazole hybrids has been synthesized using CuAAC approach from (E)-3-(phenylimino)-1-(prop-2-yn-1-yl)indolin-2-one derivatives in high yield (73-91 %). These synthesized derivatives were characterized using FT-IR, 1H NMR, 13C NMR, 2D-NMR and HRMS spectral techniques. The in vitro antimicrobial activity assay proposed that most of the tested hybrids exhibited promising activity. Compound 5j displayed good significant antibacterial efficacy against P. aeruginosa and B. subtilis with MIC value of 0.0062 µmol/mL. While, 5j showed better antifungal potency against A. niger with MIC value of 0.0123 µmol/mL. The docking studies of most promising compounds were also performed with the well-known antibacterial and antifungal targets i.e. 1KZ1, 5TZ1. Molecular modelling investigations demonstrated that hybrids 5h and 5l exhibited good interactions with 1KZN and 5TZ1, with binding energies of -9.6 and -11.0 kcal/mol, respectively. Further, molecular dynamics studies of the compounds showing promising binding interactions were also carried out to study the stability of complexes of these hybrids with both the targets.

20.
AMB Express ; 14(1): 59, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761277

ABSTRACT

The growth of material science and technology places a high importance on the creation of better processes for the synthesis of copper nanoparticles. So that, an easy, ecological, and benign process for producing copper nanoparticles (CuNPs) has been developed using candy leaf (Stevia rebaudiana) leaves aqueous extract for the first time. UV-visible spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), high-resolution transmission electron microscope (HR-TEM), Fourier transmission infrared (FTIR), and zeta potential were applied to demonstrate strong characterization for the biosynthesized stevia-CuNPs. The UV-visible absorbance at 575 nm of surface plasmon resonance (SPR) was 1.2. The particle size mean diameter was recorded as 362.3 nm with - 10.8 mV zeta potential. The HR-TEM scanning revealed 51.46-53.17 nm and spherical-shaped stevia-CuNPs surrounded by coat-shell proteins. The cytotoxicity and cytocompatibility activity assay revealed that stevia-CuNPs was safe in lower concentrations and had a significant cell viability reduction in higher concentrations. The produced stevia-CuNPs were applied as antimicrobial agents against eight pathogenic bacteria and five fungi strains. The inhibitory action of the stevia-CuNPs was more pronounced in bacteria than in fungi, and they likewise demonstrated further inhibition zones in Staphylococcus aureus (50.0 mm) than in Aspergillus flavus (55.0 mm). With inhibition zone sizes of 50.0 mm and 47.0 mm and 50 µg/ml minimum inhibitory concentration, S. aureus and A. flavus were the most inhibited pathogens. The minimum lethal effect (MLC) estimate for S. aureus was 50 µg/ml, whereas 75 µg/ml for A. flavus. The stevia-CuNPs mode of action was characterized as bactericidal/fungicidal as the ratio of MIC to MLC was estimated to be equal to or less than 2. After all, stevia-CuNPs could be used as an alternative to commercial antibiotics to solve the problem of multidrug-resistant (MDR) microorganisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...