Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
BMC Vet Res ; 20(1): 336, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080763

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) is a highly contagious coronavirus that causes severe diarrhea and death in neonatal piglets, which has brought huge economic losses to the pork industry worldwide since its first discovery in the early 1970s in Europe. Passive immunization with neutralizing antibodies against PEDV is an effective prevention measure. To date, there are no effective therapeutic drugs to treat the PEDV infection. RESULTS: We conducted a screening of specific nanobodies against the S1 protein from a phage display library obtained from immunized alpacas. Through competitive binding to antigenic epitopes, we selected instead of chose nanobodies with high affinity and constructed a multivalent tandem. These nanobodies were shown to inhibit PEDV infectivity by the neutralization assay. The antiviral capacity of nanobody was found to display a dose-dependent pattern, as demonstrated by IFA, TCID50, and qRT-PCR analyses. Notably, biparatopic nanobody SF-B exhibited superior antiviral activity. Nanobodies exhibited low cytotoxicity and high stability even under harsh temperature and pH conditions, demonstrating their potential practical applicability to animals. CONCLUSIONS: Nanobodies exhibit remarkable biological properties and antiviral effects, rendering them a promising candidate for the development of anti-PEDV drugs.


Subject(s)
Antibodies, Neutralizing , Coronavirus Infections , Porcine epidemic diarrhea virus , Single-Domain Antibodies , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Camelids, New World/immunology , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Porcine epidemic diarrhea virus/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus/immunology , Swine , Swine Diseases/virology , Swine Diseases/immunology , Swine Diseases/prevention & control , Vero Cells
2.
J Microbiol ; 62(6): 419-427, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38916789

ABSTRACT

Extracellular vesicles (EVs), of diverse origin and content, are membranous structures secreted by a broad range of cell types. Recent advances in molecular biology have highlighted the pivotal role of EVs in mediating intercellular communication, facilitated by their ability to transport a diverse range of biomolecules, including proteins, lipids, DNA, RNA and metabolites. A striking feature of EVs is their ability to exert dual effects during viral infections, involving both proviral and antiviral effects. This review explores the dual roles of EVs, particularly in the context of pandemic viruses such as HIV-1 and SARS-CoV-2. On the one hand, EVs can enhance viral replication and exacerbate pathogenesis by transferring viral components to susceptible cells. On the other hand, they have intrinsic antiviral properties, including activation of immune responses and direct inhibition of viral infection. By exploring these contrasting functions, our review emphasizes the complexity of EV-mediated interactions in viral pathogenesis and highlights their potential as targets for therapeutic intervention. The insights obtained from investigating EVs in the context of HIV-1 and SARS-CoV-2 provide a deeper understanding of viral mechanisms and pathologies, and offer a new perspective on managing and mitigating the impact of these global health challenges.


Subject(s)
COVID-19 , Extracellular Vesicles , HIV-1 , SARS-CoV-2 , Virus Replication , Extracellular Vesicles/metabolism , Extracellular Vesicles/virology , Humans , SARS-CoV-2/physiology , COVID-19/virology , HIV-1/physiology , Virus Diseases/metabolism , Virus Diseases/virology , HIV Infections/virology , Pandemics
3.
J Ethnopharmacol ; 333: 118428, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38852639

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Lizhong decoction (LZD) is a frequently utilized traditional Chinese remedy for diarrhea. It is unknown how effective it is as an antiviral against PEDV infection. AIM OF THE STUDY: In vitro and in vivo PEDV infection models were used to evaluate the anti-PEDV potential of LZD extract. MATERIALS AND METHODS: LC-MS was used for qualitative analysis of LZD. The antiviral effect of LZD against PEDV using flow cytometry (FC), Quantitative real-time polymerase chain reaction (QPCR), immunofluorescence assay (IFA) analysis in Vero and IPEC-J2 cells. Additionally, we measured the survival rate, clinical symptoms, body weights, fecal scores, temperature, histological analysis, and viral load in a model of newborn piglets infected with PEDV in order to assess the antiviral impact of LZD in vivo. RESULTS: In total, 648 compounds were identified, including 144 Alkaloids, 128 Terpenoids, etc. LZD effectively suppressed PEDV replication in vitro. According to time of addition experiments, LZD mostly inhibited PEDV during the viral life cycle's replication stages. During PEDV infection, LZD can Significantly decrease the apoptotic rate of IPEC-J2 cells and Vero cells. In comparison to the model group, LZD was able to decrease the viral titers in the infected piglets' intestinal and visceral tissues, ameliorate their intestinal pathology, cause a significant increase in body weight growth and increase the piglet survival rate. CONCLUSION: Our findings indicate that the aqueous solution derived from LZD suppressed PEDV replication both in vitro and in vivo, indicating its potential as a candidate for pharmaceutical development.


Subject(s)
Coronavirus Infections , Drugs, Chinese Herbal , Porcine epidemic diarrhea virus , Swine Diseases , Cell Line , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Porcine epidemic diarrhea virus/drug effects , Swine , Swine Diseases/drug therapy , Vero Cells , Virus Replication/drug effects , Survival Analysis , Treatment Outcome , Body Weight/drug effects , Viral Load/drug effects , Water/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Animals
4.
Microb Pathog ; 193: 106712, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851360

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is a major challenge for the global swine industry, causing huge economic losses worldwide. To date, there are no effective measures to prevent and control the spread of PRRS virus (PRRSV). Baicalin (BA) is a natural flavonoid with various pharmacological effects, including antiviral, anti-inflammatory, antioxidant and immunomodulatory. Here, we demonstrate that BA exhibits potent anti-PRRSV activity in vitro, BA concentrations in the range of 5-20 µg/mL significantly inhibited PRRSV infection in a dose-dependent manner and were independent of PRRSV strain. Mechanistically, BA inhibited PRRSV replication by directly interacting with virions, thereby affecting multiple stages of the virus life cycle. Meanwhile, the preventive effect of BA on PRRSV could be realized by inhibiting CD151 and CD163 expression. Furthermore, BA reduced the PRRSV-induced expression of PAMs cytokines (IFN-α, IL-6, IL-8, and TNF-α), suggesting that BA-induced antiviral cytokines may help BA inhibit PRRSV infection. Taken together, BA can be used as an inhibitor of PRRSV infection in vitro, which provides a theoretical basis for the clinical application of BA and the prevention and control of PRRSV infection, which is worthy of further in vivo studies in swine.


Subject(s)
Antiviral Agents , Cytokines , Flavonoids , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Virus Replication , Porcine respiratory and reproductive syndrome virus/drug effects , Animals , Flavonoids/pharmacology , Antiviral Agents/pharmacology , Swine , Virus Replication/drug effects , Cytokines/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/drug therapy , Antigens, CD/metabolism , Receptors, Cell Surface/metabolism , Cell Line , Antigens, Differentiation, Myelomonocytic
5.
J Vet Res ; 68(1): 35-44, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38525227

ABSTRACT

Introduction: Bovine viral diarrhoea virus (BVDV) can cause diarrhoea (BVD) in an animal herd, leading to heavy economic losses. There are limited drugs available for treating and controlling BVD. This research aims to investigate the antiviral and immunoregulatory effects of two traditional Chinese herb extracts against BVDV infection. The extracts are matrine and icariin, which have been proved to have immunostimulant and antiviral effects. Material and Methods: A cell counting kit-8 assay was used to analyse the toxicity of matrine and icariin to Madin-Darby bovine kidney (MDBK) cells. The model of MDBK cells infected with BVDV was utilised to uncover the antiviral mechanism of matrine and icariin, which along with their immunoregulatory ability was evaluated by quantitative reverse-transcription PCR and ELISA. Results: The results showed that matrine and icariin can significantly inhibit the gene expression level of the BVDV 5' untranslated region through various pathways. Both matrine and icariin can statistically upregulate the gene expression level of interferon alpha, interferon beta (IFN-ß), toll-like receptor 3, retinoic acid-inducible gene I and interferon regulatory factor 3, and raise the concentration of IFN-ß after BVDV infection. Conclusion: This study proves that both matrine and icariin have inhibitory effects on BVDV replication by activating IFN production and the IFN signalling pathway. The finding is promising and should open up the possibility of larger-scale in vitro research followed by in vivo experiments evaluating matrine and icariin as therapeutic agents in BVD cases.

6.
Fish Shellfish Immunol ; 148: 109480, 2024 May.
Article in English | MEDLINE | ID: mdl-38452958

ABSTRACT

Stimulator of interferon gene (STING) plays a crucial role in the innate immune response against viral and bacterial pathogens. However, its function in largemouth bass iridovirus (LMBV) infection remains uncertain. Here, a STING homolog (MsSTING) from largemouth bass (Micropterus salmoides) was cloned and characterized. MsSTING encoded a 407-amino-acid polypeptide, which shared 84.08% and 41.45% identity with golden perch (Perca flavescens) and human (Homo sapiens) homologs, respectively. MsSTING contained four transmembrane domains and a conserved C-terminal domain. The mRNA level of MsSTING was significantly increased in response to LMBV infection in vitro. Subcellular localization observation indicated that MsSTING encoded a cytoplasmic protein, which co-localized predominantly with endoplasmic reticulum (ER) and partially with mitochondria. Moreover, its accurate localization was dependent on the N-terminal transmembrane motif (TM) domains. MsSTING was able to activate interferon (IFN) response, evidenced by the activation of IFN1, IFN3 and ISRE promoters by its overexpression in vitro. Mutant analysis showed that both the N-terminal and C-terminal domain of MsSTING were essential for its activation on IFN response. In addition, overexpression of MsSTING inhibited the transcription and protein levels of viral core genes, indicating that MsSTING exerted antiviral action against LMBV. Consistently, the inhibitory effects were significantly attenuated when the N-terminal or C-terminal domains of MsSTING was deleted. Furthermore, MsSTING overexpression upregulated the transcriptions of interferon-related genes and pro-inflammatory factors, including TANK-binding kinase 1(TBK1), interferon regulatory factor 3 (IRF3), interferon regulatory factor 7 (IRF7), interferon stimulated exonuclease gene 20 (ISG20), interferon-induced transmembrane protein 1(IFITM1), interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and interleukin 6 (IL-6). Together, MsSTING exerted antiviral action upon LMBV infection through positive regulation the innate immune response.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Iridovirus , Ranavirus , Humans , Animals , Amino Acid Sequence , Fish Proteins/chemistry , Immunity, Innate/genetics , Interferon-gamma , Antiviral Agents , Ranavirus/physiology
7.
Antiviral Res ; 223: 105836, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38360296

ABSTRACT

Foot-and-mouth disease (FMD) is an economically important disease, and the FMD virus (FMDV) can spread rapidly in susceptible animals. FMD is usually controlled through vaccination. However, commercial FMD vaccines are only effective 4-7 days after vaccination. Furthermore, FMDV comprises seven serotypes and various topotypes, and these aspects should be considered when selecting a vaccine. Antiviral agents could provide rapid and broad protection against FMDV. Therefore, this study aimed to develop a fusion protein of consensus porcine interferon-α and Fc portion of porcine antibody IgG (poIFN-α-Fc) using a baculovirus expression system to develop a novel antiviral agent against FMDV. We measured the antiviral effects of the poIFN-α-Fc protein against FMDV and the enhanced duration in vitro and in vivo. The broad-spectrum antiviral effects were tested against seven FMDV serotypes, porcine reproductive and respiratory syndrome virus (PRRSV), and bovine enterovirus (BEV). Furthermore, the early protective effects and neutralizing antibody levels were tested by co-injecting poIFN-α-Fc and an FMD-inactivated vaccine into mice or pigs. Sustained antiviral effects in pig sera and mice were observed, and pigs injected with a combination of the poIFN-α-Fc and an inactivated FMD vaccine were protected against FMDV in a dose-dependent manner at 2- and 4-days post-vaccination. In addition, combined with the inactivated FMD vaccine, poIFN-α-Fc increased the neutralizing antibody levels in mice. Therefore, poIFN-α-Fc is a potential broad-spectrum antiviral and adjuvant candidate that can be used with inactivated FMD vaccines to protect pigs against FMDV.


Subject(s)
Foot-and-Mouth Disease Virus , Vaccines , Cattle , Swine , Animals , Mice , Interferon-alpha/pharmacology , Antibodies, Neutralizing , Immunoglobulin G , Antiviral Agents/pharmacology
8.
Carbohydr Polym ; 331: 121899, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38388047

ABSTRACT

Fucoidans have attracted increasing attention due to their minimal toxicity and various biological activities, such as antioxidant, anti-inflammatory, anti-tumor and immunomodulatory effects. In this study, the antiviral effect and mechanism of fucoidan (FU) derived from Durvillaea antarctica were explored in vitro. The results demonstrated that FU effectively inhibited the infection of both RNA virus (VSV) and DNA virus (HSV-1). The potential antiviral mechanism of FU is to trigger the production of type I IFN (IFN-I) and IFN-stimulated genes dependent on the cytoplasmic DNA adaptor STING (stimulator of interferon genes), and to enhance innate immune response via activating the STING-TBK1-IRF3 pathway. FU possesses the potential to be an antiviral and immunomodulatory agent in the future.


Subject(s)
Polysaccharides , Protein Serine-Threonine Kinases , Signal Transduction , Protein Serine-Threonine Kinases/metabolism , Immunity, Innate , Antiviral Agents/pharmacology
9.
J Gen Virol ; 105(1)2024 01.
Article in English | MEDLINE | ID: mdl-38175184

ABSTRACT

Feline calicivirus (FCV) is considered one of the major pathogens of cats worldwide and causes upper respiratory tract disease in all cats. In some cats, infection is by a highly virulent strain of FCV (vs.-FCV), which can cause severe and fatal systemic disease symptoms. At present, few antiviral drugs are approved for clinical treatment against FCV. Therefore, there is an imminent need for effective FCV antiviral agents. Here, we used observed a cytopathic effect (CPE) assay to screen 1746 traditional Chinese medicine monomer compounds and found one that can effectively inhibit FCV replication, namely, handelin, with an effective concentration (EC50) value of approximately 2.5 µM. Further study showed that handelin inhibits FCV replication via interference with heat shock protein 70 (HSP70), which is a crucial host factor and plays a positive role in regulating viral replication. Moreover, handelin and HSP70 inhibitors have broad-spectrum antiviral activity. These findings indicate that handelin is a potential candidate for the treatment of FCV infection and that HSP70 may be an important drug target.


Subject(s)
Caliciviridae Infections , Terpenes , Cats , Animals , Drug Evaluation, Preclinical , HSP70 Heat-Shock Proteins , Caliciviridae Infections/drug therapy , Caliciviridae Infections/veterinary
10.
J Enzyme Inhib Med Chem ; 39(1): 2301772, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38221792

ABSTRACT

The viral genome of the SARS-CoV-2 coronavirus, the aetiologic agent of COVID-19, encodes structural, non-structural, and accessory proteins. Most of these components undergo rapid genetic variations, though to a lesser extent the essential viral proteases. Consequently, the protease and/or deubiquitinase activities of the cysteine proteases Mpro and PLpro became attractive targets for the design of antiviral agents. Here, we develop and evaluate new bis(benzylidene)cyclohexanones (BBC) and identify potential antiviral compounds. Three compounds were found to be effective in reducing the SARS-CoV-2 load, with EC50 values in the low micromolar concentration range. However, these compounds also exhibited inhibitory activity IC50 against PLpro at approximately 10-fold higher micromolar concentrations. Although originally developed as PLpro inhibitors, the comparison between IC50 and EC50 of BBC indicates that the mechanism of their in vitro antiviral activity is probably not directly related to inhibition of viral cysteine proteases. In conclusion, our study has identified new potential noncytotoxic antiviral compounds suitable for in vivo testing and further improvement.


Subject(s)
COVID-19 , Cysteine Proteases , Humans , SARS-CoV-2 , Cysteine Endopeptidases/metabolism , Viral Nonstructural Proteins/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Docking Simulation
11.
J Nanobiotechnology ; 22(1): 23, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191434

ABSTRACT

BACKGROUND: Viral diseases continue to pose a major threat to the world's commercial crops. The in-depth exploration and efficient utilization of resistance proteins have become crucial strategies for their control. However, current delivery methods for introducing foreign DNA suffer from host range limitations, low transformation efficiencies, tissue damage, or unavoidable DNA integration into the host genome. The nanocarriers provides a convenient channel for the DNA delivery and functional utilization of disease-resistant proteins. RESULTS: In this research, we identified a cysteine-rich venom protein (NbCRVP) in Nicotiana benthamiana for the first time. Virus-induced gene silencing and transient overexpression clarified that NbCRVP could inhibit the infection of tobacco mosaic virus, potato virus Y, and cucumber mosaic virus, making it a broad-spectrum antiviral protein. Yeast two-hybrid assay, co-immunoprecipitation, and bimolecular fluorescence complementation revealed that calcium-dependent lipid-binding (CaLB domain) family protein (NbCalB) interacted with NbCRVP to assist NbCRVP playing a stronger antiviral effect. Here, we demonstrated for the first time the efficient co-delivery of DNA expressing NbCRVP and NbCalB into plants using poly(amidoamine) (PAMAM) nanocarriers, achieving stronger broad-spectrum antiviral effects. CONCLUSIONS: Our work presents a tool for species-independent transfer of two interacting protein DNA into plant cells in a specific ratio for enhanced antiviral effect without transgenic integration, which further demonstrated new strategies for nanocarrier-mediated DNA delivery of disease-resistant proteins.


Subject(s)
Nicotiana , RNA Viruses , Nicotiana/genetics , Calcium , DNA , Antiviral Agents/pharmacology
12.
Mol Biol Rep ; 51(1): 114, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227268

ABSTRACT

BACKGROUND: The production of interferons (IFNs) is essential for the control of viral infections, and interferon regulatory factor 7 (IRF7) is considered as a vital regulator for the transcription of type I IFNs. Amphibians appear to possess a highly expanded type I IFN repertoire, consisting of intron-containing genes as observed in fish, and intronless genes as in other higher vertebrates. However, the knowledge on transcriptional regulatory mechanism of these two types of type I IFN genes is rather scarce in amphibians. METHODS AND RESULTS: A IRF7 gene named as Np-IRF7 was identified in Tibetan frog (Nanorana parkeri), and bioinformatic analysis revealed that the predicted protein of Np-IRF7 contains several important structural features known in IRF7. Expression analysis showed that Np-IRF7 gene was widely expressed and rapidly induced by poly(I:C) in different organs/tissues. Interestingly, luciferase reporter assay revealed that intronless IFN promoters were more effectively activated than intron-containing IFN promoter in Np-IRF7-transfected cells. Moreover, the overexpression of Np-IRF7 could induce the expression of ISGs and suppress the replication of FV3 in A6 cells. CONCLUSION: Np-IRF7 is indeed the ortholog of known IRF7, and IRF7 is structurally conserved in different lineages of vertebrates. Np-IRF7 played distinct roles in the activation of intron-containing and intronless type I IFN promoters, thus inducing the expression of interferon-stimulated antiviral effectors and providing a protection against ranavirus infection. The present research thus contributes to a better understanding of regulatory function of IRF7 in the IFN-mediated antiviral response of anuran amphibians.


Subject(s)
Interferon Regulatory Factor-7 , Interferon Type I , Animals , Humans , Interferon Regulatory Factor-7/genetics , Tibet , Anura/genetics , Introns/genetics , Interferon Type I/genetics
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-928061

ABSTRACT

This study aims to investigate the inhibitory effect of Pien Tze Huang(PZH) on enterovirus 71(EV71). To be speci-fic, chemiluminescence method was adopted to evaluate the toxicity of PZH to African green monkey kidney(Vero) cells and human rhabdomyosarcoma(RD) cells, and cytopathic effect(CPE) method to assess the inhibition on EV71-GFP reporter virus and EV71 C4 wild-type virus. The results showed that PZH had low cytotoxicity to Vero cells and RD cells, with the half-maximal cytotoxic concentration(CC_(50)) of about 0.691 3-0.879 2 mg·mL~(-1) for the two. In addition, PZH can effectively inhibit the replication of EV71 within the non-cytotoxic concentration range, and dose-dependently alleviate the cytopathic changes caused by virus infection, with the half-maximal effective concentration(EC_(50)) of 0.009 2-0.106 3 mg·mL~(-1). On the basis of the above results, the green fluorescent protein(GFP), indirect immunofluorescence assay(IFA), and median tissue culture infective dose(TCID_(50)) were employed to assess and verify the anti-EV71-GFP and anti-EV71 C4 activity of PZH. The results demonstrated that PZH can dose-dependently lower the expression of GFP by EV71-GFP and structural protein VP-1 by EV71 C4 and decrease the production of progeny infectious viruses. The EC_(50) of PZH for EV71-GFP and EV71 C4 was about 0.006 0-0.006 2 mg·mL~(-1) and 0.006 6-0.025 6 mg·mL~(-1), respectively. This study suggested that PZH may exert antiviral activity by acting on EV71 and interfering with the expression of VP-1. At the moment, there is still a lack of specific anti-EV71 drugs. This study proposed a new idea for the symptomatic treatment of EV71 infections such as hand-foot-mouth disease and verified an effective drug for the treatment of EV71 infections.


Subject(s)
Animals , Chlorocebus aethiops , Drugs, Chinese Herbal/pharmacology , Enterovirus A, Human/physiology , Hand, Foot and Mouth Disease , Vero Cells
14.
International Eye Science ; (12): 2072-2075, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-904676

ABSTRACT

@#Innate immunity plays an important role in viral keratitis. Recently, it has been found that surfactant proteins(SP)A and D in the innate immune system are essential in viral keratitis. SP can inhibit virus adhesion to host cells and further promote phagocytosis of virus through high affinity for virus ligands. In order to ensure the normal function of tissues in the early stage of virus infection, SP regulates immune cells to maintain a non-inflammatory state. However, when pathogen invasion increases, SP promoted inflammation and increased the immune cells to kill the pathogens. SP-A and SP-D could be expressed in cornea, conjunctiva. To play the role of anti-adenovirus, herpes simplex virus, cytomegalovirus and other major eye pathogenic viruses, SP-A and SP-D combine with the virus to prevent entry into cells, promote phagocytosis, and directly kill the virus. SP-A and SP-D may be used as clinical diagnostic tools for viral infection. In the future, recombinant SP is expected to be used as an important means for the treatment of viral keratitis. Here, we review the innate immune function of SP-A and SP-D in ocular viral infection.

15.
Acta Pharmaceutica Sinica ; (12): 1409-1415, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-887074

ABSTRACT

Compound houttuynia mixture belongs to OTC class A medicine, which is made from Houttuynia cordata, Scutellaria baicalensis, Radix Isatidis, Forsythia, and Lonicera. As a kind of compound preparation of traditional Chinese medicine, houttuynia cordata mixture has extensive pharmacological effects, for example, clearing away heat and detoxifying, thus it is used for the sore throat, acute pharyngitis, and tonsillitis with wind-heat syndrome. In this study, the antiviral activity against influenza viruses and the primary mechanism of compound houttuynia mixture was evaluated. The antiviral effect of compound houttuynia mixture was determined by cytopathic effects (CPE), Western blot, quantitive reverse transcription PCR (qRT-PCR), and virus titer assays. The effect of houttuynia mixture on the replication cycle of influenza virus was evaluated by time-of-addition assay. In conclusion, the results showed that the compound houttuynia mixture had a broad-spectrum effect against influenza virus, including the international common influenza virus strains, the drug-resistant strains and the highly pathogenic avian influenza viruses H5N1 and H7N9. It mainly impairs the early stage of the viral replication.

16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-909804

ABSTRACT

Objective:To investigate the impact of low level viremia (LLV) on the prognosis of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) patients received anti-retroviral therapy (ART).Methods:From January to December 2015, the HIV/AIDS patients with LLV received ART over one year were recruited in Guangzhou Eighth People′s Hospital, Guangzhou Medical University (LLV group). Patients with viral load (VL) less than 50 copies/mL were matched at ratio of 1∶1 according to gender, age and the transmission route were included in the control group (suppression group). The LLV group was divided into three subgroups according to VL (LLV-1 subgroup was 50-200 copies/mL, LLV-2 subgroup was 201-400 copies/mL, and LLV-3 subgroup was 401-1 000 copies/mL). The influence of LLV on the antiviral response during the following three years was investigated.The Wilcoxon signed rank test, Kruskal-Wallis test and chi-square test were used for statistical analysis.Results:One hundred and thirty-seven patients were enrolled in the LLV group, of whom 111 were males and 26 were females, with age of (39.5±13.5) years old. At the same time, 137 patients were included in the suppression group. There were 93 cases in LLV-1 subgroup, 25 cases in LLV-2 subgroup and 19 cases in LLV-3 subgroup. There were no significant differences in the CD4 + T lymphocyte counts and CD4 + /CD8 + T lymphocyte counts ratios between LLV group and suppression group before ART (both P>0.05). During the three-year follow-up, the cumulative number of viral failures in LLV group (7.3%(10/137)) was significantly higher than that in the suppression group (1.5%(2/137)) ( χ2=5.578, P=0.018). Virological failure occurred in eight patients (8.6%) in the LLV-1 subgroup, two patients (8.0%) in the LLV-2 subgroup, and no patients in the LLV-3 subgroup. There was no statistical significance in the incidence of virological failure among all the subgroups ( P>0.05). At one, two, three years follow-up, the CD4 + T lymphocyte counts increased in both LLV group and suppression group without statistical differences (all P>0.05), and the CD4 + /CD8 + T lymphocyte counts ratios in each LLV group were lower than that in the suppression group ( Z=-3.183, -2.094 and -2.312, respectively, all P<0.05). At one, two, three years follow-up, There were no significant differences in CD4 + /CD8 + T lymphocyte counts ratios among the LLV-1, LLV-2 and LLV-3 subgroups (all P>0.05). Conclusion:HIV/AIDS patients with LLV having received ART over one year are more likely to develop virological failure and delay the recovery of immune function, which requires early relevant interventions.

17.
Braz. j. infect. dis ; 24(6): 505-516, Nov.-Dec. 2020. tab, graf
Article in English | LILACS | ID: biblio-1153491

ABSTRACT

ABSTRACT Zika virus (ZIKV) infection during pregnancy is associated with a congenital syndrome. Although the virus can be detected in human placental tissue and sexual transmission has been verified, it is not clear how the virus reaches the fetus. Despite the emerging severity caused by ZIKV infection, no specific prophylactic and/or therapeutic treatment is available. The aim of the present study was to evaluate the effectiveness antiviral of nitazoxanide (NTZ) in two important congenital transmission targets: (i) a primary culture of human placental chorionic cells, and (ii) human cervical epithelial cells (C33-A) infected with Brazilian ZIKV strain. Initially, NTZ activity was screened in ZIKV infected Vero cells under different treatment regimens with non-toxic drug concentrations for 48 h. Antiviral effect was found only when the treatment was carried out after the viral inoculum. A strong effect against the dengue virus serotype 2 (DENV-2) was also observed suggesting the possibility of treating other Flaviviruses. Additionally, it was shown that the treatment did not reduce the production of infectious viruses in insect cells (C6/36) infected with ZIKV, indicating that the activity of this drug is also related to host factors. Importantly, we demonstrated that NTZ treatment in chorionic and cervical cells caused a reduction of infected cells in a dose-dependent manner and decreased viral loads in up to 2 logs. Pre-clinical in vitro testing evidenced excellent therapeutic response of infected chorionic and cervical cells and point to future NTZ activity investigation in ZIKV congenital transmission models with the perspective of possible repurposing of NTZ to treat Zika fever, especially in pregnant women.


Subject(s)
Animals , Female , Humans , Pregnancy , Zika Virus , Zika Virus Infection , Thiazoles , Virus Replication , Vero Cells , Brazil , Chlorocebus aethiops , Zika Virus Infection/drug therapy , Nitro Compounds
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-851177

ABSTRACT

The main chemical components of Artemisiae Scopariae Herba (ASH) include coumarins, flavonoids, organic acids, essential oils, and so on. Except for the traditional actions of clearing and draining dampness-heat, and disinhibiting gallbladder and anti-icteric, ASH has multiple pharmacological activities, such as antipyretic, analgesic, anti-inflammatory, antiviral, antitumor, hypotensive, hypolipidemic, anti-osteoporotic, neuroprotective, metabolic regulation effects, as well as prevention of Alzheimer’s disease, whose mechanism of actions are complex. This article reviews pharmacological actions and the corresponding mechanism of ASH, which can provide reference for the research, development and clinical application of ASH and its preparations.

19.
Univ. sci ; 23(2): 219-239, May-Aug. 2018. graf
Article in English | LILACS | ID: biblio-979546

ABSTRACT

Abstract Probiotic bacteria are microorganisms beneficial to human health, useful to improving biological conditions. Thanks to probiotic bacteria the symptoms of viral infections can be alleviated. Different mechanisms whereby probiotic bacteria exert they antiviral effect have been proposed. The aim of this study was to determine whether probiotic bacteria extracts bind to receptors of host cells susceptible of rotavirus (RV) infection. To accomplish this objective, four probiotic bacterial strains of Lactobacillus spp. and Bifidobacterium spp. were tested. Probiotic extracts were obtained after bacterial growth, cell lysis and centrifugation. Obtained probiotic extracts were used in assays to interfere with adhesion and penetration of a RV strain in the mammal cell line MA104. Furthermore, the interaction between probiotic extracts and MA104 cell receptors was evaluated by co-immunoprecipitation assays using anti-β3-integrins and anti-Hsc70 antibodies. All four probiotic, protein-rich, extracts reduced RV infections in MA104 cells, suggesting a successful antiviral activity mediated by these probiotic extracts. All probiotic extracts significantly exerted their antiviral activity by interfering with RV adhesion on MA104 cell receptors, with proteins in probiotic extracts competitively interacting with cell surface receptors necessary to RV infection. Co-immunoprecipitation assay results showed that proteins in probiotic extracts were able to bind to β3-integrinsand Hsc70, which are two cellular receptors required to viral infection. The most significant contribution of this study is an insight into the mechanisms of probiotic antiviral activity, thus expanding current probiotics fundamental knowledge.


Resumen Las bacterias probióticas son microorganismos con efectos positivos en la salud humana, gracias a las bacterias probióticas los síntomas de infecciones virales pueden mitigarse. Al respecto, varios mecanismos antivirales de las bacterias probióticas han sido propuestos. El propósito de este estudio fue determinar, de manera experimental, si extractos de bacterias probióticas reducen la infección rotavírica al interferir con la unión entre el rotavirus y sus receptores celulares blanco. Extractos de cuatro cepas probióticas de Lactobacillus spp. y Bifidobacterium spp. fueron obtenidos a partir de cultivos bacterianos lisados y centrifugados. Cada uno de los extractos fue usado en experimentos para determinar si estos interfieren con la adhesión y penetración del rotavirus en células de mamífero MA104. Además, la interacción entre extractos probióticos y receptores de las células MA104 fue evaluada con ensayos de co-inmunoprecipitación, usando anticuerpos anti-integrina β3 y anti-Hsc70. Se observó que los cuatro extractos probióticos, ricos en proteínas, redujeron significativamente la infección de rotavirus en las células MA104. También se estableció que la que la actividad antiviral de los extractos probióticos es mediada por la interacción competitiva de sus proteínas con los receptores integrina β3 y Hsc70 de las células MA104, necesarios para iniciar la infección por rotavirus. Estos hallazgos constituyen un aporte al conocimiento de los mecanismos básicos de acción antiviral de las bacterias probióticas.


Resumo Bactérias probióticas são microrganismos com efeitos positivos na saúde humana, úteis na melhora de certas condições biológicas. Gracas a bactérias probióticas os sintomas de uma infecção viral podem ser aliviados. Diferentes mecanismos pelos quais as bactérias probióticas exercem seus efeitos antivirales têm sido propostos. O objetivo de este estudo foi determinar se extratos de bactérias probióticas reduzem a infecção de rotavírus (RV) ao interferir com a união entre o RV e seus receptores celulares alvo. Quatro cepas probióticas de Lactobacillus spp. e Bifidobacterium spp. foram testadas. Os extratos probióticos foram obtidos após o crescimento bacteriano, lise celular e centrifugação. Os extratos probióticos obtidos foram utilizados em ensaios para determinar se interferem com a adesão e penetração de uma cepa de RV em células de mamífero MA104. Adicionalmente, a interação entre os extratos probióticos e os receptores das células MA104 foi avaliada por ensaios de co-imunoprecipitação usando anticorpos anti-integrina β3 e anti- Hsc70. Os quatro extratos probióticos, ricos em proteínas, reduziram as infecções por RV em células MA104, sugerindo uma atividade antiviral mediada por estes extratos. Todos os extratos interferiram na adesão do RV aos receptores de células MA104, sendo que as proteínas presentes nos extratos mostraram uma interação competitiva com os receptores integrina β3 e Hsc70 das células MA104, necessários para iniciar a infecção por RV. Estes resultados contribuem para o conhecimento dos mecanismos básicos de ação antiviral de bactérias probióticas.


Subject(s)
Humans , Antiviral Agents , Rotavirus/immunology , Probiotics , Integrin beta3
20.
Chinese Journal of Immunology ; (12): 454-459, 2018.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-702753

ABSTRACT

Interferon (IFN) acts on the surface of the target cell receptors and activate the expression of interferon stimulated genes(interferon stimulated genes,ISGs) through a series of signal transduction.ISGs have antiviral and immunomodulation and other biological functions,indicating ISGs are important molecules for interferon to function and have some potential clinical significance.A large number of research results showed that ISGs may predict the antiviral effect of IFN-α;specific expression of ISGs in patients with autoimmune diseases in vivo may be used as a new biomarker for clinical diagnosis of the diseases;ISGs may act as a new target for cancer treatment and have other potential applications.This review mainly focuses on the induction,the biological functions like antiviral effects and the potential clinical significance of ISGs.

SELECTION OF CITATIONS
SEARCH DETAIL