ABSTRACT
Aim: Influenza control demands multifaceted strategies, including antiviral drugs. Baloxavir, a recent addition to influenza treatment, acts as an inhibitor of the Polymerase acid (PA) component of the viral polymerase. However, mutations associated with resistance have been identified. Purpose: This study analyzed PA gene sequences of influenza A and B viruses (IAV and IBV, respectively) reported in the Americas, retrieved from databases published until May 2023, to identify primary markers of resistance to baloxavir. Patients and Methods: PA gene sequences were obtained from the GISAID and NCBI databases, focusing on countries in the Americas with 500 or more sequences for IAV, and 50 or more sequences for IBV. Results: Of the 58,816 PA sequences analyzed for IAV, only 55 (0.1%) harbored resistance markers, representing approximately 1 in 1000 occurrence. The most frequent markers were I38V (21 cases) and I38M (7 cases) at position 38 of PA, followed by E199G (9 cases) at position 199. For IBV, 14,684 sequences were analyzed, of which only eight presented a resistance marker (0.05%). Five sequences had the M34I marker, while the remaining three had the I38V marker. While frequency of resistance markers in PA is comparable to other regions, these results highlight the need for enhanced sequencing efforts, particularly in Latin America. Such efforts would serve to intensify influenza surveillance and inform public health interventions. Conclusion: While baloxavir demonstrates efficacy against influenza, resistance markers have been identified, including pre-existing ones. Our study adds eight (IAV: six and IBV: two) new spontaneously occurring substitutions to the existing literature, highlighting the need for continued surveillance. Among these, I38M stands out due to its significant tenfold reduction in drug susceptibility. Therefore, vigilant monitoring of these resistance markers in IAV and IBV remains crucial for maintaining baloxavir's effectiveness and informing future public health interventions.
ABSTRACT
Cytomegalovirus (CMV) infection is a common complication in patients undergoing hematopoietic stem cell transplantation (HSCT). Management of refractory CMV infections, especially in developing countries, can be challenging due to the limited availability of second and third-line antiviral drugs or alternative treatments. Here, we present a case of an 8 years-old patient diagnosed with acute myeloid leukemia. Eight months post-diagnosis, the patient underwent TCR-αß+/CD19+-depleted haploidentical HSCT. Both the donor and recipient tested positive for anti-CMV IgG and negative for IgM antibodies. Before transplantation, the patient received CMV prophylaxis in the form of intravenous ganciclovir. Post-transplantation, the patient exhibited oscillating CMV viral loads and was diagnosed with a refractory infection. Treatment with ganciclovir, foscarnet, and cidofovir was unsuccessful. Sequencing of UL-54 and UL-97 genes was performed to rule out potential resistance to first-line treatment. Ten months after the HSCT, the child died from hypovolemic shock due to gastrointestinal bleeding. This is the first case reported in Peru and Latin America of a refractory CMV infection in a pediatric HSCT recipient without evidence of clinical symptoms and CMV genetic resistance. This case demonstrates the need for alternative treatments to manage refractory CMV infections, especially in haploidentical HSCT cases where drug resistance is frequent (~15%). Furthermore, this case highlights the importance of using highly sensitive genetic tools to detect mutations associated with virus resistance in a broader range of the viral genome.
ABSTRACT
Introduction: Genomic analysis of hepatitis B virus (HBV) identifies phylogenetic variants, which may lead to distinct biological and clinical behaviors. The satellite hepatitis D virus (HDV) may also influence clinical outcomes in patients with hepatitis B. The aim of this study was to investigate HBV genetic variants, including clinically relevant mutations, and HDV infection in acute and chronic hepatitis B patients in central Argentina. Methods: A total of 217 adult HBV infected patients [acute (AHB): n = 79; chronic (CHB): n = 138] were studied; 67 were HBV/human immunodeficiency virus (HIV) coinfected. Clinical and demographic data were obtained from medical records. Serological markers were determined. Molecular detection of HBV and HDV was carried out by RT-Nested PCR, followed by sequencing and phylogenetic analysis. Results: Overall, genotype (gt) F [sub-genotype (sgt) F1b] was the most frequently found. In AHB patients, the gts/sgts found were: F1b (74.7%) > A2 (13.9%) > F4 (7.6%) > C (2.5%) > A1 (1.3%). Among CHB patients: F1b (39.1%) > A2 (23.9%) > F4 (18.2%) > D (9.4%) > C and F6 (3.6% each) > A1, A3 and B2 (0.7% each). The distribution of sgt A2 and gt D was significantly different between HBV mono and HBV/HIV coinfected patients [A2: 15.9% vs. 35.7% (p < 0.05), respectively and D: 14.6% vs. 1.8% (p < 0.05), respectively]. Mutation frequency in basal core promoter/pre-Core (BCP/pC) region was 35.5% (77/217) [AHB: 20.3% (16/79), CHB: 44.2% (61/138)]. In the open reading frame (ORF) S, mutations associated with vaccine escape and diagnostic failure were detected in 7.8% of the sequences (17/217) [AHB: 3.8% (3/79), CHB: 10.1% (14/138)]. ORF-P amino acid substitutions associated with antiviral resistance were detected in 3.2% of the samples (7/217) [AHB: 1.3% (1/79), CHB 4.3%, (6/138)]. The anti-HDV seropositivity was 5.2% (4/77); one sample could be sequenced, belonging to gt HDV-1 associated with sgt HBV-D3. Discussion: We detected an increase in the circulation of genotype F in Central Argentina, particularly among AHB patients, suggesting transmission advantages over the other genotypes. A low rate of mutations was detected, especially those with antiviral resistance implications, which is an encouraging result. The evidence of HDV circulation in our region, reported for the first time, alerts the health system for its search and diagnosis.
ABSTRACT
Hepatitis B virus (HBV) is a highly variable DNA virus due to its unique life cycle, which involves an error-prone reverse transcriptase. The high substitution rate drives the evolution of HBV by generating genetic variants upon which selection operates. HBV mutants with clinical implications have been documented worldwide, indicating the potential for spreading and developing their own epidemiology. However, the prevalence of such mutants among the different HBV genotypes and subgenotypes has not been systematically analyzed. In the current study, we performed large-scale analysis of 6,479 full-length HBV genome sequences from genotypes A-H, with the aim of gaining comprehensive insights into the relationships of relevant mutations associated with immune escape, antiviral resistance and hepatocellular carcinoma (HCC) development with HBV (sub)genotypes and geographic regions. Immune escape mutations were detected in 10.7% of the sequences, the most common being I/T126S (1.8%), G145R (1.2%), M133T (1.2%), and Q129R (1.0%). HBV genotype B showed the highest rate of escape mutations (14.7%) while genotype H had no mutations (P < 0.001). HCC-associated mutations were detected in 33.7% of the sequences, with significantly higher frequency of C1653T, T1753V and A1762T/G1764A in genotype G than C (P < 0.001). The overall frequencies of lamivudine-, telbivudine-, adefovir-, and entecavir-resistant mutants were 7.3, 7.2, 0.5, and 0.2%, respectively, while only 0.05% showed reduced susceptibility to tenofovir. In particular, the highest frequency of lamivudine-resistant mutations was observed in genotype G and the lowest frequency in genotype E (32.5 and 0.3%; P < 0.001). The prevalence of HBV mutants was also biased by geographic location, with North America identified as one of the regions with the highest rates of immune escape, antiviral resistance, and HCC-associated mutants. The collective findings were discussed in light of natural selection and the known characteristics of HBV (sub)genotypes. Our data provide relevant information on the prevalence of clinically relevant HBV mutations, which may contribute to further improvement of diagnostic procedures, immunization programs, therapeutic protocols, and disease prognosis.
ABSTRACT
BACKGROUND: The World Health Organization estimates that 1% of the world population (71 million) is infected with hepatitis C virus (HCV). In 2015, three direct-acting antivirals (DAAs), simeprevir (SMV), sofosbuvir (SOF) and daclatasvir (DCV) were included in the Brazilian protocol for the treatment of chronic hepatitis C. Despite the fact that the use of these drugs is associated with higher treatment response rates and with lower incidence of side effects, studies have shown the association between the presence of viral resistance mutations and the failure of pharmacological treatment. AIM: This way, this study aimed to evaluate the safety and effectiveness of treatment for HCV genotypes 1a and 1b infected patients with these DAAs, also analyzing the occurrence and prevalence of baseline resistance associated substitutions (RAS), observing the impact of these mutations into the treatment success. METHODS: Clinical data were collected from all the 262 HCV infected patients included for comparative analysis, while serum samples collected from 144 of these individuals, before treatment, were submitted to molecular biology approaches for mutation analysis into NS3, NS5A and NS5B regions. RESULTS: Regarding the treatment regimens, 49.6% of the patients received SOF+DCV±ribavirin and 50.4% used SOF+SMV±ribavirin. The sustained virological response at 12 weeks post-treatment (SVR12) rate was 92.7% (93.9% for SOF plus DCV and 91.7% for SOF plus SMV). No clinical or laboratorial factor was statistically associated with SVR. The most common adverse reactions were haematological events, nausea/vomiting, headache and asthenia. Out of 144 blood samples, 70 (48.6%) had detected RAS, 34.8% treated with SOF+DCV±ribavirin and 61.3% SOF+SMV±ribavirin. The resistance mutations against SMV were detected into NS3: substitutions G122S (28%), I170V (22.7%), Y56F (17.3%) and V132I (14.7%). The mutations against DCV R30Q (9.1%), P58H (6.1%) and Q62E (6.1%) were observed into NS5A, and for SOF the mutations A421V (10.6%), L159F (6.4%) and C316N (6.4%) were present inside NS5B viral protein. Four patients did not reach SVR, three of them presented viruses carrying RAS (1 treated with SOF+DCV and 2 with SOF+SMV). Some of these mutations, like R30Q (present in relapsing samples) and L159F, are well known by their influence on antiviral resistance, while others, like C316N, have a compensatory effect on viral fitness, maintaining these baseline RAS. CONCLUSION: The use of treatment regimens composed of SOF and DCV or SOF and SMV showed a high SVR rate, despite of a high rate of RAS, and a good tolerability profile in patients with HCV genotype 1. However, the high occurrence of baseline RAS observed in this casuistic is still a concern and studies like this show the necessity to understand how they are maintained in the population and to direct more efficiently the use of DAAs.
Subject(s)
Antiviral Agents/therapeutic use , Drug Resistance, Viral/genetics , Genotype , Hepacivirus/genetics , Hepatitis C, Chronic/drug therapy , Antiviral Agents/adverse effects , Brazil , Carbamates/adverse effects , Carbamates/therapeutic use , Cohort Studies , Female , Hepacivirus/drug effects , Hepatitis C, Chronic/blood , Humans , Imidazoles/adverse effects , Imidazoles/therapeutic use , Male , Middle Aged , Mutation , Prospective Studies , Pyrrolidines/adverse effects , Pyrrolidines/therapeutic use , Ribavirin/therapeutic use , Simeprevir/adverse effects , Simeprevir/therapeutic use , Sofosbuvir/adverse effects , Sofosbuvir/therapeutic use , Treatment Outcome , Valine/adverse effects , Valine/analogs & derivatives , Valine/therapeutic useABSTRACT
The massive implementation of the vaccine and antiviral agents against hepatitis B virus (HBV), targeting the envelope and viral polymerase genes, induces a selection pressure that might lead to the emergence of variants that impair the effectiveness of the vaccine, diagnostic methods and antiviral therapy. The aim of this study was to evaluate the prevalence of HBV vaccine escape mutants (VEMs), diagnostic failure mutants (DFMs) and treatment resistance mutants (ARMs) among individuals from Buenos Aires, Argentina. HBV surface antigen and polymerase sequences obtained from serum samples of 530 HBV-infected individuals were analysed. Samples belonged to genotypes A (28.1%), D (13.6%) and F (58.3%). VEMs, DMFs and ARMs were present in 40 (7.5%), 57 (10.7%) and 27 (5.1%) samples within the studied population. Additionally, eight nonpreviously reported VEMs and nine DFMs were identified. VEMs and DFMs were biased by genotype, being higher in genotype D (33.3% and 33.3%) compared to genotype A (6% and 17.4%) and genotype F (2.3% and 2.3%) (P > 0.001). On the contrary, there was no association between the presence of ARMs and HBV genotype (P = 0.324). VEMs, DFMs and ARMs create public health concerns. The current study provided valuable information about mutants in surface antigen and polymerase in HBV-infected patients from Argentina where HBV-F is the most prevalent genotype. Consequently, it constitutes an important reference for Latin American clinicians in order to optimize the management of HBV-infected patients.
Subject(s)
Genotype , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Hepatitis B/epidemiology , Hepatitis B/virology , Mutation , Adult , Argentina/epidemiology , Cross-Sectional Studies , Drug Resistance, Viral , False Negative Reactions , Female , Hepatitis B virus/drug effects , Hepatitis B virus/immunology , Humans , Immune Evasion , Male , Middle Aged , Molecular Epidemiology , Prevalence , Retrospective StudiesABSTRACT
Abstract INTRODUCTION: Human cytomegalovirus is one of the causes of opportunist infections in immunocompromised patients, and is triggered by factors such as state of viral latency, weakened immune responses, and development of antiviral resistance to ganciclovir, the only drug offered by the public health system in Brazil to treat the infection. The goal of this study was to identify mutations that may be associated with antiviral resistance in immunocompromised patients. METHODS: Molecular analysis was performed in 82 blood samples and subjected to genomic DNA extraction by a silica-based method. Three sequences of the HCMV UL97 gene, which encodes a phosphotransferase protein required for activation of ganciclovir, were amplified by polymerase chain reaction. Pyrosequencing methods were applied to one external 2096-bp segment DNA and two internal sequences between nucleotides 1087 to 1828 to detect mutations in this gene. RESULTS: Approximately 10% of sequences contained mutations between nucleotides 377 and 594, in conserved regions of the UL97 gene, leading to amino acid changes. Eleven coding mutations were identified, including changes leading to amino acid substitutions, E596K and S604F, which were observed in 100% of samples and are described for the first time in Brazil. In addition, one mutation (A594V) that is associated with ganciclovir resistance was detected in a kidney transplant patient. CONCLUSIONS: Further studies to detect mutations associated with HCMV resistance to antiviral drugs are required to demonstrate the need to increase the variety and availability of drugs used to treat viral infections in the public health care system in Brazil.
Subject(s)
Humans , Antiviral Agents/therapeutic use , Phosphotransferases/genetics , Immunocompromised Host , Cytomegalovirus Infections/drug therapy , Cytomegalovirus/enzymology , Drug Resistance, Viral/genetics , Mutation/genetics , Antiviral Agents/pharmacology , Case-Control Studies , Polymerase Chain Reaction , Cross-Sectional Studies , Cytomegalovirus/drug effects , Cytomegalovirus/genetics , Drug Resistance, Viral/drug effects , GenotypeABSTRACT
La infección por citomegalovirus postrasplante cardiaco es una condición médica recurrente. Su frecuencia se incrementa cuando los donantes poseen serología positiva y los receptores presentan serología negativa para el virus. En la población pediátrica, la enfermedad solo se desarrolla en un porcentaje pequeño y raramente presentan resistencia al tratamiento convencional con ganciclovir y valganciclovir. Presentamos el primer reporte de caso pediátrico de enfermedad por citomegalovirus resistente a ganciclovir y valganciclovir postrasplante cardiaco en un hospital público peruano, con una presentación inusual. La resistencia a estos fármacos fue evidente luego de 277 días de evolución de la enfermedad, ante la no remisión de la sintomatología y la persistencia de una carga viral elevada. La posterior administración de foscarnet condujo a una mejora clínica y de laboratorio, hasta la remisión de la enfermedad.
Cytomegalovirus infection after a heart transplant is a recurrent medical condition. Its frequency increases when the donors are serum-positive, and the recipients are serum-negative to this virus. In the pediatric population, the infection only develops in a small percentage and the patients rarely present resistance to conventional treatment with ganciclovir and valganciclovir. We presented the first report of a pediatric case of the cytomegalovirus infection resistant to ganciclovir and valganciclovir after a heart transplant in a Peruvian public hospital with an unusual presentation. The resistance to these drugs was evident after 277 days of evolution of the disease considering the non-remission of the symptomatology and the persistence of an elevated viral load. The administration of foscarnet led to a clinical and laboratory improvement until remission of the disease.
Subject(s)
Child , Humans , Male , Antiviral Agents/therapeutic use , Postoperative Complications/drug therapy , Postoperative Complications/virology , Ganciclovir/therapeutic use , Heart Transplantation , Cytomegalovirus Infections/drug therapy , Drug Resistance, ViralABSTRACT
The λ-carrageenan (λ-car) is a potent and selective inhibitor of dengue virus (DENV) infection targeted to virus adsorption and internalization, due to the structural similarities with the mammalian cell receptor heparan sulfate. To further characterize the antiviral activity of λ-car, the selection and the phenotypic and genomic features of λ-car resistant DENV-2 variants are studied here in comparison to control virus. Resistant variants were rapidly selected in Vero cells after three passages in presence of the drug. No difference was detected in the growth profiles in Vero and C6/36 cells between resistant and control viruses. By contrast, the kinetics of adsorption and internalization of resistant variants in Vero cells was significantly diminished whereas entry to C6/36 cells was unaffected. By plaque purification and sequence analysis of the population, two types of resistant clones were found: some clones presented two mutations in E protein, K126E, and F422L; but other equally λ-car resistant clones had no mutations in E. Furthermore, no mutations were found in other viral proteins like prM, C, or NS1. The genomic disparity in E protein was also associated to differences in phenotype stability. The stable genomic resistance here described provides information about determinants in E protein involved in receptor binding and membrane fusion for uncoating.
Subject(s)
Carrageenan/pharmacology , Dengue Virus/drug effects , Dengue Virus/genetics , Drug Resistance, Viral/genetics , Mutation , Animals , Antiviral Agents/pharmacology , Cell Line , Chlorocebus aethiops , Dengue Virus/physiology , Genome, Viral , Genotype , Phenotype , Vero Cells , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics , Virus Replication/drug effectsABSTRACT
We described the synthesis of a new congener series of 1,2,3-triazolyl-4-oxoquinolines and evaluated their ability to inhibit oseltamivir (OST)-resistant influenza strains. Oxoquinoline derivative 1i was the most potent compound within this series, inhibiting 94% of wild-type (WT) influenza neuraminidase (NA) activity. Compound 1i inhibited influenza virus replication with an EC50 of 0.2µM with less cytotoxicity than OST, and also inhibited different OST-resistant NAs. These results suggest that 1,2,3-triazolyl-4-oxoquinolines represent promising lead molecules for further anti-influenza drug design.
Subject(s)
Antiviral Agents/pharmacology , Influenza A virus/drug effects , Influenza B virus/drug effects , Influenza, Human/drug therapy , Oseltamivir/pharmacology , Quinolones/pharmacology , Triazoles/pharmacology , Antiviral Agents/chemistry , Drug Design , Drug Resistance, Viral , Humans , Influenza A virus/enzymology , Influenza B virus/enzymology , Influenza, Human/virology , Molecular Docking Simulation , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Quinolones/chemistry , Triazoles/chemistryABSTRACT
Objetivo: Analizar las características moleculares y de variación de secuencias de las integrasas del HTLV-I y del VIH-1 y sus variantes poblacionales. Metodología: Análisis de secuencias y estructuras obtenidas de diferentes bases de datos; para ello se utilizaron programas computacionales de modelación de estructuras proteicas e identificación de sustituciones polimórficas en secuencias de aminoácidos de integrasas del HTLV-I y VIH-1 previamente reportadas. Materiales y métodos: Tanto la integrasa del HTLV-I como la del VIH-1 son proteínas compuestas por 288 residuos de aminoácidos. Se encontró un parecido de estructuras terciarias entre los dominios catalíticos de las IN de VIH-1, ASV y RSV con la del HTLV- I. A partir de 103 secuencias completas de la integrasa del VIH-1 se registraron, en 46 codones, un total de 53 sustituciones que se localizaron en diferentes posiciones de la proteína nativa; las más frecuentes fueron: N27G (32,1%), A265V (30,1%), L101I (31,1%) y T123A (27,0%). Ninguna de las sustituciones más frecuentemente encontradas generó un cambio en el plegamiento nativo de la correspondiente región. Conclusión: La estructura tridimensional del dominio central catalítico de la integrasa condicionaría su actividad y su relación con moléculas potencialmente inhibidoras. Las sustituciones observadas fueron neutrales sin alterar la estructura nativa. Los resultados obtenidos confirman que la integrasa es un nuevo y promisorio blanco para el desarrollo de terapias antirretrovirales más efectivas en el siglo XXI...
Objective: To analyze the molecular characteristics and aminoacid sequence variations of HTLV-I and of HIV-1 integrases and their population variants. Materials and methods: Data mining and analysis of integrase sequences and protein structure data bases by using appropriate software for modelling and search for polymorphic substitutions in HTLV-I and HIV-1 integrase amino acid sequences previously reported. Results: HTLV-I and HIV-1 integrases are proteins of 288 amino acid residues. Structural modeling of tertiary folding of HTLV-I integrase catalytic central domains, showed closed structural characteristic with those of HIV-1, ASV and RSV. From 103 full amino acid sequences of HIV-1 integrase, 53 substitutions located in 46 different codons were recorded. The more frequents correspond to N27G (32,1%), L101I (31,1%), A265V (30,1%) and T123A (27,0%). None of these frequent substitutions introduced changes in the folding of HIV-1 native integrase. Conclusion: The tridimensional structure of central catalytic domain would influence the integrase activity and its relationship with potentially inhibitory molecules. Those observed aminoacid substitutions were neutral and do not alter the native protein structure. Our data confirm those previously published, and enable us to propose that IN is a new and promissory target for develop more effective antiviral therapies in the XXI century...