Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202410434, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078870

ABSTRACT

Hydrogel electrolytes (HEs) hold great promise in tackling severe issues emerging in aqueous zinc-ion batteries, but the prevalent salting-out effect of kosmotropic salt causes low ionic conductivity and electrochemical instability. Herein, a subtle molecular bridging strategy is proposed to enhance the compatibility between PVA and ZnSO4 from the perspective of hydrogen-bonding microenvironment re-construction. By introducing urea containing both an H-bond acceptor and donor, the broken H-bonds between PVA and H2O, initiated by the SO42--driven H2O polarization, could be re-united via intense intermolecular hydrogen bonds, thus leading to greatly increased carrying capacity of ZnSO4. The urea-modified PVA-ZnSO4 HEs featuring a high ionic conductivity up to 31.2 mS cm-1 successfully solves the sluggish ionic transport dilemma at the solid-solid interface. Moreover, an organic solid-electrolyte-interphase can be derived from the in-situ electro-polymerization of urea to prohibit H2O-involved side reactions, thereby prominently improving the reversibility of Zn chemistry. Consequently, Zn anodes witness an impressive lifespan extension from 50 h to 2200 h at 0.1 mA cm-2 while the Zn-I2 full battery maintains a remarkable Coulombic efficiency (>99.7%) even after 8000 cycles. The anti-salting-out strategy proposed in this work provides an insightful concept for addressing the phase separation issue of functional HEs.

2.
Adv Mater ; 36(29): e2314144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38715517

ABSTRACT

The practical applications for aqueous Zn ion batteries (ZIBs) are promising yet still impeded by the severe side reactions on Zn metal. Here, a lysozyme protective layer (LPL) is prepared on Zn metal surface by a simple and facile self-adsorption strategy. The LPL exhibits extremely strong adhesion on Zn metal to provide stable interface during long-term cycling. In addition, the self-adsorption strategy triggered by the hydrophobicity-induced aggregation effect endows the protective layer with a gap-free and compacted morphology which can reject free water for effective side reaction inhibition performance. More importantly, the lysozyme conformation is transformed from α-helix to ß-sheet structure before layer formation, thus abundant functional groups are exposed to interact with Zn2+ for electrical double layer (EDL) modification, desolvation energy decrease, and ion diffusion kinetics acceleration. Consequently, the LPL renders the symmetrical Zn battery with ultra-long cycling performance for more than 1200 h under high Zn depth of discharge (DOD) for 77.7%, and the Zn/Zn0.25V2O5 pouch cell with low N/P ratio of 2.1 at high Zn utilization of 48% for over 300 cycles. This study proposes a facile and low-cost method for constructing a stable protective layer of Zn metal for high Zn utilization aqueous devices.

3.
Small ; : e2402998, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716678

ABSTRACT

Aqueous zinc-based batteries (AZBs) are promising energy storage solutions with remarkable safety, abundant Zn reserve, cost-effectiveness, and relatively high energy density. However, AZBs still face challenges such as anode dendrite formation that reduces cycling stability and limited cathode capacity. Recently, low-dimensional metal-organic frameworks (LD MOFs) and their derivatives have emerged as promising candidates for improving the electrochemical performance of AZBs owing to their unique morphologies, high structure tunability, high surface areas, and high porosity. However, clear guidelines for developing LD MOF-based materials for high-performance AZBs are scarce. In this review, the recent progress of LD MOF-based materials for AZBs is critically examined. The typical synthesis methods and structural design strategies for improving the electrochemical performance of LD MOF-based materials for AZBs are first introduced. The recent noteworthy research achievements are systematically discussed and categorized based on their applications in different AZB components, including cathodes, anodes, separators, and electrolytes. Finally, the limitations are addressed and the future perspectives are outlined for LD MOFs and their derivatives in AZB applications. This review provides clear guidance for designing high-performance LD MOF-based materials for advanced AZBs.

4.
ACS Nano ; 18(10): 7633-7643, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38411092

ABSTRACT

The potential for optimizing ion transport through triply periodic minimal surface (TPMS) structures renders promising electrochemical applications. In this study, as a proof-of-concept, we extend the inherent efficiency and mathematical beauty of TPMS structures to fabricate liquid-crystalline electrolytes with high ionic conductivity and superior structural stability for aqueous rechargeable zinc-ion batteries. The specific topological configuration of the liquid-crystalline electrolytes, featuring a Gyroid geometry, enables the formation of a continuous ion conduction pathway enriched with confined water. This, in turn, promotes the smooth transport of charge carriers and contributes to high ionic conductivity. Meanwhile, the quasi-solid hydrophobic phase assembled by hydrophobic alkyl chains exhibits notable rigidity and toughness, enabling uniform and compact dendrite-free Zn deposition. These merits synergistically enhance the overall performance of the corresponding full batteries. This work highlights the distinctive role of TPMS structures in developing high-performance, liquid-crystalline electrolytes, which can provide a viable route for the rational design of next-generation quasi-solid-state electrolytes.

5.
Angew Chem Int Ed Engl ; 63(15): e202400121, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38287460

ABSTRACT

Bipolar organic cathode materials (OCMs) implementing cation/anion storage mechanisms are promising for high-energy aqueous Zn batteries (AZBs). However, conventional organic functional group active sites in OCMs usually fail to sufficiently unlock the high-voltage/capacity merits. Herein, we initially report dynamically ion-coordinated bipolar OCMs as cathodes with chalcogen active sites to solve this issue. Unlike conventional organic functional groups, chalcogens bonded with conjugated group undergo multielectron-involved positive-valence oxidation and negative-valence reduction, affording higher redox potentials and reversible capacities. With phenyl diselenide (PhSe-SePh, PDSe) as a proof of concept, it exhibits a conversion pathway from (PhSe)- to (PhSe-SePh)0 and then to (PhSe)+ as unveiled by characterization and theoretical simulation, where the diselenide bonds are periodically broken and healed, dynamically coordinating with ions (Zn2+ and OTF-). When confined into ordered mesoporous carbon (CMK-3), the dissolution of PDSe intermediates is greatly inhibited to obtain an ultralong lifespan without voltage/capacity compromise. The PDSe/CMK-3 || Zn batteries display high reversibility capacity (621.4 mAh gPDSe -1), distinct discharge plateau (up to 1.4 V), high energy density (578.3 Wh kgPDSe -1), and ultralong lifespan (12 000 cycles) at 10 A g-1, far outperforming conventional bipolar OCMs. This work sheds new light on conversion-type active site engineering for high-voltage/capacity bipolar OCMs towards high-energy AZBs.

6.
Small ; 20(25): e2310341, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38225705

ABSTRACT

The safety, low cost, and high power density of aqueous Zn-based devices (AZDs) appeal to large-scale energy storage. Yet, the presence of hydrogen evolution reaction (HER) and chemical corrosion in the AZDs leads to local OH- concentration increasement and the formation of ZnxSOy(OH)z•nH2O (ZHS) by-products at the Zn/electrolyte interface, causing instability and irreversibility of the Zn-anodes. Here, a strategy is proposed to regulate OH- by introducing a bio-sourced/renewable polypeptide (ɛ-PL) as a pH regulator in electrolyte. The consumption of OH- species is evaluated through in vitro titration and cell in vivo in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy at a macroscopic and molecular level. The introduction of ɛ-PL is found to significantly suppress the formation of ZHS and associated side reactions, and reduce the local coordinated H2O of the Zn2+ solvation shell, widening electrochemical stable window and suppressing OH- generation during HER. As a result, the inclusion of ɛ-PL improves the cycle time of Zn/Zn symmetrical cells from 15 to 225 h and enhances the cycle time of aqueous Zn- I2 cells to 1650 h compared to those with pristine electrolytes. This work highlights the potential of kinetical OH- regulation for by-product and dendrite-free AZDs.

7.
ACS Appl Mater Interfaces ; 15(51): 59475-59481, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38105603

ABSTRACT

Large quantities of spent lithium-ion batteries (LIBs) will inevitably be generated in the near future because of their wide application in many fields. It will cause not only resource waste but also environmental pollution if these spent batteries are not properly handled. Until now, the recycling of spent lithium manganate batteries has centered on high-valuable elements such as lithium; however, manganese element and current collector Al foil have not yet attracted wide attention. In this work, aluminum-doped manganese dioxide was synthesized by overall recycling cathode active materials and current collector Al foil from a spent lithium manganate battery. Employing such aluminum-doped manganese dioxide as the cathode material of aqueous Zn batteries, it displays better electrochemical performance than manganese dioxide prepared by only recycling the cathode active materials. The overall recycling not only simplifies the recycling process but also realizes high-value recycling of spent lithium manganate batteries. We offer new tactics for overall recycling of cathodes from spent LIBs and designing high-performance manganese dioxide cathodes for aqueous Zn batteries.

SELECTION OF CITATIONS
SEARCH DETAIL