ABSTRACT
In recent years, it has been discovered that the expression of long non-coding RNAs is highly deregulated in several types of cancer and contributes to its progression and development. Recently, it has been described that in tumors of the digestive system, such as colorectal cancer, pancreatic cancer, and gastric cancer, DNA damage-activated lncRNA (NORAD) was frequently up-regulated. The purpose of this review is to elucidate the functions of NORAD in tumors of the digestive system, emphasizing its involvement in important cellular processes such as invasion, metastasis, proliferation, and apoptosis. NORAD acts as a ceRNA (competitive endogenous RNA) that sponges microRNAs and regulates the expression of target genes involved in tumorigenesis. Thus, the mechanisms underlying the effects of NORAD are complex and involve multiple signaling pathways. This review consolidates current knowledge on the role of NORAD in digestive cancers and highlights the need for further research to explore its potential as a therapeutic target. Understanding the intricate functions of NORAD could elucidate the way for innovative approaches to cancer treatment.
ABSTRACT
BACKGROUND: Hepatorenal syndrome (HRS) is the most prevalent form of acute kidney injury in cirrhotic patients. It is characterized by reduced renal blood flow and represents the most severe complication in cirrhotic patients with advanced disease. Previous research has indicated that antioxidants can delay the onset of a hyperdynamic circulatory state in cirrhosis and improve renal function in HRS patients. Regular omega-3 supplementation has significantly reduced the risk of liver disease. This supplementation could represent an additional therapy for individuals with HRS. AIM: To evaluated the antioxidant effect of omega-3 polyunsaturated fatty acid supplementation on the kidneys of cirrhotic rats. METHODS: Secondary biliary cirrhosis was induced in rats by biliary duct ligation (BDL) for 28 d. We used 24 male Wistar rats divided into the following groups: I (control); II (treated with omega-3, 1 g/kg of body weight); III (BDL treated with omega-3, 1 g/kg of body weight); and IV (BDL without treatment). The animals were killed by overdose of anesthetic; the kidneys were dissected, removed, frozen in liquid nitrogen, and stored in a freezer at -80â for later analysis. We evaluated oxidative stress, nitric oxide (NO) metabolites, DNA damage by the comet assay, cell viability test, and apoptosis in the kidneys. Data were analyzed by one-way analysis of variance, and means were compared using the Tukey test, with P ≤ 0.05. RESULTS: Omega-3 significantly decreased the production of reactive oxygen species (P < 0.001) and lipoperoxidation in the kidneys of cirrhotic rats treated with omega-3 (P < 0.001). The activity of the antioxidant enzymes superoxide dismutase and catalase increased in the BDL+omega-3 group compared to the BDL group (P < 0.01). NO production, DNA damage, and caspase-9 cleavage decreased significantly in the omega-3-treated BDL group. There was an increase in mitochondrial electrochemical potential (P < 0.001) in BDL treated with omega-3 compared to BDL. No changes in the cell survival index in HRS with omega-3 compared to the control group (P > 0.05) were observed. CONCLUSION: The study demonstrates that omega-3 can protect cellular integrity and function by increasing antioxidant enzymes, inhibiting the formation of free radicals, and reducing apoptosis.
ABSTRACT
The oral cavity is a frequent site for head and neck cancers, which rank as the sixth most common cancer globally, with a 5-year survival rate slightly over 50%. Current treatments are limited, and resistance to therapy remains a significant clinical obstacle. IsCT1, a membrane-active peptide derived from the venom of the scorpion Opisthacanthus madagascariensis, has shown antitumor effects in various cancer cell lines, including breast cancer and chronic myeloid leukemia. However, its hemolytic action limits its potential therapeutic use. This study aims to assess the antitumor and antiproliferative activities of synthetic peptides derived from IsCT1 (IsCT-P, AC-AFPK-IsCT1, AFPK-IsCT1, AC-KKK-IsCT1, and KKK-IsCT1) in the context of oral squamous cell carcinoma. We evaluated the cytotoxic effects of these peptides on tongue squamous cell carcinoma cells and normal cells, as well as their impact on cell cycle phases, the expression of proliferation markers, modulators of cell death pathways, and mitochondrial potential. Our results indicate that the IsCT1 derivatives IsCT-P and AC-AFPK-IsCT1 possess cytotoxic properties towards squamous cell carcinoma cells, reducing mitochondrial membrane potential and the proliferative index. The treatment of cancer cells with AC-AFPK-IsCT1 led to a positive modulation of pro-apoptotic markers p53 and caspases 3 and 8, a decrease in PCNA and Cyclin D1 expression, and cell cycle arrest in the S phase. Notably, contrary to the parental IsCT1 peptide, AC-AFPK-IsCT1 did not exhibit hemolytic activity or cytotoxicity towards normal cells. Therefore, AC-AFPK-IsCT1 might be a viable therapeutic option for head and neck cancer treatment.
Subject(s)
Antineoplastic Agents , Carcinoma, Squamous Cell , Cell Proliferation , Mouth Neoplasms , Scorpion Venoms , Humans , Cell Proliferation/drug effects , Cell Line, Tumor , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Scorpion Venoms/pharmacology , Scorpion Venoms/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Peptides/pharmacology , Peptides/chemistry , Peptides/chemical synthesis , Apoptosis/drug effects , Scorpions/chemistry , Membrane Potential, Mitochondrial/drug effects , Cell Cycle/drug effectsABSTRACT
LAH, an acetogenin from the Annonaceae family, has demonstrated antitumor activity in several cancer cell lines and in vivo models, where it reduced the tumor size and induced programmed cell death. We focused on the effects of LAH on mitochondrial dynamics, mTOR signaling, autophagy, and apoptosis in colorectal cancer (CRC) cells to explore its anticancer potential. METHODS: CRC cells were treated with LAH, and its effects on mitochondrial respiration and glycolysis were measured using Seahorse XF technology. The changes in mitochondrial dynamics were observed through fluorescent imaging, while Western blot analysis was used to examine key autophagy and apoptosis markers. RESULTS: LAH significantly inhibited mitochondrial complex I activity, inducing ATP depletion and a compensatory increase in glycolysis. This disruption caused mitochondrial fragmentation, a trigger for autophagy, as shown by increased LC3-II expression and mTOR suppression. Apoptosis was also confirmed through the cleavage of caspase-3, contributing to reduced cancer cell viability. CONCLUSIONS: LAH's anticancer effects in CRC cells are driven by its disruption of mitochondrial function, triggering both autophagy and apoptosis. These findings highlight its potential as a therapeutic compound for further exploration in cancer treatment.
Subject(s)
Apoptosis , Autophagy , Cell Proliferation , Colorectal Neoplasms , Mitochondria , Humans , Autophagy/drug effects , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Apoptosis/drug effects , TOR Serine-Threonine Kinases/metabolism , Acetogenins/pharmacology , Signal Transduction/drug effects , Glycolysis/drug effects , Cell Survival/drug effectsABSTRACT
Parasites from the Leishmania genus are the causative agents of leishmaniasis and primarily reside within macrophages during mammalian infection. Their ability to establish intracellular infection provides a secure niche for proliferation while evading detection. However, successful multiplication within mammalian cells requires the orchestration of multiple mechanisms that control host cell viability. In contrast, innate immune cells, such as macrophages, can undergo different forms of cell death in response to pathogenic intracellular microbes. Thus, modulation of these different forms of host cell death is crucial for Leishmaniasis development. The regulation of host cell apoptosis, a form of programmed cell death, is crucial for sustaining parasites within viable host cells. Accordingly, several studies have demonstrated evasion of apoptosis induced by dermotropic and viscerotropic Leishmania species. Conversely, the prevention of pyroptosis, an inflammatory form of cell death, ensures the establishment of infection by silencing the release of mediators that could trigger massive proinflammatory responses. This manuscript explores how Leishmania regulates various host cell death pathways and overviews seminal studies on regulating host cell apoptosis by different Leishmania species.
ABSTRACT
Cancer is a group of diseases characterized by uncontrolled cell growth, invasive capacity, and metastatic potential. Despite the continual progress in cancer treatment, high toxicity and resistance to therapy remain recurring challenges. Croton grewioides Baill. is a plant from the brazilian semi-arid region with significant pharmacological potential due to its reported antidiarrheal, antioxidant, and antitumor properties. This study evaluated the antitumor activity of the essential oil from C. grewioides leaves (CgEO) by in vitro assays. CgEO showed higher cytotoxicity in human melanoma cells (SK-MEL-28), with a 50% inhibitory concentration (IC50) of 70.0 µg/mL after 72 hours, but with low toxicity in healthy keratinocytes (HaCaT). Additionally, it was suggested that the antitumor effect of CgEO is associated with the induction of apoptosis, cell cycle alterations, and combined antioxidant action mechanisms. In conclusion, CgEO exhibits antitumor activity with lower toxicity in non-tumor cells.
ABSTRACT
Background: Neonicotinoid insecticides are used worldwide for crop protection. They act as agonists at postsynaptic nicotinic acetylcholine receptors (nAChRs), disrupting normal neurotransmission in target insects. Human exposure is high due to the widespread use of neonicotinoids and their residues in food. This study aimed to evaluate the in vitro neurotoxicity of three neonicotinoid commercial formulations Much 600 FS® (imidacloprid 600 g L-1), Evidence 700 WG® (imidacloprid 700 g kg-1), and Actara 250 WG® (thiamethoxam 250 g kg-1) in differentiated human neuroblastoma SH-SY5Y cell line. Methods: Cells were incubated with the pesticides for 96 h, and the cytotoxicity was evaluated through the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium·bromide (MTT) reduction and neutral red (NR) uptake assays. Toxicological pathways such as reactive oxygen (ROS) and nitrogen species (RNS) production, mitochondrial membrane potential, cell death mode, and the expression of the pro-apoptotic protein Bax were also evaluated. Results: EC50 values of 266.4, 4,175, and 653.2 mg L-1 were found for Much®, Evidence® and Actara®, respectively. Significant increases in ROS and RNS generation were observed for all pesticides, while mitochondrial membrane potential and Bax protein expression showed no significant changes. Analysis of cell death mode revealed an increase in early apoptotic cells. Conclusion: Therefore, neonicotinoid insecticides are potentially neurotoxic, reinforcing concerns about human exposure to these commercial formulations.
ABSTRACT
PURPOSE: The association of targeted therapy with chemotherapy is encouraged to increase the treatment efficiency, especially in hypoxic triple-negative breast cancer. The APE1 redox activity has stood out as a potential tumor target. However, the effect of the association of the APE1 redox inhibitors with doxorubicin in hypoxia still needs to be evidenced. Therefore, our objective was to investigate the effect of the APX2009 (APE1 inhibitor) on the sensitization of breast cancer cells to doxorubicin in normoxia and hypoxia. METHODS: The WST-1 assay was used to evaluate cell viability after APX2009 and doxorubicin application under normoxia and hypoxia conditions in the MCF-7 and MDA-MB-231 cells. Apoptosis was analyzed by annexin assay and detection of caspases-3/7 activity by luminescence-based assay. The clinical association between APE1 inhibition signature and doxorubicin sensitivity was evaluated by bioinformatics analyses. RESULTS: MDA-MB-231 and MCF-7 cell lines were more sensitive to APX2009 in normoxia than in hypoxia. Co-treatment with APX2009 and doxorubicin in hypoxia further decreased the viability of triple-negative MDA-MB-231 cells than treatment alone, which was accompanied by doxorubicin intracellular accumulation, and increase of apoptotic cells percentage, and caspases-3/7 activity. Moderate association was found between APE1 inhibition signature and doxorubicin sensitivity in the hypoxic basal subtype. CONCLUSION: The findings suggest that APX2009 sensitizes the MDA-MB-231 cells to doxorubicin in hypoxia by doxorubicin intracellular accumulation and caspases-3/7-mediated apoptosis.
ABSTRACT
Quercetin (QUE) is a natural flavonoid with well-known anticancer capabilities, although its effect on viral-induced cancers is less studied. Kaposi's sarcoma (KS) is a viral cancer caused by the human herpesvirus-8, which, during its lytic phase, expresses a constitutively activated viral G protein-coupled receptor (vGPCR) able to induce oncogenic modifications that lead to tumor development. The aim of this work was to investigate the potential effect of QUE on in vitro and in vivo models of Kaposi's sarcoma, developed by transforming endothelial cells with the vGPCR of Kaposi's sarcoma-associated herpesvirus. Initially, the antiproliferative effect of QUE was determined in endothelial cells stably expressing the vGPCR (vGPCR cells), with an IC50 of 30 µM. Additionally, QUE provoked a decrease in vGPCR cell viability, interfered with the cell cycle progression, and induced apoptosis, as revealed by annexin V/PI analysis and caspase-3 activity. The presence of apoptotic bodies and disorganized actin filaments was observed by SEM and phalloidin staining. Furthermore, tumors from vGPCR cells were induced in nude mice, which were treated with QUE (50 or 100 mg/kg/d) resulting in retarded tumor progression and reduced tumor weight. Notably, neither kidney nor liver damage was observed, as indicated by biochemical parameters in serum. In conclusion, this study suggests for the first time that QUE exhibits antineoplastic activity in both in vitro and in vivo models of KS, marking a starting point for further investigations and protocols for therapeutic purpose.
ABSTRACT
Colorectal cancer (CRC) is one of the leading types of cancer worldwide. CRC development has been associated with the constitutive activation of signal transducer and activator of transcription 3 (STAT3). STAT3 is a master regulator of inflammation during cancer-associated colitis, and becomes upregulated in CRC. In CRC, STAT3 is activated by IL-6, among other pro-inflammatory cytokines, inducing the expression of target genes that stimulate proliferation, angiogenesis and the inhibition of apoptosis. One of the main STAT3-regulated inhibitors of apoptosis is survivin, which is a bifunctional protein that regulates apoptosis and participates in cell mitosis. Survivin expression is normally limited to foetal tissue; however, survivin is also upregulated in tumours. In silico and experimental analyses have shown that the STAT3 interactome is relevant during CRC progression, and the constitutive STAT3-survivin axis participates in development of the tumour microenvironment and response to therapy. The presence of a STAT3-survivin axis has been documented in CRC cohorts, and the expression of these molecules is associated with poor prognosis and a higher mortality rate in patients with CRC. Thus, STAT3, survivin, and the upstream activators IL-6 and IL-6 receptor, are considered therapeutic targets for CRC. Efforts to develop drugs targeting the STAT3-survivin axis include the evaluation of phytochemical compounds, small molecules and monoclonal antibodies. In the present review, the expression, function and participation of the STAT3-survivin axis in the progression of CRC were investigated. In addition, an update on the pre-clinical and clinical trials evaluating potential treatments targeting the STAT3-survivin axis is presented.
ABSTRACT
Clostridium perfringens type D is the causative agent of enterotoxemia in sheep, goats, and cattle. Although in sheep and cattle, the disease is mainly characterized by neurological clinical signs and lesions, goats with type D enterotoxemia frequently have alterations of the alimentary system. Epsilon toxin (ETX) is the main virulence factor of C. perfringens type D, although the role of ETX in intestinal lesions in goats with type D enterotoxemia has not been fully characterized. We evaluated the contribution of ETX to C. perfringens type D enteric pathogenicity using an intraduodenal challenge model in young goats, with the virulent C. perfringens type D wild-type strain CN1020; its isogenic etx null mutant; an etx-complemented strain; and sterile, non-toxic culture medium. The intestinal tract of each animal was evaluated grossly, microscopically, and immunohistochemically for activated caspase-3. Both ETX-producing strains induced extensive enterocolitis characterized by severe mucosal necrosis, apoptosis, and diffuse suppurative infiltrates. No significant gross or microscopic lesions were observed in goats inoculated with the non-ETX-containing inocula. These results confirm that ETX is essential for the production of intestinal lesions in goats with type D disease. Also, our results suggest that the intestinal pathology of type D enterotoxemia in goats is, at least in part, associated with apoptosis.
ABSTRACT
Alkyldimethylbenzylammonium chlorides (ADBACs), classified as second-generation quaternary ammonium compounds, are extensively employed across various sectors, encompassing veterinary medicine, food production, pharmaceuticals, cosmetics, ophthalmology, and agriculture. Consequently, significant volumes of ADBAC C12-C16 are discharged into the environment, posing a threat to aquatic organisms. Regrettably, comprehensive data regarding the toxicological characteristics of these compounds remain scarce. This research aimed to determine whether or not ADBAC C12-C16, at environmentally relevant concentrations (0.4, 0.8, and 1.6 µg/L), may instigate oxidative stress and alter the expression of apoptosis-related genes in the liver, brain, gut, and gills of Danio rerio adults (5-6 months). The findings revealed that ADBAC C12-C16 elicited an oxidative stress response across all examined organs following 96 h of exposure. Nonetheless, the magnitude of this response varied among organs, with the gills exhibiting the highest degree of susceptibility, followed by the gut, liver, and brain, in descending order. Only the gut and gills of the examined organs displayed a concentration-dependent reduction in the activity of superoxide dismutase (SOD) and catalase (CAT). Akin to the oxidative stress response, all organs exhibited a marked increase in bax, blc2, casp3, and p53 expression levels. However, the gills and gut manifested a distinctive suppression in the expression of nrf1 and nrf2. Our Principal Component Analysis (PCA) confirmed that SOD, CAT, nrf1, and nrf2 were negatively correlated to oxidative damage biomarkers and apoptosis-related genes in the gills and gut; meanwhile, in the remaining organs, all biomarkers were extensively correlated. From the above, it can be concluded that ADBAC C12-C16 in low and environmental concentrations may threaten the health of freshwater fish.
Subject(s)
Oxidative Stress , Water Pollutants, Chemical , Zebrafish , Animals , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Gills/drug effects , Gills/metabolism , Benzalkonium Compounds/toxicityABSTRACT
BACKGROUND: Aberrant expression of apelin receptor (APLNR) has been found to be involved in various cancers' development, however, its function in prostate cancer (PCa) remains unclear. The research aimed to investigate the role and potential mechanism of APLNR in PCa. METHODS: The mRNA expression of APLNR was detected via qRT-PCR assay. PCa cell proliferation and apoptosis were determined through plate cloning and flow cytometry. In addition, the expression of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) was evaluated using western blot. DNA damage marker (γ-H2AX) was analyzed by immunofluorescence and western blot. GSEA analysis was performed for seeking enrichment pathways of APLNR in PCa, and the protein levels of PI3K, p-PI3K, AKT, p-AKT, mTOR, and p-mTOR were tested using western blot. RESULTS: APLNR expression was up-regulated in PCa tissues and cells. Silencing APLNR enhanced the sensitivity of PCa cells to radiotherapy, which was manifested by inhibiting cell proliferation, promoting cell apoptosis, and promoting DNA damage. Next, silencing APLNR inhibited the PI3K/AKT/mTOR pathway. Specifically, 740Y-P (the PI3K/AKT/mTOR pathway activator) reversed the effects of silencing APLNR on PCa cell proliferation, apoptosis and DNA damage. CONCLUSION: Silencing APLNR inhibited cell proliferation, promoted cell apoptosis, and enhanced the radiosensitivity of PCa cells, which was involved in the PI3K/AKT/mTOR signaling pathway. This study is conducive to the deeper understanding of PCa and further provides a new perspective for the treatment of PCa.
ABSTRACT
The central role of the control of apoptosis in the pathophysiology of Philadelphia chromosome-negative myeloproliferative neoplasms has recently been reinforced in genetic and pharmacological studies. The inhibitor of apoptosis protein family has eight members and plays an important role in apoptosis, with the most studied being survivin (BIRC5) and X-linked inhibitor of apoptosis (XIAP). YM155 is a small molecule with antineoplastic potential that has been described as a suppressant of survivin and XIAP. In the present study, BIRC5 expression was significantly increased in primary myelofibrosis patients compared to healthy donors. On the other hand, XIAP expression was reduced in myeloproliferative neoplasms patients. In JAK2V617F cells, YM155 reduces cell viability and autonomous clonal growth and induces apoptosis, cell cycle arrest, and autophagy. HEL cells that show greater malignancy are more sensitive to the drug than SET2 cells. In the molecular scenario, YM155 modulates apoptosis-, cell cycle-, DNA damage- and autophagy-related genes. Protein expression analysis corroborates the observed cellular phenotype and exploratory gene expression findings. In summary, our results indicate that survivin/BIRC5 and XIAP are differently expressed in myeloproliferative neoplasms and YM155 has multiple antineoplastic effects on JAK2V617F cells suggesting that inhibitor of apoptosis proteins may be a target for pharmacological interventions in the treatment of these diseases.
ABSTRACT
Parkinson's disease (PD) is a multifactorial, chronic, and progressive neurodegenerative disorder inducing movement alterations as a result of the loss of dopaminergic (DAergic) neurons of the pars compacta in the substantia nigra and protein aggregates of alpha synuclein (α-Syn). Although its etiopathology agent has not yet been clearly established, environmental and genetic factors have been suggested as the major contributors to the disease. Mutations in the glucosidase beta acid 1 (GBA1) gene, which encodes the lysosomal glucosylceramidase (GCase) enzyme, are one of the major genetic risks for PD. We found that the GBA1 K198E fibroblasts but not WT fibroblasts showed reduced catalytic activity of heterozygous mutant GCase by -70% but its expression levels increased by 3.68-fold; increased the acidification of autophagy vacuoles (e.g., autophagosomes, lysosomes, and autolysosomes) by +1600%; augmented the expression of autophagosome protein Beclin-1 (+133%) and LC3-II (+750%), and lysosomal-autophagosome fusion protein LAMP-2 (+107%); increased the accumulation of lysosomes (+400%); decreased the mitochondrial membrane potential (∆Ψm) by -19% but the expression of Parkin protein remained unperturbed; increased the oxidized DJ-1Cys106-SOH by +900%, as evidence of oxidative stress; increased phosphorylated LRRK2 at Ser935 (+1050%) along with phosphorylated α-synuclein (α-Syn) at pathological residue Ser129 (+1200%); increased the executer apoptotic protein caspase 3 (cleaved caspase 3) by +733%. Although exposure of WT fibroblasts to environmental neutoxin rotenone (ROT, 1 µM) exacerbated the autophagy-lysosomal system, oxidative stress, and apoptosis markers, ROT moderately increased those markers in GBA1 K198E fibroblasts. We concluded that the K198E mutation endogenously primes skin fibroblasts toward autophagy dysfunction, OS, and apoptosis. Our findings suggest that the GBA1 K198E fibroblasts are biochemically and molecularly equivalent to the response of WT GBA1 fibroblasts exposed to ROT.
Subject(s)
Apoptosis , Autophagy , Fibroblasts , Glucosylceramidase , Mitochondria , Oxidative Stress , Glucosylceramidase/metabolism , Glucosylceramidase/genetics , Humans , Fibroblasts/metabolism , Autophagy/genetics , Mitochondria/metabolism , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Skin/metabolism , Skin/pathology , Lysosomes/metabolism , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , MutationABSTRACT
Lithium, a natural element, has been employed as a mental stabilizer in psychiatric treatments; however, some reports indicate it has an anticancer effect, prompting the consideration of repurposing lithium for cancer treatment. The potential anticancer use of lithium may depend on its form (salt type) and the type of cancer cells targeted. Little is known about the effects of Li2CO3 or LiCl on cancer cells, so we focused on exploring their effects on proliferation, apoptosis, migration, and cell cycle as part of the hallmarks of cancer. Firstly, we established the IC50 values on HeLa, SiHa, and HaCaT cells with LiCl and Li2CO3 and determined by crystal violet that cell proliferation was time-dependent in the three cell lines (IC50 values for LiCl were 23.43 mM for SiHa, 23.14 mM for HeLa, and 15.10 mM for HaCaT cells, while the IC50 values for Li2CO3 were 20.57 mM for SiHa, 11.52 mM for HeLa, and 10.52 mM for HaCaT cells.) Our findings indicate that Li2CO3 and LiCl induce DNA fragmentation and caspase-independent apoptosis, as shown by TUNEL, Western Blot, and Annexin V/IP assay by flow cytometry. Also, cell cycle analysis showed that LiCl and Li2CO3 arrested the cervical cancer cells at the G1 phase. Moreover, lithium salts displayed an anti-migratory effect on the three cell lines observed by the wound-healing assay. All these findings imply the viable anticancer effect of lithium salts by targeting several of the hallmarks of cancer.
Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Lithium Chloride , Uterine Cervical Neoplasms , Humans , Lithium Chloride/pharmacology , Cell Proliferation/drug effects , Apoptosis/drug effects , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Cell Movement/drug effects , Female , HeLa Cells , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Lithium Carbonate/pharmacology , Cell Cycle/drug effects , Drug RepositioningABSTRACT
BACKGROUND: Acute myeloid leukemia (AML) is a hematological neoplasm of rapid and progressive onset, and is the most common form of leukemia in adults. Chemoresistance to conventional treatments such as cytarabine (Ara-C) and daunorubicin is a main cause of relapse, recurrence, metastasis, and high mortality in AML patients. It is known that sodium caseinate (SC), a salt derived from casein, a milk protein, inhibits growth and induces apoptosis in acute myeloid leukemia cells but not in normal hematopoietic cells. However, it is unknown whether SC retains its antileukemic effect in cytarabine-resistant AML cell lines. OBJECTIVE: To evaluate the antineoplastic effect of SC in cytarabine-resistant leukemia models. METHODS: The SC inhibits the growth and induces apoptosis in parental WEHI-3 AML cells. Here, we generated two cytarabine-resistant sublines, WEHI-CR25 and WEHI-CR50, which exhibit 6- and 16-fold increased resistance to cytarabine, respectively, compared to the parental WEHI-3 cells. Thus, these sublines mimic a chemoresistant model. RESULTS: We demonstrate that WEHI-CR25 and WEHI-CR50 cells retain sensitivity to SC, similar to parental WEHI-3 cells. This sensitivity results in inhibited cell proliferation, induced apoptosis, and increased expression of ENT1 and dCK, molecules involved in the entry and metabolism of Ara-C, while decreasing MDR1 expression. Additionally, we observed that SC prolonged the survival of WEHI-CR50 tumor-bearing mice, despite their resistance to Ara-C. CONCLUSION: This is the first evidence that SC, a milk protein, may inhibit proliferation and induce apoptosis in cytarabine-resistant cells.
Subject(s)
Apoptosis , Caseins , Cytarabine , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute , Cytarabine/pharmacology , Animals , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Drug Resistance, Neoplasm/drug effects , Mice , Cell Line, Tumor , Caseins/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacologyABSTRACT
The cell signaling pathways involved in the antiproliferative activities of T. rosea inner bark remain unexplored. This study evaluated the apoptotic effects of two iridoids from the inner bark of T. rosea and apicidin on THP-1 cells. The cytotoxic effects of the extract and the pure compounds on THP-1 and Jurkat cells were also evaluated using the MTT assay. The apoptotic effect was determined by measuring the mitochondrial membrane potential. The expression of mRNA and MAPK kinase, Bax, and Bcl-2 proteins was detected by Western blotting and RT-qPCR, respectively. The extract and the compounds evaluated increased the percentage of apoptotic cells. Depolarization of the mitochondrial membrane was observed, and the number of cells in the G0/G1 phase increased. Catalposide and specioside significantly increased p38 protein expression, mostly in cells pretreated with apicidin. The p38 MAPK signaling pathway is at least one of the pathways by which the n-butanol extract obtained from Tabebuia rosea, catalposide, and specioside exerts its apoptotic effect on THP-1 cells, and this effect generates a response in the G0/G1 phase and subsequent cell death. In addition, there was depolarization of the mitochondrial membrane, an effect that was related to the participation of the proapoptotic protein Bax.
Subject(s)
Apoptosis , Membrane Potential, Mitochondrial , Plant Bark , Plant Extracts , Tabebuia , Humans , Apoptosis/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Bark/chemistry , Membrane Potential, Mitochondrial/drug effects , Tabebuia/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Jurkat Cells , Leukemia/drug therapy , Leukemia/metabolism , Leukemia/pathology , 1-Butanol/chemistry , p38 Mitogen-Activated Protein Kinases/metabolism , THP-1 Cells , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effectsABSTRACT
BACKGROUND: Spermatogonial stem cells (SSCs) are essential for the maintenance and initiation of male spermatogenesis. Despite the advances in understanding SSC biology in mouse models, the mechanisms underlying human SSC development remain elusive. RESULTS: Here, we analyzed the signaling pathways involved in SSC regulation by testicular somatic cells using single-cell sequencing data (GEO datasets: GSE149512 and GSE112013) and identified that Leydig cells communicate with SSCs through pleiotrophin (PTN) and its receptor syndecan-2 (SDC2). Immunofluorescence, STRING prediction, and protein immunoprecipitation assays confirmed the interaction between PTN and SDC2 in spermatogonia, but their co-localization was observed only in approximately 50% of the cells. The knockdown of SDC2 in human SSC lines impaired cell proliferation, DNA synthesis, and the expression of PLZF, a key marker for SSC self-renewal. Transcriptome analysis revealed that SDC2 knockdown downregulated the expression of GFRA1, a crucial factor for SSC proliferation and self-renewal, and inhibited the HIF-1 signaling pathway. Exogenous PTN rescued the proliferation and GFRA1 expression in SDC2 knockdown SSC lines. In addition, we found downregulation of PTN and SDC2 as well as altered localization in non-obstructive azoospermia (NOA) patients, suggesting that downregulation of PTN and SDC2 may be associated with impaired spermatogenesis. CONCLUSIONS: Our results uncover a novel mechanism of human SSC regulation by the testicular microenvironment and suggest a potential therapeutic target for male infertility.
Subject(s)
Carrier Proteins , Cell Proliferation , Cytokines , Glial Cell Line-Derived Neurotrophic Factor Receptors , Leydig Cells , Syndecan-2 , Male , Humans , Cell Proliferation/physiology , Leydig Cells/metabolism , Cytokines/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Syndecan-2/metabolism , Syndecan-2/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Cell Survival/physiology , Spermatogonia/metabolism , Signal Transduction/physiology , Adult Germline Stem Cells/metabolism , Adult Germline Stem Cells/physiologyABSTRACT
Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN1 E280A) is a severe neurological condition due to the loss of cholinergic neurons (ChNs), accumulation of amyloid beta (Aß), and abnormal phosphorylation of the TAU protein. Up to date, there are no effective therapies available. The need for innovative treatments for this illness is critical. We found that minocycline (MC, 5 µM) was innocuous toward wild-type (WT) PSEN1 ChLNs but significantly (i) reduces the accumulation of intracellular Aß by -69%, (ii) blocks both abnormal phosphorylation of the protein TAU at residue Ser202/Thr205 by -33% and (iii) phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by -25%, (iv) diminishes oxidized DJ-1 at Cys106-SO3 by -29%, (v) downregulates the expression of transcription factor TP53, (vi) BH-3-only protein PUMA, and (vii) cleaved caspase 3 (CC3) by -33, -86, and -78%, respectively, compared with untreated PSEN1 E280A ChLNs. Additionally, MC increases the response to ACh-induced Ca2+ influx by +92% in mutant ChLNs. Oxygen radical absorbance capacity (ORAC) and ferric ion-reducing antioxidant power (FRAP) analysis showed that MC might operate more efficiently as a hydrogen atom transfer agent than a single electron transfer agent. In silico molecular docking analysis predicts that MC binds with high affinity to Aß (Vina Score -6.6 kcal/mol), TAU (VS -6.5 kcal/mol), and caspase 3 (VS -7.1 kcal/mol). Taken together, our findings suggest that MC demonstrates antioxidant, anti-amyloid, and anti-apoptosis activity and promotes physiological ACh-induced Ca2+ influx in PSEN1 E280A ChLNs. The MC has therapeutic potential for treating early-onset FAD.