Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.884
Filter
1.
Medicina (Kaunas) ; 60(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38929512

ABSTRACT

This review examines hesperidin, a citrus bioflavonoid, as a potential antiviral agent against SARS-CoV-2. The COVID-19 pandemic has demanded an urgent need to search for effective antiviral compounds, including those of natural origin, such as hesperidin. The review provides a comprehensive analysis of the chemical properties, bioavailability and antiviral mechanisms of hesperidin, particularly its potential efficacy against SARS-CoV-2. A review of databases, including PubMedPico, Scopus and Web of Science, was conducted using specific keywords and search criteria in accordance with PRISMA (Re-porting Items for Systematic Reviews and Meta-Analysis) guidelines between 2020 and 2024. Of the 207 articles, 37 were selected for the review. A key aspect is the correlation of in vitro, in silico and clinical studies on the antiviral effects of hesperidin with epidemiological data on citrus consumption in China during 2020-2024. The importance of integrating laboratory findings with actual consumption patterns to better understand the role of hesperidin in mitigating COVID-19 was highlighted, and an attempt was made to analyze epidemiological studies to examine the association between citrus juice consumption as a source of hesperidin and the incidence and severity of COVID-19 using China as an example. The review identifies consistencies and discrepancies between experimental and epidemiological data, highlighting the need to correlate the two fields to better understand the potential of hesperidin as an agent against SARS-CoV-2. Challenges and limitations in interpreting the results and future research perspectives in this area are discussed. The aim of this comprehensive review is to bridge the gap between experimental studies and epidemiological evidence and to contribute to the understanding of their correlation.


Subject(s)
Antiviral Agents , COVID-19 , Citrus , Hesperidin , SARS-CoV-2 , Hesperidin/therapeutic use , Humans , Antiviral Agents/therapeutic use , China/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Incidence , SARS-CoV-2/drug effects , COVID-19 Drug Treatment , Severity of Illness Index
2.
Viruses ; 16(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38932119

ABSTRACT

Cytokinins (CKs) are a group of N6-substituted signaling molecules whose biosynthesis and metabolism have been documented in all kingdoms of life, including vertebrates. While their biological relevance in vertebrate systems continues to be elucidated, they have broadly been documented with therapeutic effects in exogenous applications. In this study, we evaluated the virostatic potential of four types of CKs including, N6-isopentenyladenine (iP), N6-isopentenyladenosine (iPR), N6-isopentenyladenosine-5'monophosphate (iPMP), and 2-methylthiol-N6-isopentenyladenosine (2MeSiPR) against the ranavirus type species, frog virus 3 (FV3). Following concurrent treatment and infection, iP and iPR reduced viral replication by 33.8% and 59.6%, respectively, in plaque formation assays. A decrease in viral replication was also observed when CK exposure was limited to 12 h prior to infection, where iP and iPR reduced viral replication by 31% and 23.75%, respectively. Treatment with iP and iPR was also marked by 48% and 60% decreases in viral load over 72 h, respectively, as measured in single step growth curves. Plaque morphology was altered in vitro, as iP and iPR treatment increased plaque area by 83% and 112% with lytic zone formation also becoming more prevalent in corresponding treatments. Treatment with iPMP and 2MeSiPR resulted in no effect on viral kinetics in vitro. The results of this study are the first to provide evidence of CK antiviral activity against a DNA virus and highlight the importance of their structure for therapeutic investigations.


Subject(s)
Antiviral Agents , Cytokinins , Ranavirus , Viral Plaque Assay , Virus Replication , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , Ranavirus/physiology , Ranavirus/drug effects , Cytokinins/pharmacology , Cytokinins/metabolism , Cell Line
3.
Expert Opin Drug Deliv ; 21(5): 751-766, 2024 May.
Article in English | MEDLINE | ID: mdl-38841752

ABSTRACT

INTRODUCTION: The dramatic effects caused by viral diseases have prompted the search for effective therapeutic and preventive agents. In this context, 2D graphene-based nanomaterials (GBNs) have shown great potential for antiviral therapy, enabling the functionalization and/or decoration with biomolecules, metals and polymers, able to improve their interaction with viral nanoparticles. AREAS COVERED: This review summarizes the most recent advances of the antiviral research related to 2D GBNs, based on their antiviral mechanism of action. Their ability to inactivate viruses by inhibiting the entry inside cells, or through drug/gene delivery, or by stimulating the host immune response are here discussed. As reported, biological studies performed in vitro and/or in vivo allowed to demonstrate the antiviral activity of the developed GBNs, at different stages of the virus life cycle and the evaluation of their long-term toxicity. Other mechanisms closely related to the physicochemical properties of GBNs are also reported, demonstrating the potential of these materials for antiviral prophylaxis. EXPERT OPINION: GBNs represent valuable tools to fight emerging or reemerging viral infections. However, their translation into the clinic requires standardized scale-up procedures leading to the reliable and reproducible synthesis of these nanomaterials with suitable physicochemical properties, as well as more in-depth pharmacological and toxicological investigations. We believe that multidisciplinary approaches will give valuable solutions to overcome the encountered limitations in the application of GBNs in biomedical and clinical field.


Subject(s)
Antiviral Agents , Drug Delivery Systems , Graphite , Nanostructures , Virus Diseases , Graphite/chemistry , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Humans , Nanostructures/chemistry , Animals , Virus Diseases/prevention & control , Virus Diseases/drug therapy , Viruses/drug effects , Gene Transfer Techniques
4.
Addict Sci Clin Pract ; 19(1): 51, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918869

ABSTRACT

BACKGROUND: Clinic-based interventions are needed to promote successful direct acting antiviral (DAA) treatment for chronic hepatitis C virus (HCV) infection in patients with substance use disorders (SUDs) among rural Veterans. METHODS: We implemented a clinic-based intervention which used motivational interviewing (MI) techniques to promote medication adherence and treatment completion with 12 weeks of DAA treatment among rural Veterans with chronic HCV and SUDs. Patients received an MI session with a licensed psychologist at baseline and at each two-week follow-up visit during DAA treatment. Patients received $25 per study visit completed. Patients were to attend a laboratory visit 12 weeks after treatment completion to assess for sustained virologic response (SVR). RESULTS: Of the 20 participants who enrolled, 75% (n = 15) completed the planned 12-week course of treatment. Average adherence by pill count was 92% (SD = 3%). Overall SVR was 95% (19/20). CONCLUSIONS: We demonstrated that a clinic-based intervention which incorporated frequent follow up visits and MI techniques was feasible and acceptable to a sample of predominantly rural Veterans with chronic HCV and SUDs. CLINICAL TRIAL REGISTRATION: Registered at ClinicalTrials.gov (NCT02823457) on July 1, 2016. https://clinicaltrials.gov .


Subject(s)
Antiviral Agents , Hepatitis C, Chronic , Medication Adherence , Motivational Interviewing , Rural Population , Substance-Related Disorders , Veterans , Humans , Male , Antiviral Agents/therapeutic use , Hepatitis C, Chronic/drug therapy , Middle Aged , Female , Medication Adherence/statistics & numerical data , Adult , Sustained Virologic Response , Aged
5.
Pathogens ; 13(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38921805

ABSTRACT

Prior to the Food and Drug Administration approval of ledipaspavir/sofosbuvir (Harvoni®) in 2014, the treatment of hepatitis C was interferon plus or minus ribavirin. This treatment had low cure rates for hepatitis C virus and was teratogenic and therefore avoided in pregnant patients. Vertical transmission is the most common transmission of hepatitis C in pediatric patients, whereas medical equipment that was not properly cleaned and sterilized, blood products which were not checked (historically), sharing and reusing syringes and needles, and dialysis are the most common forms of hepatitis C transmission in adults. The treatment of pregnant women with direct-acting antivirals is important because the treatment of pediatric patients cannot begin until three years of age and does not always occur prior to the symptom development of hepatitis C. This review article will include glecaprevir/pibrentasvir (Mayvret®), sofosbuvir/velpatasvir (Epclusa®), and sofosbuvir/velpatasvir plus voxilaprevir (Vosevi®). We aim to review the teratogenic risk of direct-acting antivirals as well as currently published clinical trials and ongoing research on direct-acting antiviral hepatitis C treatment in pregnancy in this publication.

6.
Cells ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38920664

ABSTRACT

Hepatitis C virus (HCV) is an oncogenic virus that causes chronic liver disease in more than 80% of patients. During the last decade, efficient direct-acting antivirals were introduced into clinical practice. However, clearance of the virus does not reduce the risk of end-stage liver diseases to the level observed in patients who have never been infected. So, investigation of HCV pathogenesis is still warranted. Virus-induced changes in cell metabolism contribute to the development of HCV-associated liver pathologies. Here, we studied the impact of the virus on the metabolism of polyamines and proline as well as on the urea cycle, which plays a crucial role in liver function. It was found that HCV strongly suppresses the expression of arginase, a key enzyme of the urea cycle, leading to the accumulation of arginine, and up-regulates proline oxidase with a concomitant decrease in proline concentrations. The addition of exogenous proline moderately suppressed viral replication. HCV up-regulated transcription but suppressed protein levels of polyamine-metabolizing enzymes. This resulted in a decrease in polyamine content in infected cells. Finally, compounds targeting polyamine metabolism demonstrated pronounced antiviral activity, pointing to spermine and spermidine as compounds affecting HCV replication. These data expand our understanding of HCV's imprint on cell metabolism.


Subject(s)
Hepacivirus , Polyamines , Proline , Urea , Virus Replication , Proline/metabolism , Humans , Hepacivirus/physiology , Hepacivirus/drug effects , Polyamines/metabolism , Urea/metabolism , Urea/pharmacology , Virus Replication/drug effects , Arginase/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Hepatitis C/metabolism , Hepatitis C/virology , Cell Line, Tumor , Proline Oxidase/metabolism
7.
J Infect Dev Ctries ; 18(5): 794-801, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38865409

ABSTRACT

INTRODUCTION: Chronic HC leads to the development of liver cirrhosis (LC) and hepatocellular carcinoma (HCC). The treatment of chronic HC with DAAs reduces mortality from LC and HCC. The study aimed to investigate the serological markers specific to HCC (PIVKA-II and AFP) in patients with chronic HC before and after DAA treatment. METHODOLOGY: The study involved 35 HCV patients (mean age: 56.23 ± 1.45) divided into two groups. Group 1 included 15 HCV + HCC patients and Group 2 included 20 HCV non-HCC patients. RESULTS: At the end of treatment all the patients were HCV RNA negative. Three months after the end of antiviral treatment, HCV RNA was undetectable in all patients, while a complete biochemical and virological response was observed in 66.7% of HCV + HCC patients and 85.0% of HCV non-HCC patients. PIVKA-II levels before the initiation of antiviral treatment were high in all patients. At the end of the treatment, in the HCV non-HCC group, normalization of PIVKA-II levels was observed only in 20.0% cases, and in 60.0% of cases 3 months after the treatment. Meanwhile, in patients with HCC and chronic HCV, PIVKA-II levels were within the normal range 3 months after treatment in only 13.3% of patients. CONCLUSIONS: It is necessary to monitor HCV patients with cirrhosis (F4) and severe fibrosis (F3) without HCC, who have high PIVKA-II and AFP levels and/or ALT activity despite obtaining sustained virologic response 3 months after treatment with DAAs.


Subject(s)
Antiviral Agents , Carcinoma, Hepatocellular , Hepatitis C, Chronic , Liver Neoplasms , Humans , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/complications , Antiviral Agents/therapeutic use , Middle Aged , Male , Liver Neoplasms/etiology , Liver Neoplasms/virology , Female , Biomarkers/blood , alpha-Fetoproteins/analysis , Prothrombin , Liver Cirrhosis , Aged
8.
Eur J Pharm Sci ; 200: 106834, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906232

ABSTRACT

The hepatitis B virus (HBV) capsid or core protein is a promising drug target currently being investigated for potential curative therapies for chronic HBV infection. In this study, we performed extensive in vitro and in vivo characterization of a novel and potent HBV core protein assembly modulator (CpAM), CU15, for both anti-HBV activity and druggability properties. CU15 potently inhibited HBV DNA replication in in vitro HBV-infected HepG2.2.15 cells (EC50 of 8.6 nM), with a low serum shift. It was also effective in inhibiting HBV DNA and cccDNA formation in de novo HBV-infected primary human hepatocytes. Furthermore, CU15 was active across several HBV genotypes and across clinically relevant core protein variants. After oral administration to an in vivo HBV mouse model, CU15 significantly reduced plasma HBV DNA and RNA levels, at plasma exposure consistent with the estimated in vitro potency. In vitro, CU15 exhibited excellent passive permeability and relatively high metabolic stability in liver preparations across species (human > dog> rat). In vitro human liver microsomal studies suggest that the compound's major metabolic pathway is CYP3A-mediated oxidation. Consistent with the in vitro findings, CU15 is a compound with a low-to-moderate clearance and high oral bioavailability in rats and dogs. Based on the apparent in vitro-in vivo correlation observed, CU15 has the potential to exhibit low clearance and high oral bioavailability in humans. In addition, CU15 also showed low drug-drug interaction liability with an acceptable in vitro safety profile (IC50 > 10 µM).

9.
Access Microbiol ; 6(5)2024.
Article in English | MEDLINE | ID: mdl-38873577

ABSTRACT

The novel sudden acute respiratory syndrome coronavirus 2 is an enveloped virus currently causing severe illness and death worldwide. Common antiseptics such as alcohol have some efficacy in disinfecting everyday surroundings, but development of more effective disinfectants is imperative. A series of studies focusing on cationic antimicrobials resulted in the development of a safe and effective novel coronavirus disinfectant, DEA-171, which provides ≥99.98 % inhibition of all novel coronavirus variants within 1 min.

10.
Sci Rep ; 14(1): 14192, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902383

ABSTRACT

Short influenza postexposure prophylaxis (PEP) showed high efficacy in adults, but studies in children are lacking. This randomized open-label pilot trial aimed to verify noninferiority of a 3- versus 7-day prophylaxis with oral oseltamivir in hospitalized children. Influenza contacts were randomized to the 3- or 7-day group and efficacy, relative risk of adverse events (AEs), and the cumulative costs of drugs and AEs management were compared. The intention-to-treat (ITT) analysis included 59 children (n = 28 and n = 31 in the 3- and 7-day group, respectively). The efficacy was 100% (95% CI 87.7-100%) versus 93.6% (95% CI 78.6-99.2%) in the 3- and 7-day group; the differences were statistically insignificant. A per-protocol (PP) analysis including 56 patients (n = 27 and n = 29, respectively) showed 100% (95% CI 87.2-100%) and 93.1% (95% CI 77.2-99.2%) efficacy, respectively, without statistical significance. Differences were within the predefined noninferiority margin with an efficacy difference Δ = 6.45 percentage points (p.p.) with 1-sided 95% CI (- 2.8, - 1.31, p = 0.86; ITT) and Δ = 6.9 p.p. (1-sided 95% CI - 2.83, - 1.27, p = 0.85; PP). Adverse events did not differ significantly, while the cumulative costs of the prophylaxis and AEs management were higher in the 7-day group (median 10.5 euro vs. 4.5 euro, p < 0.01). This pilot study showed the noninferiority of the 3-day versus 7-day PEP, which was associated with lower costs.Trial registration number: NCT04297462, 5th March 2020, restrospectively registered.


Subject(s)
Antiviral Agents , Influenza, Human , Oseltamivir , Post-Exposure Prophylaxis , Humans , Oseltamivir/therapeutic use , Oseltamivir/administration & dosage , Oseltamivir/adverse effects , Influenza, Human/prevention & control , Male , Female , Pilot Projects , Post-Exposure Prophylaxis/methods , Child , Antiviral Agents/therapeutic use , Antiviral Agents/economics , Antiviral Agents/adverse effects , Antiviral Agents/administration & dosage , Child, Preschool , Infant , Child, Hospitalized , Treatment Outcome , Adolescent
11.
Front Cell Infect Microbiol ; 14: 1335189, 2024.
Article in English | MEDLINE | ID: mdl-38895735

ABSTRACT

Background: Chikungunya virus (CHIKV), which causes chikungunya fever, is an arbovirus of public health concern with no approved antiviral therapies. A significant proportion of patients develop chronic arthritis after an infection. Zinc and magnesium salts help the immune system respond effectively against viral infections. This study explored the antiviral potential of zinc sulphate, zinc acetate, and magnesium sulphate against CHIKV infection. Methods: The highest non-toxic concentration of the salts (100 µM) was used to assess the prophylactic, virucidal, and therapeutic anti-CHIKV activities. Dose-dependent antiviral effects were investigated to find out the 50% inhibitory concentration of the salts. Entry bypass assay was conducted to find out whether the salts affect virus entry or post entry stages. Virus output in all these experiments was estimated using a focus-forming unit assay, real-time RT-PCR, and immunofluorescence assay. Results: Different time- and temperature-dependent assays revealed the therapeutic antiviral activity of zinc and magnesium salts against CHIKV. A minimum exposure of 4 hours and treatment initiation within 1 to 2 hours of infection are required for inhibition of CHIKV. Entry assays revealed that zinc salt affected virus-entry. Entry bypass assays suggested that both salts affected post-entry stages of CHIKV. In infected C57BL6 mice orally fed with zinc and magnesium salts, a reduction in viral RNA copy number was observed. Conclusion: The study results suggest zinc salts exert anti-CHIKV activity at entry and post entry stages of the virus life cycle, while magnesium salt affect CHIKV at post entry stages. Overall, the study highlights the significant antiviral potential of zinc sulphate, zinc acetate, and magnesium sulphate against CHIKV, which can be exploited in designing potential therapeutic strategies for early treatment of chikungunya patients, thereby reducing the virus-associated persistent arthritis.


Subject(s)
Antiviral Agents , Chikungunya Fever , Chikungunya virus , Zinc Acetate , Zinc Sulfate , Chikungunya virus/drug effects , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chikungunya Fever/drug therapy , Chikungunya Fever/virology , Zinc Acetate/pharmacology , Zinc Acetate/therapeutic use , Zinc Sulfate/pharmacology , Chlorocebus aethiops , Vero Cells , Virus Internalization/drug effects , Mice , Zinc/pharmacology , Zinc/therapeutic use , Humans , Magnesium Sulfate/pharmacology , Magnesium/pharmacology , Virus Replication/drug effects , Inhibitory Concentration 50 , Salts/pharmacology , Cell Line
12.
Article in English | MEDLINE | ID: mdl-38934682

ABSTRACT

KEY POINTS: Intralesional cidofovir injections in combination with surgery is an effective treatment for recurrent multifocal sinonasal exophytic papilloma. No malignant transformation has been observed in our experience. Anosmia is a potential side effect that patients should be aware of.

13.
Sex Transm Infect ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914475

ABSTRACT

Diagnosing and treating chronic hepatitis B virus (HBV) infection are key interventions to support progress towards elimination of viral hepatitis by 2030. Although nucleos/tide analogue (NA) therapy is typically highly effective, challenges remain for viral load (VL) suppression, including medication access, incomplete adherence and drug resistance. We present a case of a long-term HBV and HIV coinfected adult prescribed with sequential NA therapy regimens, with episodes of breakthrough viraemia. Multiple factors contribute to virological breakthrough, including exposure to old NA agents, initial high HBV VL, therapy interruptions, intercurrent illnesses and potential contribution from resistance mutations. The case underscores the importance of individualised treatment approaches and adherence support in achieving HBV suppression. Furthermore, it emphasises the need for improved clinical pathways addressing education, support and access to care, particularly for marginalised populations. Comprehensive data collection inclusive of under-represented individuals is crucial for maintaining retention in the care cascade and informing effective interventions.

14.
Sex Transm Infect ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914473

ABSTRACT

OBJECTIVES: Hepatitis delta virus (HDV) is a defective virus needing the envelope provided by hepatitis B virus (HBV) in order to enter liver cells and propagate. Chronic HDV infection is considered the most severe viral hepatitis, resulting in accelerated fibrosis progression until cirrhosis and its complications (hepatocellular carcinoma, liver decompensation) compared with HBV mono-infected patients. Off-label treatment with interferon has represented the only treatment option in the last 40 years, resulting in suboptimal virological response rates and being limited by safety issues especially in patients with advanced cirrhosis. Recently, the first HBV-HDV entry inhibitor Bulevirtide (BLV) has been approved by the European Medicines Agency (EMA) for treatment of chronic compensated HDV. METHODS: This review summarises most recent updates on HDV epidemiology, diagnosis and treatment, with a special focus both on clinical trials and real-life studies about BLV. An overview on new HDV compounds under development is also provided. RESULTS: BLV, the HBV-HDV entry inhibitor, has shown promising safety and efficacy data in clinical trials and in real-life studies, also in patients with advanced cirrhosis and portal hypertension. However, according to EMA label treatment is currently intended long-term until clinical benefit and predictors of responses are still undefined. The potential combination with PegIFNα seems to increase virological and clinical responses. New compounds are under development or in pipeline for treatment of HDV. CONCLUSION: After more than 40 years since HDV discovery, new treatment options are currently available to provide efficient strategies for chronic hepatitis Delta.

15.
Clin Epidemiol ; 16: 357-365, 2024.
Article in English | MEDLINE | ID: mdl-38803423

ABSTRACT

Purpose: In response to the COVID-19 pandemic, the World Health Organization (WHO) developed a set of outcome measures for trials primarily aimed at hospitalised patients. However, a gap exists in defining outcome standards for non-hospitalised patients. Therefore, this study aims to discuss hospitalisation as a primary outcome in outpatient trials and its potential pitfalls, specifically focusing on trials related to anti-SARS-COV-2 therapy. Methods: In this narrative review, researchers thoroughly searched MEDLINE and ClinicalTrials.gov from January 2020 to December 2022, targeting Phase III randomized controlled trials involving outpatients with mild-to-moderate COVID-19. The trials were specifically related to anti-SARS-COV-2 monoclonal antibodies or antiviral agents. The study collected essential data, including the type of intervention, comparator, primary objective, primary endpoint, and the use of estimands in the trial. Results: The search identified 12 trials that evaluated the efficacy of anti-SARS COV-2 therapies in a predefined population. Three studies used hospitalisation and death as primary endpoints in high-risk patients receiving monoclonal antibodies. Nine studies assessed the efficacy of several antiviral agents: four trials used hospitalisation and death as the main endpoints, while others used different measures such as virologic measures using the Reverse Transcription-Polymerase Chain Reaction test (RT-PCR), the eight-point WHO ordinal scale, symptom alleviation by Day 7 and time to clinical response. Conclusion: Choosing hospitalization as an endpoint may provide meaningful data such as the cost-effectiveness ratio of a drug. However, different hospital utilisation patterns and investigator decisions could bias clinical outcomes if no specific criteria are considered. Therefore, investigators should have clear criteria for determining variables that influence this measure.

16.
Int J Biol Macromol ; 269(Pt 2): 132200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723834

ABSTRACT

Viral infections continue to pose a significant global public health threat. Targeting host proteins, such as cluster of differentiation (CD) macromolecules, may offer a promising alternative approach to developing antiviral treatments. CDs are cell-surface biological macromolecules mainly expressed on leukocytes that viruses can use to enter cells, thereby evading immune detection and promoting their replication. The manipulation of CDs by viruses may represent an effective and clever means of survival through the prolonged co-evolution of hosts and viruses. Targeting of CDs is anticipated to hinder the invasion of related viruses, modulate the body's immune system, and diminish the incidence of subsequent inflammation. They have become crucial for biomedical diagnosis, and some have been used as valuable tools for resisting viral infections. However, a summary of the structures and functions of CDs involved in viral infection is currently lacking. The development of drugs targeting these biological macromolecules is restricted both in terms of their availability and the number of compounds currently identified. This review provides a comprehensive analysis of the critical role of CD proteins in virus invasion and a list of relevant targeted antiviral agents, which will serve as a valuable reference for future research in this field.


Subject(s)
Antiviral Agents , Virus Diseases , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Virus Diseases/drug therapy , Virus Diseases/virology , Viruses/drug effects , Animals , Host-Pathogen Interactions
17.
Virus Res ; 345: 199398, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754786

ABSTRACT

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne nairovirus with a wide geographic spread that can cause severe and lethal disease. No specific medical countermeasures are approved to combat this illness. The CCHFV L protein contains an ovarian tumor (OTU) domain with a cysteine protease thought to modulate cellular immune responses by removing ubiquitin and ISG15 post-translational modifications from host and viral proteins. Viral deubiquitinases like CCHFV OTU are attractive drug targets, as blocking their activity may enhance cellular immune responses to infection, and potentially inhibit viral replication itself. We previously demonstrated that the engineered ubiquitin variant CC4 is a potent inhibitor of CCHFV replication in vitro. A major challenge of the therapeutic use of small protein inhibitors such as CC4 is their requirement for intracellular delivery, e.g., by viral vectors. In this study, we examined the feasibility of in vivo CC4 delivery by a replication-deficient recombinant adenovirus (Ad-CC4) in a lethal CCHFV mouse model. Since the liver is a primary target of CCHFV infection, we aimed to optimize delivery to this organ by comparing intravenous (tail vein) and intraperitoneal injection of Ad-CC4. While tail vein injection is a traditional route for adenovirus delivery, in our hands intraperitoneal injection resulted in higher and more widespread levels of adenovirus genome in tissues, including, as intended, the liver. However, despite promising in vitro results, neither route of in vivo CC4 treatment resulted in protection from a lethal CCHFV infection.


Subject(s)
Adenoviridae , Disease Models, Animal , Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Virus Replication , Animals , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever, Crimean/virology , Mice , Adenoviridae/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Genetic Vectors/genetics , Antiviral Agents/pharmacology , Female , Liver/virology , Humans
18.
Curr Med Chem ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693731

ABSTRACT

Nucleotide analogs known as acyclic and cyclic nucleoside phosphonates (ANPs and CNPs, respectively) have a variety of biological properties, including antibacterial, antiviral, antiparasitic, antineoplastic, and immunomodulatory. A strong reaction that has emerged in the last several decades has fundamentally changed our knowledge of the chemistry of nucleoside phosphonates. In particular, Olefin cross-metathesis (CM) has been a potent and practical synthesis route to produce functionalized olefins from essential alkene precursors. This review describes recent synthesis examples of ANPs and CNPs analogs using the Ru-catalyzed olefin cross-metathesis reactions. Olefin cross-metathesis reactions are performed in the olefinic parts of nucleoside and phosphonate produced by Grubbs, Hoveyda-Grubbs, and Nolan. This review presents a synthetic overview of a few chosen nucleosides with biological significance. Their biological activity results are briefly discussed.

19.
mBio ; 15(6): e0076824, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38771062

ABSTRACT

The rapid evolution of SARS-CoV-2 variants highlights the need for new therapies to prevent disease spread. SARS-CoV-2, like SARS-CoV-1, uses the human cell surface protein angiotensin-converting enzyme 2 (ACE2) as its native receptor. Here, we design and characterize a mutant ACE2 that enables rapid affinity purification of a dimeric protein by altering the active site to prevent autoproteolytic digestion of a C-terminal His10 epitope tag. In cultured cells, mutant ACE2 competitively inhibits lentiviral vectors pseudotyped with spikes from multiple SARS-CoV-2 variants and infectious SARS-CoV-2. Moreover, the protein can be nebulized and retains virus-binding properties. We developed a system for the delivery of aerosolized ACE2 to K18-hACE2 mice and demonstrated protection by our modified ACE2 when delivered as a prophylactic agent. These results show proof-of-concept for an aerosolized delivery method to evaluate anti-SARS-CoV-2 agents in vivo and suggest a new tool in the ongoing fight against SARS-CoV-2 and other ACE2-dependent viruses. IMPORTANCE: The rapid evolution of SARS-CoV-2 variants poses a challenge for immune recognition and antibody therapies. However, the virus is constrained by the requirement that it recognizes a human host receptor protein. A recombinant ACE2 could protect against SARS-CoV-2 infection by functioning as a soluble decoy receptor. We designed a mutant version of ACE2 with impaired catalytic activity to enable the purification of the protein using a single affinity purification step. This protein can be nebulized and retains the ability to bind the relevant domains from SARS-CoV-1 and SARS-CoV-2. Moreover, this protein inhibits viral infection against a panel of coronaviruses in cells. Finally, we developed an aerosolized delivery system for animal studies and show the modified ACE2 offers protection in an animal model of COVID-19. These results show proof-of-concept for an aerosolized delivery method to evaluate anti-SARS-CoV-2 agents in vivo and suggest a new tool in the ongoing fight against SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , SARS-CoV-2/genetics , SARS-CoV-2/drug effects , Mice , Humans , COVID-19/virology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Mutation , Aerosols , HEK293 Cells , Female
20.
Biomed Pharmacother ; 176: 116768, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795638

ABSTRACT

Antiviral medicines to treat COVID-19 are still scarce. Porphyrins and porphyrin derivatives (PDs) usually present broad-spectrum antiviral activity with low risk of resistance development. In fact, some PDs are clinically approved to be used in anti-cancer photodynamic therapy and repurposing clinically approved PDs might be an alternative to treat COVID-19. Here, we characterize the ability of temoporfin, verteporfin, talaporfin and redaporfin to inactivate SARS-CoV-2 infectious particles. PDs light-dependent and -independent effect on SARS-CoV-2 infectivity were evaluated. PDs photoactivation successfully inactivated SARS-CoV-2 with very low concentrations and light dose. However, only temoporfin and verteporfin inactivated SARS-CoV-2 in the dark, being verteporfin the most effective. PDs treatment reduced viral load in infected Caco-2 cells, while not inducing cytotoxicity. Furthermore, light-independent treatment with temoporfin and verteporfin act on early stages of viral infection. Using lipid vehicles as membrane models, we characterized PDs interaction to the viral envelope. Verteporfin presented the lowest IC50 for viral inactivation and the highest partition coefficients (Kp) towards lipid bilayers. Curiously, although temoporfin and redaporfin presented similar Kps, redaporfin did not present light-independent antiviral activity, and only temoporfin and verteporfin caused lipid membrane disorder. In fact, redaporfin is located closer to the bilayer surface, while temoporfin and verteporfin are located closer to the centre. Our results suggest that viral envelope affinity, with penetration and destabilization of the lipid bilayer, seems critical to mediate PDs antiviral activity. Altogether, these findings open new avenues for the off-label application of temoporfin and verteporfin in the systemic treatment of COVID-19.


Subject(s)
Antiviral Agents , Drug Repositioning , Porphyrins , SARS-CoV-2 , Humans , Porphyrins/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , Caco-2 Cells , COVID-19 Drug Treatment , Antineoplastic Agents/pharmacology , Viral Envelope/drug effects , Animals , Chlorocebus aethiops , Vero Cells , COVID-19/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...