ABSTRACT
The indigenous bee race Apis mellifera jemenitica Ruttner of Saudi Arabia can learn and retain memories established by the classical conditioning of proboscis extension response (PER). The insecticide imidacloprid has shown a drastic effect on the olfactory behavior of A. m. jemenitica in the harsh arid climatic conditions of central Saudi Arabia. The oral feeding of single imidacloprid sub-lethal doses (1.0 ng, 0.5 ng, or 0.1 ng) under laboratory conditions significantly impaired associative learning during the 2nd and 3rd conditioning trials compared to control bees (0 ng). The memory tests also revealed significant impairment in memory formation at 1 h, 2 h, and 24 h after conditioning compared to control bees. Even the lowest dose (0.1 ng/bee) can significantly impair the bees' ability to learn and memorize. This impairment effect was dose dependent and increased with increasing doses. The higher dose (1.0 ng) completely impaired the learning but still showed a little memory and reflected the potential recovery of bees from insecticide-induced impairment with the passage of time. To our knowledge, this is the first study in A. m. jemenitica that demonstrated the drastic effect of neonicotinoids on associative learning in indigenous bees. This study further expresses the possible severity of insecticidal exposure to bees in actual field conditions and its effect on the neural functions used in important behavior involved in the foraging of bees.
Subject(s)
Bees/drug effects , Conditioning, Classical/drug effects , Memory/drug effects , Neonicotinoids/adverse effects , Nitro Compounds/adverse effects , Animals , Insecticides/adverse effects , Saudi ArabiaABSTRACT
Both climatic factors and bee forage characteristics affect the population size and productivity of honey bee colonies. To our knowledge, no scientific investigation has as yet considered the potential effect of nectar-rich bee forage exposed to drastic subtropical weather conditions on the performance of honey bee colonies. This study investigated the performance of the honey bee subspecies Apis mellifera jemenitica Ruttner (Yemeni) and Apis mellifera carnica Pollmann (Carniolan) in weather that was hot and dry and in an environment of nectar-rich flora. The brood production, food storage, bee population and honey yield of Yemeni (native) and Carniolan (imported) colonies on Talh trees (Acacia gerrardii Benth.), a nectar-rich, subtropical, and summer bee forage source in Central Arabia were evaluated. Owing to their structural and behavioral adaptations, the Yemeni bees constructed stronger (high population size) colonies than the Carniolan bees. Although both groups yielded similar amounts of Talh honey, the Yemeni bees consumed their stored honey rapidly if not timely harvested. A. m. jemenitica has a higher performance than A. m. carnica during extremely hot-dry conditions and A. gerrardii nectar-rich flow.(AU)
Subject(s)
Animals , Bees/classification , Bees/enzymology , Bees/metabolism , Honey/analysis , AcaciaABSTRACT
Both climatic factors and bee forage characteristics affect the population size and productivity of honey bee colonies. To our knowledge, no scientific investigation has as yet considered the potential effect of nectar-rich bee forage exposed to drastic subtropical weather conditions on the performance of honey bee colonies. This study investigated the performance of the honey bee subspecies Apis mellifera jemenitica Ruttner (Yemeni) and Apis mellifera carnica Pollmann (Carniolan) in weather that was hot and dry and in an environment of nectar-rich flora. The brood production, food storage, bee population and honey yield of Yemeni (native) and Carniolan (imported) colonies on Talh trees (Acacia gerrardii Benth.), a nectar-rich, subtropical, and summer bee forage source in Central Arabia were evaluated. Owing to their structural and behavioral adaptations, the Yemeni bees constructed stronger (high population size) colonies than the Carniolan bees. Although both groups yielded similar amounts of Talh honey, the Yemeni bees consumed their stored honey rapidly if not timely harvested. A. m. jemenitica has a higher performance than A. m. carnica during extremely hot-dry conditions and A. gerrardii nectar-rich flow.