Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.948
Filter
1.
Nat Prod Res ; : 1-8, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829280

ABSTRACT

The rise of antibiotic-resistant bacterial strains represents an important challenge for global health, underscoring the critical need for innovative strategies to confront this threat. Natural products and their derivatives have emerged as a promising reservoir for drug discovery. The social amoeba Dictyostelium discoideum is a potent model organism in this effort. Employing this invertebrate model, we introduce a novel perspective to investigate natural plant extracts in search of molecules with potential antivirulence activity. Our work established an easy-scalable developmental assay targeting a virulent strain of Klebsiella pneumoniae, with Helenium aromaticum as the representative plant. The main objective was to identify tentative compounds from the Helenium aromaticum extract that attenuate the virulence of K. pneumoniae virulence without inducing cytotoxic effects on amoeba cells. Notably, the methanolic root extract of H. aromaticum fulfilled these prerequisites compared to the dichloromethane extract. Using UHPLC Q/Orbitrap/ESI/MS/MS, 63 compounds were tentatively identified in both extracts, 47 in the methanolic and 29 in the dichloromethane, with 13 compounds in common. This research underscores the potential of employing D. discoideum-assisted pharmacognosy to discover new antivirulence agents against multidrug-resistant pathogens.

2.
J Dairy Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825122

ABSTRACT

This study aimed to assess the impact of bulk tank milk (BTM), waste milk (WM), and pasteurized waste milk (PWM) on nutrient digestibility, ruminal and cecal fermentation, gastrointestinal tract (GIT) development, and antimicrobial resistance of fecal Escherichia coli from dairy calves at 2 periods (30 and 60 d of age). Calves were grouped according to body weight, serum protein levels, and breed composition. Three treatments were included: BTM (n = 21), WM from cows under antibiotic treatment (n = 21), and PWM (waste milk submitted to high-temperature, short-time pasteurization; n = 21). A total of 63 calves were used, of which: 18 animals (n = 6 per treatment) evaluated in the period of 4 - 30 d and 45 (n = 15 per treatment) from 4 - 60 d. During the experimental period, a daily intake of 6 L of milk was divided into 2 equal meals, with ad libitum access to water and starter. Milk and feed intakes were recorded daily. Apparent total-tract digestibility and nitrogen balance were conducted from 25 to 29 d of age (n = 6) and from 53 to 57 d of age (n = 15). Animals were euthanized at 30 ± 1 and 60 ± 1 d of age for the assessment of ruminal and cecal fermentation and GIT development. Antimicrobial susceptibility testing was conducted at 1, 30, and 60 d of age (n = 15/treatment). Statistical analysis utilized a linear mixed-effects model for continuous outcomes and generalized linear models for single measurements (R software). Treatments WM and PWM had lower rumen pH, higher ruminal acetate concentration, larger reticulorumen and liver, and a higher prevalence of fecal-resistant E. coli compared with BTM at both 30 and 60 d. Up to 60 d, both BTM and WM treatments exhibited higher digestibility of ether extract and gross energy compared with the PWM, whereas WM and PWM treatments showed increased nitrogen intake and retention compared with the BTM. These findings suggest that pasteurization of waste milk negatively affects nutrient digestibility and calf performance, while also impacting rumen development. Additionally, the use of milk containing antibiotic residue leads to the selection of resistant E. coli in the GIT over time.

3.
Sci Rep ; 14(1): 12892, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839785

ABSTRACT

Antimicrobials are molecules that prevent the formation of microorganisms such as bacteria, viruses, fungi, and parasites. The necessity to detect antimicrobial peptides (AMPs) using machine learning and deep learning arises from the need for efficiency to accelerate the discovery of AMPs, and contribute to developing effective antimicrobial therapies, especially in the face of increasing antibiotic resistance. This study introduced AMP-RNNpro based on Recurrent Neural Network (RNN), an innovative model for detecting AMPs, which was designed with eight feature encoding methods that are selected according to four criteria: amino acid compositional, grouped amino acid compositional, autocorrelation, and pseudo-amino acid compositional to represent the protein sequences for efficient identification of AMPs. In our framework, two-stage predictions have been conducted. Initially, this study analyzed 33 models on these feature extractions. Then, we selected the best six models from these models using rigorous performance metrics. In the second stage, probabilistic features have been generated from the selected six models in each feature encoding and they are aggregated to be fed into our final meta-model called AMP-RNNpro. This study also introduced 20 features with SHAP, which are crucial in the drug development fields, where we discover AAC, ASDC, and CKSAAGP features are highly impactful for detection and drug discovery. Our proposed framework, AMP-RNNpro excels in the identification of novel Amps with 97.15% accuracy, 96.48% sensitivity, and 97.87% specificity. We built a user-friendly website for demonstrating the accurate prediction of AMPs based on the proposed approach which can be accessed at http://13.126.159.30/ .


Subject(s)
Antimicrobial Peptides , Neural Networks, Computer , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Machine Learning , Anti-Infective Agents/pharmacology , Deep Learning
4.
Environ Sci Nano ; 11(2): 637-644, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38841652

ABSTRACT

Infections caused by fungi are emerging global health challenges that are exacerbated by the formation of fungal biofilms. Further challenges arise from environmental contamination with antifungal agents, which promotes environmental acquisition of antifungal resistance. We report the generation of an efficient, sustainable, all-natural antifungal nanotherapeutic based on the integration of an antimicrobial natural essential oil into a gelatin-based nanoemulsion platform. Carvacrol-loaded gelatin nanoemulsions penetrated Candida albicans biofilms, resulting in death of C. albicans cells in biofilms, and displayed selective biofilm elimination without harmful effects on fibroblast cells in a fungal biofilm-mammalian fibroblast co-culture model. Furthermore, the nanoemulsions degraded in the presence of physiologically relevant biomolecules, reducing the potential for environmental pollution and ecotoxicity. Overall, the sustainability, and efficacy of the described gelatin nanoemulsion formulation provides an environmentally friendly strategy for treating biofilm-associated fungal infections, including those caused by drug-resistant fungi.

5.
BMC Res Notes ; 17(1): 151, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831376

ABSTRACT

Staphylococcus aureus is a pathogen with high epidemic potential frequently involved in nosocomials and communities infections. The pathogenicity of Staphylococcus aureus is due to both its ability to resist antibiotics and to Produce toxins. This work aims at studying the resistance and Molecular Epidemiology of Staphylococcus aureus. Antibiotic susceptibility of the 70 strains isolates of Staphylococcus aureus was determined by agar diffusion while Multiplex PCR and MLST were used to search toxin-coding genes and MRSA typing, respectively. 14.28% of isolates were multidrug resistant. Staphylococcus aureus showed high susceptibility to aminoglycoside and Macrolides familly. lukS-PV/lukF-PV and sea genes were detected in 45% and 3% of Staphylococcus aureus respectively. Ten (10) sequence types including ST5710, ST2430, ST5289, ST5786, ST6942, ST6943, ST6944, ST6945, ST6946, ST6947 have been reported. The study showed a diversity of antibiotic resistance phenotypes and a great diversity of MRSA clones causing infections.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/pathogenicity , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Burkina Faso/epidemiology , Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Multilocus Sequence Typing , Drug Resistance, Multiple, Bacterial/genetics
6.
J Clin Periodontol ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690660

ABSTRACT

AIM: To evaluate the effectiveness of a flapless surgical approach in the treatment of peri-implantitis and to explore the factors influencing its outcome. MATERIALS AND METHODS: The present retrospective study evaluated patients with at least one implant diagnosed with peri-implantitis and treated with a flapless surgical access, with or without systemic antimicrobials, curettage and, when needed, prostheses modification. Clinical and radiographic parameters were assessed at baseline and at 3 months and at least 12 months. The primary outcome was disease resolution (≤1 bleeding sites, probing depth [PD] ≤5 mm, no bone loss >0.5 mm). Multilevel regression analyses were used to identify predictors influencing the probability of attaining disease resolution. RESULTS: One hundred and seventeen patients with 338 implants were included. Disease resolution was attained in 54.4% of the 338 implants receiving flapless surgical access. At the end of the follow-up period, 111 patients (94.9%) with 295 implants (87.3%) did not require any further treatment, with 81.4% of these implants presenting PD ≤ 5 mm. History of periodontitis and PD at baseline were identified as negative predictors, while compliance with supportive peri-implant care, a machined surface and the adjunctive use of systemic azithromycin or metronidazole were identified as positive predictive factors for disease resolution. CONCLUSIONS: A flapless surgical approach led to disease resolution in 54.4% of the implants with peri-implantitis. Several risk/protective predictors for disease resolution were identified.

7.
Discov Nano ; 19(1): 85, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724833

ABSTRACT

The escalating global challenge of antimicrobial resistance demands innovative approaches. This review delves into the current status and future prospects of bioengineered metallic nanoparticles derived from natural sources as potent antimicrobial agents. The unique attributes of metallic nanoparticles and the abundance of natural resources have sparked a burgeoning field of research in combating microbial infections. A systematic review of the literature was conducted, encompassing a wide range of studies investigating the synthesis, characterization, and antimicrobial mechanisms of bioengineered metallic nanoparticles. Databases such as PubMed, Scopus, Web of Science, ScienceDirect, Springer, Taylor & Francis online and OpenAthen were extensively searched to compile a comprehensive overview of the topic. The synthesis methods, including green and sustainable approaches, were examined, as were the diverse biological sources used in nanoparticle fabrication. The amalgamation of metallic nanoparticles and natural products has yielded promising antimicrobial agents. Their multifaceted mechanisms, including membrane disruption, oxidative stress induction, and enzyme inhibition, render them effective against various pathogens, including drug-resistant strains. Moreover, the potential for targeted drug delivery systems using these nanoparticles has opened new avenues for personalized medicine. Bioengineered metallic nanoparticles derived from natural sources represent a dynamic frontier in the battle against microbial infections. The current status of research underscores their remarkable antimicrobial efficacy and multifaceted mechanisms of action. Future prospects are bright, with opportunities for scalability and cost-effectiveness through sustainable synthesis methods. However, addressing toxicity, regulatory hurdles, and environmental considerations remains crucial. In conclusion, this review highlights the evolving landscape of bioengineered metallic nanoparticles, offering valuable insights into their current status and their potential to revolutionize antimicrobial therapy in the future.

8.
Article in English | MEDLINE | ID: mdl-38801620

ABSTRACT

The use of microorganisms as beneficial crops for human and animal health has been studied for decades, and these microorganisms have been in practical use for quite some time. Nowadays, in addition to well-known examples of beneficial properties of lactic acid bacteria, bifidobacteria, selected Bacillus spp., and yeasts, there are several other bacteria considered next-generation probiotics that have been proposed to improve host health. Aquaculture is a rapidly growing area that provides sustainable proteins for consumption by humans and other animals. Thus, there is a need to develop new technologies for the production practices associated with cleaner and environment-friendly approaches. It is a well-known fact that proper selection of the optimal probiotics for use in aquaculture is an essential step to ensure effectiveness and safety. In this critical review, we discuss the evaluation of host-specific probiotics in aquaculture, challenges in using probiotics in aquaculture, methods to improve the survival of probiotics under different environmental conditions, technological approach to improving storage, and delivery along with possible negative consequences of using probiotics in aquaculture. A critical analysis of the identified challenges for the use of beneficial microbes in aquaculture will help in sustainable aquafarming, leading to improved agricultural practices with a clear aim to increase protein production.

9.
One Health ; 18: 100754, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38770401

ABSTRACT

Antimicrobial resistance (AMR) in livestock is a complicated and multi-sectoral risk that threatens public health in the interactions between humans, animals, and environment. Through their increased awareness of AMR issues, consumers can make a significant impact on regulations and strategies to reduce or eliminate the use of antimicrobials use. This study aims to provide evidence-based data for promoting the prudent use of antimicrobials (PUA) in the livestock industry to reduce the risk of AMR and increase animal welfare by identifying consumers' intentions to support PUA practices in livestock farming. An online survey was conducted on 1000 respondents in South Korea to examine their intention to pay more for PUA practices in livestock farming at state and individual levels against their pro-animal attitude, risk perception of antimicrobial overuse, trust in antimicrobial overuse control, and perceived value of PUA practices. The survey data was analyzed using multiple linear regression to identify the determinants of Korean consumers' support for PUA practices. Approximately 86.3% of the respondents supported government-level spending for PUA in livestock farming, and the same portion of respondents intended to pay more for livestock products that complied with the PUA principle. The four attitudinal variables-pro-animal attitude, consumers' risk perception, trust in antimicrobial resistance control, and perceived value of PUA-positively affected both state- and individual-level support. Overall, our findings highlight the Korean consumers' demand for reducing the risk of AMR and their perceived universal value of PUA for humans and animals.

10.
J Hosp Infect ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782058

ABSTRACT

The terms resistance and tolerance are well defined in the context of antibiotic research. However, in the field of disinfection, these terms are often used synonymously, which creates ambiguity and can lead to misunderstandings and misconceptions. In addition, this inconsistency in terminology makes it difficult to assess the risk of a disinfectant resistance. This general review aims to discuss existing definitions of the terms adaptation, susceptibility, tolerance, persistence, and resistance in the light of disinfectants. The most ambiguity is found between tolerance and resistance. Whereas the former describes the not necessarily heritable survival of transient exposure to usually lethal concentrations, resistance is the strictly heritable ability to survive otherwise lethal concentrations of an antimicrobial agent, regardless of exposure time. A simple transfer of experience from antibiotic research is not recommended when assessing the risk of resistance to disinfectants, as there are important differences between antibiotics and disinfectants, although both are antimicrobials: (i) disinfectants are usually applied at concentrations that exceed the minimum inhibitory concentration by orders of magnitude, (ii) the exposure times of disinfectants are in the range of seconds, minutes, or a few hours, (iii) the mode of action of disinfectants is less specific, and (iv) disinfectants often contain more than one active agent with additive or synergistic effects. It is important to recognise that disinfectants, like other antimicrobial agents such as antibiotics, have a dualistic nature and should be used correctly and with caution.

11.
Antibiotics (Basel) ; 13(5)2024 May 05.
Article in English | MEDLINE | ID: mdl-38786150

ABSTRACT

Scorpion venom peptides are generally classified into two main groups: the disulfide bridged peptides (DBPs), which usually target membrane-associated ion channels, and the non-disulfide bridged peptides (NDBPs), a smaller group with multifunctional properties. In the past decade, these peptides have gained interest because most of them display functions that include antimicrobial, anticancer, haemolytic, and anti-inflammatory activities. Our current study focuses on the short (9-19 amino acids) antimicrobial linear scorpion peptides. Most of these peptides display a net positive charge of 1 or 2, an isoelectric point at pH 9-10, a broad range of hydrophobicity, and a Grand Average of Hydropathy (GRAVY) Value ranging between -0.05 and 1.7. These features allow these peptides to be attracted toward the negatively charged phospholipid head groups of the lipid membranes of target cells, a force driven by electrostatic interactions. This review outlines the antimicrobial potential of short-chained linear scorpion venom peptides. Additionally, short linear scorpion peptides are in general more attractive for large-scale synthesis from a manufacturing point of view. The structural and functional diversity of these peptides represents a good starting point for the development of new peptide-based therapeutics.

12.
Antibiotics (Basel) ; 13(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786189

ABSTRACT

Clostridioides difficile infection (CDI), though identified nearly five decades ago, still remains a major challenge, being associated with significant mortality rates. The strains classified as hypervirulent, notably 027/NAP1/BI, have garnered substantial attention from researchers and clinicians due to their direct correlation with the severity of the disease. Our study aims to elucidate the significance of toxigenic Clostridioides difficile (CD) strains in the clinical and therapeutic aspects of managing patients diagnosed with CDI. We conducted a single-center prospective study, including patients with CDI from north-eastern Romania. We subsequently conducted molecular biology testing to ascertain the prevalence of the presumptive 027/NAP1/BI strain within aforementioned geographic region. The patients were systematically compared and assessed both clinically and biologically, employing standardized and comparative methodologies. The study enrolled fifty patients with CDI admitted between January 2020 and June 2020. Among the investigated patients, 43 (86%) exhibited infection with toxigenic CD strains positive for toxin B genes (tcdB), binary toxin genes (cdtA and cdtB), and deletion 117 in regulatory genes (tcdC), while the remaining 7 (14%) tested negative for binary toxin genes (cdtA and cdtB) and deletion 117 in tcdC. The presence of the presumptive 027/NAP1/BI strains was linked to a higher recurrence rate (35.56%, p = 0.025), cardiovascular comorbidities (65.1% vs. 14.2%, p = 0.016), and vancomycin treatment (55.8% vs. 14.3%, p = 0.049). The findings of our investigation revealed an elevated incidence of colitis attributed to presumptive 027/NAP1/BI. Despite the prevalence of the presumptive 027 strain and its associated heightened inflammation among the patients studied, no significant differences were observed regarding the clinical course or mortality outcomes.

13.
Antioxidants (Basel) ; 13(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38790647

ABSTRACT

For the last 30 years, Piscirickettsia salmonis has caused major economic losses to the aquaculture industry as the aetiological agent for the piscirickettsiosis disease. Replacing the current interventions, based on antibiotics, with natural alternatives (e.g., organic acids) represents a priority. With this study, we aimed to better understand their biological mechanism of action in an in vitro model of infection with salmon epithelial cells (CHSE-214). Our first observation revealed that at the sub-inhibitory concentration of 0.5%, the organic acid blend (Aq) protected epithelial cell integrity and significantly reduced P. salmonis invasion. The MIC was established at 1% Aq and the MBC at 2% against P. salmonis. The sub-inhibitory concentration significantly increased the expression of the antimicrobial peptides Cath2 and Hepcidin1, and stimulated the activity of the innate immune effector iNOS. The increase in iNOS activity also led to higher levels of nitric oxide (NO) being released in the extracellular space. The exposure of P. salmonis to the endogenous NO caused an increase in bacterial lipid peroxidation levels, a damaging effect which can ultimately reduce the pathogen's ability to attach or multiply intracellularly. We also demonstrate that the increased NO release by the host CHSE-214 cells is a consequence of direct exposure to Aq and is not dependent on P. salmonis infection. Additionally, the presence of Aq during P. salmonis infection of CHSE-214 cells significantly mitigated the expression of the pro-inflammatory cytokines IL-1ß, IL-8, IL-12, and IFNγ. Taken together, these results indicate that, unlike antibiotics, natural antimicrobials can weaponize the iNOS pathway and secreted nitric oxide to reduce infection and inflammation in a Piscirickettsia salmonis in vitro model of infection.

14.
Foods ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38790757

ABSTRACT

The antimicrobial function of citral, one of the main compounds of the essential oils (EO) of the Citrus genus, and widely used by the food industry toward spoilage yeast, was previously proven. In this study, the possible mode of action of citral against yeast cells was evaluated by using a global deletome approach. Firstly, the suitability of Saccharomyces cerevisiae Σ1278b to serve as model yeast was assessed by determining its sensitivity to citral (MIC = 0.5 µL/mL). Subsequently, the complete library of Σ1278b haploid mutants deleted in 4019 non-essential genes was screened to identify potential molecular targets of citral. Finally, the deleted genes in the 590 mutants showing increased citral resistance was analyzed with an in-silico approach (Gene Ontology). The significantly enriched GO Terms were "cytoplasm", "vacuole", and "mitochondrion" (cellular components); "catalytic activity" (molecular function); "pseudohyphal growth" (biological process). For molecular function, resistant mutants were grouped into thiosulfate sulfur transferase activity, transferase activity, and oxidoreductase activity; for cellular components, resistant mutants were grouped as: cytoplasm, intracellular organelle, membrane-bounded organelle, mitochondrion, organelle membrane, and vacuole; and finally, with regard to biological process, deleted genes were grouped as: pseudohyphal growth, mitochondrion organization, lipid metabolic process, DNA recombination and repair, and proteolysis. Interestingly, many identified genes were associated with the cellular response to oxidative stress and ROS scavenging. These findings have important implications for the development of citral-based antimicrobials and the elucidation of its mechanism of action.

15.
Article in English | MEDLINE | ID: mdl-38791776

ABSTRACT

Using whey, a by-product of the cheese-making process, is important for maximizing resource efficiency and promoting sustainable practices in the food industry. Reusing whey can help minimize environmental impact and produce bio-preservatives for foods with high bacterial loads, such as Mexican-style fresh cheeses. This research aims to evaluate the antimicrobial and physicochemical effect of CFS from Lactobacillus casei 21/1 produced in a conventional culture medium (MRS broth) and another medium using whey (WB medium) when applied in Mexican-style fresh cheese inoculated with several indicator bacteria (Escherichia coli, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes). The CFSs (MRS or WB) were characterized for organic acids concentration, pH, and titratable acidity. By surface spreading, CFSs were tested on indicator bacteria inoculated in fresh cheese. Microbial counts were performed on inoculated cheeses during and after seven days of storage at 4 ± 1.0 °C. Moreover, pH and color were determined in cheeses with CFS treatment. Lactic and acetic acid were identified as the primary antimicrobial metabolites produced by the Lb. casei 21/1 fermentation in the food application. A longer storage time (7 days) led to significant reductions (p < 0.05) in the microbial population of the indicator bacteria inoculated in the cheese when it was treated with the CFSs (MRS or WB). S. enterica serovar Typhimurium was the most sensitive bacteria, decreasing 1.60 ± 0.04 log10 CFU/g with MRS-CFS, whereas WB-CFS reduced the microbial population of L. monocytogenes to 1.67 log10 CFU/g. E. coli and S. aureus were the most resistant at the end of storage. The cheese's pH with CFSs (MRS or WB) showed a significant reduction (p < 0.05) after CFS treatment, while the application of WB-CFS did not show greater differences in color (ΔE) compared with MRS-CFS. This study highlights the potential of CFS from Lb. casei 21/1 in the WB medium as an ecological bio-preservative for Mexican-style fresh cheese, aligning with the objectives of sustainable food production and guaranteeing food safety.


Subject(s)
Cheese , Lacticaseibacillus casei , Whey , Cheese/microbiology , Cheese/analysis , Lacticaseibacillus casei/metabolism , Whey/chemistry , Whey/microbiology , Food Microbiology , Hydrogen-Ion Concentration , Food Preservation/methods , Mexico , Fermentation
16.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731923

ABSTRACT

Ionic liquids (ILs) have gained considerable attention due to their versatile and designable properties. ILs show great potential as antibacterial agents, but understanding the mechanism of attack on bacterial cells is essential to ensure the optimal design of IL-based biocides. The final aim is to achieve maximum efficacy while minimising toxicity and preventing resistance development in target organisms. In this study, we examined a dose-response analysis of ILs' antimicrobial activity against two pathogenic bacteria with different Gram types in terms of molecular responses on a cellular level using Fourier-transform infrared (FTIR) spectroscopy. In total, 18 ILs with different antimicrobial active motifs were evaluated on the Gram-negative enteropathogenic Escherichia coli (EPEC) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA). The results showed that most ILs impact bacterial proteins with increasing concentration but have a minimal effect on cellular membranes. Dose-response spectral analysis revealed a distinct ante-mortem response against certain ILs for MRSA but not for EPEC. We found that at sub-lethal concentrations, MRSA actively changed their membrane composition to counteract the damaging effect induced by the ILs. This suggests a new adaptive mechanism of Gram-positive bacteria against ILs and demonstrates the need for a better understanding before using such substances as novel antimicrobials.


Subject(s)
Enteropathogenic Escherichia coli , Ionic Liquids , Methicillin-Resistant Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/drug effects , Ionic Liquids/chemistry , Ionic Liquids/pharmacology , Spectroscopy, Fourier Transform Infrared/methods , Enteropathogenic Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
17.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731976

ABSTRACT

Increasing antimicrobial resistance (AMR) challenges conventional antibiotics, prompting the search for alternatives. Extracellular vesicles (EVs) from pasteurised cattle milk offer promise, due to their unique properties. This study investigates their efficacy against five pathogenic bacteria, including Staphylococcus aureus ATCC 25923, aiming to combat AMR and to develop new therapies. EVs were characterised and tested using various methods. Co-culture experiments with S. aureus showed significant growth inhibition, with colony-forming units decreasing from 2.4 × 105 CFU/mL (single dose) to 7.4 × 104 CFU/mL (triple doses) after 12 h. Milk EVs extended lag time (6 to 9 h) and increased generation time (2.8 to 4.8 h) dose-dependently, compared to controls. In conclusion, milk EVs exhibit dose-dependent inhibition against S. aureus, prolonging lag and generation times. Despite limitations, this suggests their potential in addressing AMR.


Subject(s)
Extracellular Vesicles , Milk , Staphylococcus aureus , Extracellular Vesicles/metabolism , Animals , Milk/microbiology , Staphylococcus aureus/drug effects , Cattle , Anti-Bacterial Agents/pharmacology , Pasteurization , Microbial Sensitivity Tests
18.
Ir Vet J ; 77(1): 10, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797844

ABSTRACT

BACKGROUND: Streptococcus agalactiae, a Gram-positive bacterium, has emerged as an important pathogen for the aquaculture industry worldwide, due to its increased induced mortality rates in cultured fish. Developing interventions to cure or prevent infections based on natural alternatives to antibiotics has become a priority, however, given the absence of scientific evidence regarding their mode of action progress has been slow. METHODS: In this study we aimed to investigate the effect of a mixture of organic acids (natural antimicrobials), AuraAqua (Aq), on the virulence of S. agalactiae using Tilapia gut primary epithelial cells and an in vitro Tilapia gut culture model. Our results show that Aq was able to reduce significantly, in vitro, the S. agalactiae levels of infection in Tilapia gut primary epithelial cells (TGP) when the MIC concentration of 0.125% was tested. RESULTS AND DISCUSSION: At bacterial level, Aq was able to downregulate bacterial capsule polysaccharide (CPS) gene expression, capC, resulting in a significant decrease in bacterial surface capsule production. The decrease in CPS production was also associated with a reduction in the pro-inflammatory IFNγ, IL1ß, TNFα, SOD and CAT gene expression and H2O2 production in the presence of 0.125% Aq (P < 0.0001). The antimicrobial mixture also reduced the levels of S. agalactiae infection in an in vitro gut culture model and significantly reduced the IFNγ, IL1ß, TNFα, SOD, CAT gene expression and H2O2 production in infected tissue. Moreover, genes involved in Tilapia resistance to S. agalactiae induced disease, MCP-8 and Duo-1, were also downregulated by Aq, as a consequence of reduced bacterial levels of infection. CONCLUSION: Conclusively, our study shows that mixtures of organic acids can be considered as potential alternative treatments to antibiotics and prevent S. agalactiae infection and inflammation in the Tilapia fish digestive tract.

19.
Braz J Microbiol ; 55(2): 1773-1781, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702536

ABSTRACT

The aim of this study was to identify virulence and antimicrobial resistance profiles and determine the sequence type (ST) by multilocus sequence typing (MLST) of Salmonella enterica isolates from bovine carcasses from slaughterhouse located in Minas Gerais state, Brazil, and its relationship with bovine isolates obtained on the American continent based on sequence type profile. The MLST results were compared with all Salmonella STs associated with cattle on American continent, and a multi-locus sequence tree (MS tree) was built. Among the 17 S. enterica isolates, five ST profiles identified, and ST10 were the most frequent, grouping seven (41.2%) isolates. The isolates presented 11 different profiles of virulence genes, and six different antibiotics resistance profiles. The survey on Enterobase platform showed 333 Salmonella STs from American continent, grouped into four different clusters. Most of the isolates in the present study (13/17), were concentrated in a single cluster (L4) composed by 74 STs. As a conclusion, five different STs were identified, with ST10 being the most common. The isolates showed great diversity of virulence genes and antibiotics resistance profiles. Most of the isolates of this study were grouped into a single cluster composed by 74 STs formed by bovine isolates obtained on the American continent.


Subject(s)
Anti-Bacterial Agents , Multilocus Sequence Typing , Salmonella Infections, Animal , Salmonella enterica , Virulence Factors , Animals , Cattle , Salmonella enterica/genetics , Salmonella enterica/drug effects , Salmonella enterica/isolation & purification , Salmonella enterica/pathogenicity , Salmonella enterica/classification , Brazil , Anti-Bacterial Agents/pharmacology , Salmonella Infections, Animal/microbiology , Virulence/genetics , Virulence Factors/genetics , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Cattle Diseases/microbiology , Abattoirs
20.
Microbiol Spectr ; 12(6): e0042723, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38695573

ABSTRACT

Escherichia coli O157:H7 is a globally important foodborne pathogen with implications for food safety. Antibiotic treatment for O157 may potentially contribute to the exacerbation of hemolytic uremic syndrome, and the increasing prevalence of antibiotic-resistant strains necessitates the development of new treatment strategies. In this study, the bactericidal effects and resistance development of antibiotic and bacteriophage monotherapy were compared with those of combination therapy against O157. Experiments involving continuous exposure of O157 to phages and antibiotics, along with genetic deletion studies, revealed that the deletion of glpT and uhpT significantly increased resistance to fosfomycin. Furthermore, we found that OmpC functions as a receptor for the PP01 phage, which infects O157, and FhuA functions as a receptor for the newly isolated SP15 phage, targeting O157. In the glpT and uhpT deletion mutants, additional deletion in ompC, the receptor for the PP01 phage, increased resistance to fosfomycin. These findings suggest that specific phages may contribute to antibiotic resistance by selecting the emergence of gene mutations responsible for both phage and antibiotic resistance. While combination therapy with phages and antibiotics holds promise for the treatment of bacterial infections, careful consideration of phage selection is necessary.IMPORTANCEThe combination treatment of fosfomycin and bacteriophages against Escherichia coli O157 demonstrated superior bactericidal efficacy compared to monotherapy, effectively suppressing the emergence of resistance. However, mutations selected by phage PP01 led to enhanced resistance not only to the phage but also to fosfomycin. These findings underscore the importance of exercising caution in selecting phages for combination therapy, as resistance selected by specific phages may increase the risk of developing antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli O157 , Fosfomycin , Anti-Bacterial Agents/pharmacology , Escherichia coli O157/virology , Escherichia coli O157/drug effects , Escherichia coli O157/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Humans , Fosfomycin/pharmacology , Drug Resistance, Bacterial , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/drug effects , Phage Therapy/methods , Coliphages/genetics , Coliphages/drug effects , Coliphages/physiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...