Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
Add more filters











Publication year range
1.
Sci Total Environ ; : 176455, 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39317258

ABSTRACT

River discharge into the sea and its implications on the environmental setting and fauna in the nearshore represent the intricate interactions among the atmosphere, hydrosphere, lithosphere, and biosphere. This study, based on in-situ and satellite data, presents how spatially varying river discharge laden with suspended sediments structure the hydrography and the nearshore benthic environment over a 590 km southwest (Kerala) coast of India. The 41 rivers that discharge along the Kerala coast are monsoon-driven; they are small but swift and cumulatively supply huge amounts of freshwater and suspended sediments into the Southeastern Arabian Sea (SEAS) during the Southwest Monsoon (SWM) when around 70 % (1925 mm) of the yearly rainfall occurs. These rivers are distributed unevenly along the coastline, with twenty-four of them discharging in the northern region (10.9-12.5°N), nine in the central (9.2-10.9°N), and eight in the south (8-9.2°N). During the SWM, plumes of low salinity (<32) with high clay content were widespread in the northern and central regions of the study area due to heavy river discharge and the presence of crystalline rocks and laterite deposits. In contrast, the low salinity plumes and suspended sediments were markedly low in the southern region due to limited river discharge and a predominance of sedimentary rocks and coastal alluvium that supported sandy sediments. This resulted in a spatial change in benthic sediment texture as well, with the central and northern regions more silty or clayey, while the south was sandy. Interestingly, the sandy south section had a noticeably higher faunal abundance than the rest of the region with an increased abundance of sensitive fauna of molluscs and echinoderms. This is a clear case of how spatially varying river discharge and sediment flux impact the nearshore environment and fauna.

2.
Environ Sci Pollut Res Int ; 31(44): 56253-56271, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39264497

ABSTRACT

Studies on dinoflagellate cysts in the Arabian Sea (AS) are limited to the coastal waters, but no information from the deeper depths. The dinoflagellate cyst assemblages in surface sediment samples (0-2 cm) from the deeper depths (up to ~ 4500 m) of central (oxygen minimum zone (OMZ)) and southeastern (oligotrophic) AS revealed that the relatively good numbers of cyst concentrations reach deeper depths of OMZ (3505 m) and oligotrophic (4368 m) regions, but the former harbored more cyst concentrations than the latter. The cyst concentration and species count (including HAB species) recorded here are lower compared to the eastern (EAS) and western (WAS) AS, but the autotrophic cyst dominance (74-83%) at deeper depths is in contrast with the heterotrophic dominance in coastal AS. Of the recorded 41 cyst species (belonging to 18 genera), four species (cyst of Cladopyxis sp., Operculodinium janduchenei, Stelladinium bifurcatum, and Protoperidinium monospinum) from the deepest part of oligotrophic AS form the first report. In contrast, Spiniferites and Lingulodinium cysts were common occurrences. Taxonomic comparison with literature revealed (i) the prevalence of more cosmopolitan species (32 species) which could be due to the prevalence of large and small-scale lateral transport of cysts in oligotrophic regions followed by OMZ and coastal regions, respectively, and (ii) very few region-specific species, i.e., cyst of Protoperidinium latissimum, Lejeunecysta sabrina, cyst of Protoperidinium denticulatum in EAS and Impagidinium patulum, and I. strialatum, in WAS. Interestingly, variability in the morphometry was evident between the coastal and open oceans in some cosmopolitan cysts, e.g., Operculodinium centrocarpum and Lingulodinium machaerophorum. These findings from the less studied pelagic regions will contribute to the growing knowledge of dinoflagellate cyst distribution patterns and highlight the significance of cyst taxa and morphology as potential ecological indicators for AS.


Subject(s)
Dinoflagellida , Geologic Sediments , Oceans and Seas
3.
Environ Pollut ; 362: 124948, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39265767

ABSTRACT

This study examined the effects of solar light driven plastic degradation on carbon chemistry in the coastal waters of eastern Arabian Sea along the west coast of India. The research was conducted through experimental incubations exposed to natural sunlight at multiple locations between December 2023-February 2024. Photodegradation induced a significant pH decrease (up to 0.38 ± 0.02) between controls and plastic incubations ranging from 8.17 ± 0.01 to 7.54 ± 0.02 with the highest variation in the Mumbai coast ranging from 8.13 ± 0.01 to 7.75 ± 0.03. pH variations are primarily caused by the leaching of organic acids and CO2 release during solar irradiated incubation. Plastic leaching due to natural light irradiation and subsequent changes in the water chemistry is of prime significance with dissolved organic carbon (DOC) leaching of 0.002-0.03% of plastic weight into the coastal waters. Our estimations suggest 15-75 metric tonnes (MT) of DOC release per year by plastic pollution in the eastern Arabian Sea coastal waters. Further, the fluorescent dissolved organic matter (FDOM) fragmentation, a part of DOC, may act as an organic source of synthetic contaminants and would promote heterotrophic microbial action in the coastal waters. Photodegradation of plastic and the interaction of natural DOC and plastic-derived DOC resulted in longer wavelengths FDOM, which may affect the penetration of photosynthetically active radiation in the water column, thereby impacting primary production. Finally, future research work focussing on the role of plastic pollution in coastal ocean acidification and vice-versa is essential and will be increasingly intense in the upcoming decades.

4.
J Parasit Dis ; 48(3): 460-473, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39145366

ABSTRACT

The redescription of Rostellascaris spinicaudatum has brought to focus Scanning Electron microscopic evidence of evolutionary consequence. The intestinal caeca, ventriculus and ventricular appendix of family Anisakidae; ventriculus and ventricular appendix of family Raphidascaridae; and along with it, post-cloacal collarette of family Physalopteridae in worms recovered from coral-reef associated fish hosts at 'Grande' island, evidently confirmed that the characters of as many as three families were encountered in R. spinicaudatum. The selective adaptation of these specific characters exhibited significant evolutionary trend, and indeed these could radiate connecting link features of Raphidascarididae. Additionally, an inversely bifurcated interlabia on head and pre-cloacal as well as specialized lateral 'sunflower' papillae comprised significant taxonomic information on systematics of ascaridoid (raphidascaridid) nematodes. Interestingly, these worms equipped with remarkably advanced features parasitized primitive host group like, Pisces, in the series of vertebrates, contrary to the characteristics of co-evolution in which parasitizing organism gradually acquired advanced features as it progressed up the ladder of evolution (from Pisces to Mammalia). In the parasitic world, therefore, the worm like Ancylostoma with its occupancy in the highly evolved group i.e. mammals obviously exemplified 'co-evolution', while on the contrary 'Reverse Co-evolution' was the event that was encountered in R. spinicaudatum.

5.
Materials (Basel) ; 17(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39203116

ABSTRACT

Cupronickel-based alloys are widely known for their excellent resistance against aqueous corrosion, however, they can be susceptible to corrosion at accelerated rates and premature failure when exposed to a polluted or brackish seawater medium, even for short-term exposure durations. This unfamiliar corrosion behavior may be a result of the formation of an unprotected corrosion film during the early exposure durations. The paper investigates the corrosion phenomenon in cupronickel 90/10 alloy, by exposing the coupons in two different seawater compositions in the Arabian Sea region. Corrosion losses were investigated on the experimental coupons in a submerged position, for a maximum exposure duration of 150 days, using the conventional weight loss method and a new dimensional metrology-based measurement technique. Additionally, in this research the tubes of a marine heat exchanger having similar material that failed prematurely during operation in the Arabian Sea were also investigated for corrosion losses, followed by the characterization of the corrosion deposits using following analytical techniques: SEM, EDS, XRD and Raman Scattering. The experimental results showed significantly higher corrosion losses on coupons exposed to seawater site rich in pollutants and nutrients including dissolved inorganic nitrogenous compounds, compared to those subjected to a natural seawater solution in corrosion tanks maintained in a controlled environment.

6.
Mar Environ Res ; 199: 106615, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38941665

ABSTRACT

We examine how oxygen levels and the choice of 16S ribosomal RNA (rRNA) tags impact marine bacterial communities using Next-Generation amplicon sequencing. Analyzing V3 and V6 regions, we assess microbial composition in both Oxygen minimum zones (OMZ) and non-OMZ (NOMZ) areas in the Arabian Sea (AS) and the Central Indian Ocean basin (CIOB) respectively. Operational taxonomic units (OTUs) at 97% similarity showed slightly higher richness and diversity with V6 compared to V3. Vertical diversity patterns were consistent across both regions. NOMZ showed greater richness and diversity than OMZ. AS and CIOB exhibited significant differences in bacterial community, diversity, and relative abundance at the order and family levels. Alteromonadaceae dominated the OMZ, while Pelagibacteraceae dominated the NOMZ. Synechococcaceae were found exclusively at 250 m in OMZ. Bacteria putatively involved in nitrification, denitrification, and sulfurylation were detected at both sites. Dissolved oxygen significantly influenced microbial diversity at both sites, while seasonal environmental parameters affected diversity consistently, with no observed temporal variation.


Subject(s)
Bacteria , Microbiota , Oxygen , RNA, Ribosomal, 16S , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Oxygen/metabolism , Bacteria/genetics , Bacteria/classification , Indian Ocean , DNA Barcoding, Taxonomic , Ecosystem , Seawater/microbiology , Biodiversity
7.
Mar Environ Res ; 199: 106616, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38941664

ABSTRACT

The eastern Arabian Sea (EAS) is known for its unique oceanographic features such as the seasonal monsoonal winds, upwelling of nutrient-rich waters and a significant increase in primary productivity during the monsoon season. In this study, we utilised the shotgun metagenomics approach to determine the seasonal variations in bacterial taxonomic and functional profiles during the non-monsoon and monsoon seasons in the EAS. Significant seasonal variations in the bacterial community structure were observed at the phylum and genera levels. These findings also correspond with seasonal shifts in the functional profiles of the bacterial communities based on the variations of genes encoding enzymes associated with different metabolic pathways. Pronounced seasonal variation of bacterial taxa was evident with an increased abundance of Idiomarina, Marinobacter, Psychrobacter and Alteromonas of Proteobacteria, Bacillus and Staphylococcus of Firmicutes during the non-monsoon season. These taxa were linked to elevated nucleotide and amino acid biosynthesis, amino acid and lipid degradation. Conversely, during the monsoon, the taxa composition changed with Alteromonas, Candidatus Pelagibacter of Proteobacteria and Cyanobacteria Synechococcus; contributing largely to the amino acid and lipid biosynthesis, fermentation and inorganic nutrient metabolism which was evident from functional analysis. Regression analysis confirmed that increased seasonal primary productivity significantly influenced the abundance of genes associated with carbohydrate, protein and lipid metabolism. These highlight the pivotal role of seasonal changes in primary productivity in shaping the bacterial communities, their functional profiles and driving the biogeochemical cycling in the EAS.


Subject(s)
Bacteria , Metagenomics , Seasons , Seawater , Bacteria/genetics , Bacteria/classification , Seawater/microbiology , Biodiversity , Oceans and Seas
8.
Water Environ Res ; 96(5): e11033, 2024.
Article in English | MEDLINE | ID: mdl-38720414

ABSTRACT

The escalating issue of microplastic (MP) pollution poses a significant threat to the marine environment due to increasing plastic production and improper waste management. The current investigation was aimed at quantifying the MP concentration on 25 beaches on the Maharashtra coast, India. Beach sediments (1 kg) were collected from each site, with five replicates to evaluate the extent of MPs. The samples were homogenized, and three 20 g replicas were prepared for subsequent analysis. Later, the samples were sieved, and MPs were extracted using previously published protocols. The abundance of MPs found as 1.56 ± 0.79 MPs/g, ranges from 0.43 ± 0.07 to 3 ± 0.37 MPs/g. Fibers were found as the most abundant shape of MPs. Size-wise classification revealed dominance of <1 mm and 1-2 mm-sized MPs. Blue- and black-colored MPs were recorded dominantly. Polymer identification of MPs revealed polyurethane, polypropylene, polyvinyl chloride, acrylic or polymethyl methacrylate, and rubber. The findings revealed that MPs were found to be higher at highly impacted sites, followed by moderately impacted sites and low-impacted sites, possibly due to a different degree of anthropogenic pressure. The study recommended the urgent need for effective policy to prevent plastics accumulation in the coastal environment of Maharashtra State, India. PRACTITIONER POINTS: The study investigated the abundance and distribution of microplastics in the marine environment, specifically in sediments. The most common type of microplastic found was fibers, followed by fragments and films. Microplastics were found to pose a potential risk to the marine ecosystem, although further research is needed to fully understand their ecological impact. Future research should focus on expanding the sample size, assessing long-term effects, exploring sources and pathways, and considering size and shape of microplastics. The findings recommended urgent action to mitigate plastic pollution in Maharashtra coast.


Subject(s)
Bathing Beaches , Environmental Monitoring , Geologic Sediments , Microplastics , India , Microplastics/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Plastics/chemistry , Plastics/analysis
9.
J Environ Manage ; 354: 120477, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38417362

ABSTRACT

The Indian coastal waters are stressed due to a multitude of factors, such as the discharge of industrial effluents, urbanization (municipal sewage), agricultural runoff, and river discharge. The coastal waters along the eastern and western seaboard of India exhibit contrasting characteristics in terms of seasonality, the magnitude of river influx, circulation pattern, and degree of anthropogenic activity. Therefore, understanding these processes and forecasting their occurrence is highly necessary to secure the health of coastal waters, habitats, marine resources, and the safety of tourists. This article introduces an integrated buoy-satellite based Water Quality Nowcasting System (WQNS) to address the unique challenges of water quality monitoring in Indian coastal waters and to boost the regional blue economy. The Indian National Centre for Ocean Information Services (INCOIS) has launched a first-of-its-kind WQNS, and positioned the buoys at two important locations along the east (Visakhapatnam) and west (Kochi) coast of India, covering a range of environmental conditions and tourist-intensive zones. These buoys are equipped with different physical-biogeochemical sensors, data telemetry systems, and integration with satellite-based observations for real-time data transmission to land. The sensors onboard these buoys continuously measure 22 water quality parameters, including surface current (speed and direction), salinity, temperature, pH, dissolved oxygen, phycocyanin, phycoerythrin, Coloured Dissolved Organic Matter, chlorophyll-a, turbidity, dissolved methane, hydrocarbon (crude and refined), scattering, pCO2 (water and air), and inorganic macronutrients (nitrite, nitrate, ammonium, phosphate, silicate). This real-time data is transmitted to a central processing facility at INCOIS, and after necessary quality control, the data is disseminated through the INCOIS website. Preliminary results from the WQNS show promising outcomes, including the short-term changes in the water column oxic and hypoxic regimes within a day in coastal waters off Kochi during the monsoon period, whereas effluxing of high levels of CO2 into the atmosphere associated with the mixing of water, driven by local depression in the coastal waters off Visakhapatnam. The system has demonstrated its ability to detect changes in the water column properties due to episodic events and mesoscale processes. Additionally, it offers valuable data for research, management, and policy development related to coastal water quality.


Subject(s)
Ecosystem , Water Quality , India , Oceans and Seas , United Nations , Environmental Monitoring , Seawater/chemistry
10.
Mar Environ Res ; 196: 106380, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38341980

ABSTRACT

The largest continental shelf Oxygen Minimum Zone (OMZ) in the world is formed along the Indian western shelf in the eastern Arabian Sea during the Southwest Monsoon [(SWM); June-September], which is a natural pollution event associated with the coastal upwelling. This study examines the composition, abundance, and distribution of copepods during the Northeast Monsoon [(NEM); November to February] and SWM in 50 m depth zones along the Indian western shelf in the eastern Arabian Sea. The NEM was characterised by warm, stratified, and low-salinity waters in the southeast Arabian Sea and cold, high-salinity, and well-mixed waters in the northeastern Arabian Sea. During the SWM, cold and Dissolved Oxygen (DO) deficient waters (<22 µM/0.5 ml L-1), which are the signs of coastal upwelling, were evident all along the study zone, but with more intensity off Kochi, Mangalore, and Goa in the south than off Mumbai and Okha in the north. The zooplankton total biomass and abundance showed seasonality with a general decrease during the SWM (av. 3.68 ± 1.29 ml m-3 and av. 5711 ± 3096 Ind. m-3, respectively) compared to the NEM (av. 7.37 ± 2.17 ml m-3 and av. 14,473 ± 4966 Ind. m-3, respectively). At the same time, the abundance of Polychaeta and Siphonophora showed an increase during the SWM (av. 1187 ± 1055 Ind. m-3 and av. 169 ± 119 Ind. m-3, respectively), probably a result of the DO deficient waters associated with upwelling. Two striking seasonal features in Copepoda community were evident in this study: (a) a compositional shift from Cyclopoida dominant during the NEM to Calanoida dominant during the SWM, and (b) the coastal OMZ along the Indian western shelf during the SWM was dominated by Calanoida, which include oceanic OMZ species such as Pleuromamma indica, Lucicutia flavicornis, L.paraclausii, Eucalanus elongatus, Subeucalanus pileatus, S.subcrassus, and Clausocalanus furcatus. This forms a clear imprint for the extension of the oceanic OMZ into nearshore waters during the SWM due to coastal upwelling.


Subject(s)
Copepoda , Animals , Oxygen , Oceans and Seas , Biomass , India , Seasons , Seawater
11.
Environ Sci Pollut Res Int ; 31(10): 15271-15288, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38289549

ABSTRACT

Continuous understanding of the ongoing ocean acidification (OA) is essential for predicting the future impact of OA on marine ecosystems. Here we report the results of open ocean time-series measurements (19 cruises) of seawater pH in total hydrogen ion scale (pHT) and associated parameters in the Arabian Sea (AS) and the Bay of Bengal (BoB). During southwest monsoon (SWM), the pHT within the 30 to 100 m water column shows the maximum difference between the two basins with BoB pHT being lower (up to ~0.39 units) than AS which could be due to freshwater influx from rivers, mixed layer dynamics, and cold-core eddies. However, during Spring inter-monsoon (SIM), the pHT of BoB follows the trend of AS. A contrasting finding is that the lowest pHT occurs at 350 to 500 m in the BoB while it is ~1000 m in the AS. The pHT within the 150 to 1500 m layer of these two basins shows lower values by 0.03 (±0.02) in the BoB as compared to the AS. The possible reasons for the low pHT within the BoB oxygen minimum zone (OMZ) could be due to intrusion of western Pacific water in the BoB, freshwater influx from rivers, variations in OMZ of the two basins, higher temperature (~2°C) within the OMZ of the AS, and denitrification in the AS. The pHT in both the basins (500 to 1000 m) is lower than in the North Atlantic and higher than in the North Pacific waters; however, the pHT in the 200 to 500 m is lower in the BoB than in all these basins. This study highlights the under-saturation of calcium carbonate at very shallow depths (~ 100 m) in the BoB, indicating that the plankton in the BoB are facing a major risk from OA compared to the AS and need further investigation.


Subject(s)
Ecosystem , Seawater , Bays , Hydrogen-Ion Concentration , Water , Oxygen
12.
Environ Sci Pollut Res Int ; 31(8): 12561-12576, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38180655

ABSTRACT

During the pre- and post-monsoon season, the eastern and western coasts are highly vulnerable to cyclones. The tropical cyclone "Tauktae" formed in the Arabian Sea on 14 May 2021 and moved along the west coast of India, and landfall occurred on 17 May 2021. During the cyclone, the maximum wind speed was 220 km/h with a pressure of 935 mb affecting meteorological, atmospheric parameters, and weather conditions of the northern and central parts of India causing devastating damage. Analysis of satellite, Argo, and ground data show pronounced changes in the oceanic, atmospheric, and meteorological parameters associated during the formation and landfall of the cyclone. During cyclone generation (before landfall), the air temperature (AT) was maximum (30.51 °C), and winds (220 km/h) were strong with negative omega values (0.3). The relative humidity (RH) and rainfall (RF) were observed to be higher at the location of the cyclone formation in the ocean and over the landfall location, with an average value of 81.28% and 21.45 mm/day, respectively. The concentration of total column ozone (TCO), CO volume mixing ratio (COVMR), H2O mass mixing ratio (H2O MMR), aerosol parameters (AOD, AE) and air quality parameter (PM) was increased over land and along the cyclone track, leading to a deterioration in the air quality. The strong wind mixes the air mass from the surroundings to the local anthropogenic emissions, and causing strong mixing of the aerosols. The detailed results show a pronounced change in the ocean, land, meteorological, and atmospheric parameters showing a strong land-ocean-atmosphere coupling associated with the cyclone.


Subject(s)
Air Pollution , Cyclonic Storms , Oceans and Seas , Weather , Air Pollution/analysis , Wind , Aerosols/analysis , Environmental Monitoring/methods
13.
Sci Total Environ ; 912: 168705, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38000750

ABSTRACT

Microplastics (MPs) in the atmosphere can undergo long-range transport from emission regions to pristine terrestrial and oceanic ecosystems. Due to their inherent toxic and hazardous characteristics, MPs pose serious risks to both human well-being and the equilibrium of ecosystem. The present study outlines the comprehensive characterization, spanning physical and chemical attributes of MPs associated with atmospheric aerosols. Total suspended particulates (TSPs) were collected on a quartz fibre filter by operating a high-volume sampler for 24 h during distinct years (March, 2016 and November, 2020) at a coastal location in the northeast Arabian Sea. Subsequent to the sampling, a series of techniques were applied including density separation. The assessment and scrutiny of the MPs was carried out using stereo-zoom microscopy with supplementary validation using advanced fluorescence microscopy for enhanced precision in identification. Our comparative assessment suggests peroxide treatment followed by density separation could be a robust procedure for the definitive identification and characterization of MPs in the atmosphere. Average total abundance of MPs was found to be 1.30 ± 0.14 n/m3 in 2016 and 1.46 ± 0.12 n/m3 in 2020 with fibres, fragments and films having similar relative contributions (41 %, 31 %, 28 % in 2016 and 40 %, 35 %, 25 % in 2020). Fibres were found to be dominant morphotype followed by fragments and films over the coastal region of the Arabian Sea. In order to unravel the detailed chemical nature of these MPs, spectral analysis using µ-FTIR was carried out. The outcome of the analysis showed prevailing polymers as polyvinyl chloride and polymethyl methacrylate (50545 %) as dominant polymers followed by polyester (15 %), styrene butyl methacrylate (11 %), and polyacetal (9 %). MPs present in the vicinity of the Arabian Sea have potential to supply nutrients and toxicants, consequently can contribute to the modulation of the surface water biogeochemical processes.

14.
Eur J Protistol ; 92: 126035, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38100884

ABSTRACT

Benthic foraminifera are unicellular eukaryotic protists that construct an organic, agglutinated, or calcareous test wall. Although single-chambered (monothalamous) foraminifera are ubiquitous in marine habitats worldwide, they are poorly known compared to their multi-chambered relatives, notably from the tropical marine environments of India. In this study, we describe two new species of marine monothalamid genus Psammophaga Arnold, 1982, from the Rajapuri Creek, coastal Maharashtra, India (Arabian Sea). Psammophaga holzmannae sp. nov. is ovoid to spherical shaped, 103-246 µm in length, single aperture, translucent to orange color cytoplasm, outer surface is composed of agglutinated fine clay particles, and ingested mineral grains are concentrated near its aperture. Psammophaga sinhai sp. nov. is oblong, elliptical, or droplet-shaped, 279-448 µm in length, single aperture, yellow olive color cytoplasm, the exterior surface formed of agglutinated fine clay particles, and the ingested mineral grains are dispersed throughout the body. Phylogenetic analyses based on partial small subunit rRNA gene sequences position new species within the Clade E of monothalamids and are genetically distinct from other Psammophaga. Elemental (SEM-EDS) analysis of engulfed mineral grains revealed preferential selection and uptake of heavy opaque titaniferous minerals from the ambient environment in the cytoplasm.


Subject(s)
Foraminifera , Rhizaria , Phylogeny , Clay , India , Minerals
15.
Mar Pollut Bull ; 198: 115913, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38104382

ABSTRACT

An algal bloom of Noctiluca scintillans (NS) was monitored for 20 days in the Arabian Sea during February 2017. The stations under the influence of NS had low temperature and high salinity compared to outside indicating influence of convective mixing. The microscopic cell count of NS reached a value of 52,600 cells l-1. The surface variability in oxygen and pCO2 measured alongside showed a strong disconnect. Modest supersaturation of surface waters (ΔpCO2 = 3-75 µatm) was observed around the NS bloom compared to outside. However, as these stations were under the influence of convective mixing, the observed change in pCO2 due to subsurface ventilation cannot be ruled out. From the viewpoint of climate change and its influence on oceanic processes, constant monitoring of this bloom becomes essential due to its survival strategy in nutrient-depleted conditions and light of the present observations.


Subject(s)
Dinoflagellida , Water , Environmental Monitoring , Seasons , Eutrophication , Harmful Algal Bloom , Phytoplankton
16.
Environ Pollut ; 343: 123244, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38154779

ABSTRACT

In order to investigate the 239+240Pu potential influence in the ocean, and develop a new method for rapidly monitoring radioactive pollution, the 239+240Pu spatial distribution in the South China Sea (SCS) and the Indian Ocean (IND) sediments is analyzed by SF-ICP-MS (ELEMENT 2). The inventory-weighted mean activities of 239+240Pu were 0.413 ± 0.333 mBq/g, 0.128 ± 0.044 mBq/g, and 0.483 ± 0.606 mBq/g in the sediments of the SCS, eastern IND, and Arabian Sea, respectively. The 239+240Pu activity spatial distribution in the SCS sediments was influenced by the current, the vertical distribution of Pu in seawater, and the transport of particulate matter. The 239+240Pu activity spatial distribution in the IND sediments could be impacted by Antarctic Intermediate Water. The average of 240Pu/239Pu atomic ratios were 0.258 ± 0.034, 0.219 ± 0.031, and 0.212 ± 0.028 in the sediments of the SCS, eastern IND, and Arabian Sea, respectively. The 240Pu/239Pu atomic ratios in the SCS and IND indicate that Pu from the Pacific Proving Ground (PPG) is transported to the IND via the SCS internal current and transverse ocean currents within Indonesia. In addition, a seawater advection-dispersion equation (S-ADE) model is established based on the actual physical processes of radionuclides in the seawater column and well fitting results were obtained (R2 = 0.49 to 0.99). The 239+240Pu data and the geographic information from the sample site were used to correct the Pu distribution in the seawater. The calculated 239+240Pu mean concentrations in the surface seawater were 2.465 mBq/m3 and 2.205 mBq/m3 for the SCS and the eastern IND seawater, respectively, and the result is consistent with the previous measurements. Then, the 239+240Pu stored in the study area of SCS and eastern IND was estimated to be approximately 1.0-1.4% of the global ocean based on the model. This study provides a useful model for guiding and designing future monitoring of pollution by anthropogenic Pu and other isotopes.


Subject(s)
Plutonium , Radiation Monitoring , Water Pollutants, Radioactive , Geologic Sediments , Indian Ocean , Water Pollutants, Radioactive/analysis , Plutonium/analysis , Seawater , China
17.
Environ Sci Pollut Res Int ; 30(60): 125559-125569, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37999850

ABSTRACT

This study analyses particulate organic carbon (POC) and particulate nitrogen (PN) export from Indian monsoonal rivers to the north Indian Ocean. Indian monsoonal rivers export approximately 1.2 Tg yr-1 (1Tg = 1012 g) of POC and 0.14 Tg yr-1 of PN, with about two-thirds entering the Bay of Bengal (0.8 and 0.1 Tg yr-1, respectively) and the remaining reaches to the Arabian Sea (0.4 and 0.04 Tg yr-1, respectively). Remarkably, just four rivers from northwest India's black soil-dominated regions contribute about half of the total POC and PN exports (0.64 and 0.06 Tg yr-1, respectively). This is due to substantial erosion in these catchments, resulting in suspended matter concentrations averaging 596 ± 252 mg L-1, significantly higher than catchments dominated by red sandy, red loamy and alluvial soils (54 ± 56 mg l-1). In contrast, rivers originating from catchments with heavy precipitation, a tropical wet climate, red loamy soils (with peaty and marshy characteristics), rich tropical wet evergreen and moist deciduous forests, and higher soil organic carbon content yield more POC and PN (1704 ± 383 kgC km-2 yr-1 and 261 ± 56 kgN km-2 yr-1, respectively) than the other rivers of India (951 ± 508 kgC km-2 yr-1 and 120 ± 57 kgN km-2 yr-1, respectively). These findings stress that the export flux and yield of POC and PN from the Indian monsoonal rivers are primarily influenced by the interplay of hydrological, lithological, environmental, and climatic conditions within the catchment, rather than river size. Moreover, this study highlights the significant impact of incorporating POC data from medium-sized rivers worldwide, as it reveals that yield is independent of river size. This calls for a re-evaluation of global POC export fluxes, taking into account hydrological, lithological, environmental, and climatic factors.


Subject(s)
Carbon , Nitrogen , Carbon/analysis , Nitrogen/analysis , Indian Ocean , Rivers , Soil , Dust/analysis , Environmental Monitoring
18.
Environ Monit Assess ; 195(10): 1238, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37736823

ABSTRACT

The dynamics of physico-chemical, nutrient, and chlorophyll-a variables were studied in the bloom and non-bloom locations along the off-Gujarat coastal waters to understand the variability in biogeochemistry using multivariate analytical tests. The dissolved oxygen was significantly lower in the bloom stations (3.89 ± 0.44 mgL-1) than in the non-bloom stations (5.50 ± 0.70 mg L-1), due to the biological degradation of organic matter in addition to anaerobic microbial respiration. Nutrients (PO4 and NO3) and Chl-a concentrations were recorded higher in the bloom locations at 0.83 ± 0.21 µmol L-1, 4.47 ± 0.69 µmol L-1, 4.14 ± 1.49 mg m-3, respectively. PO4 and NO3 have shown a significantly higher positive correlation of r = 0.73 and r = 0.69 with Chl-a for bloom data than the non-bloom data. The percentage variance contributed by PC1 and PC2 for both bloom and non-bloom locations were estimated at 52.33%. The variable PO4 explains the highest 24.19% variability in PC1, followed by Chl-a (19.89%). The PO4 triggers the bloom formation and also correlates to the higher concentrations of Chl-a in the bloom locations. The bloom concentration ranges from 9553 to 12,235 trichomes L-1. The bloom intensity has shown a significant positive correlation with Chl-a (r = 0.77), NO3 (r = 0.56), and PO4 (r = 0.30), but a negative correlation was noticed with DO (r = - 0.63) and pH (r = - 0.49). The study also initiates a way forward research investigation on ocean-color technologies to identify and monitor blooms and climate change-driven factors for bloom formation. The occurrence of bloom and its influence on fishery resources and other marine biotas will open many research windows in marine fisheries, oceanography, remote sensing, marine biology, and trophodynamics.


Subject(s)
Environmental Monitoring , Eutrophication , Incidence , Biota , Chlorophyll A
19.
Sci Total Environ ; 892: 164680, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37302599

ABSTRACT

Aeolian transport of continental dust from the Middle East and South Asia to the Arabian Sea (AS) is an important route for delivering key trace metals and nutrients. Despite being surrounded by several deserts, it is not clear which dust source is most likely contributing to mineral aerosols over this marine basin in winter. Substantial information on dust source emissions and transport pathways over the AS is, thus, needed for better constraining the biogeochemical effects in the sunlit surface waters. Here, we investigated the Sr and Nd isotopic composition (87Sr/86Sr and εNd(0)), respectively) of dust samples collected over the AS during a GEOTRACES-India expedition (GI-10: 13 January-10 February 2020). Both tracers, 87Sr/86Sr (0.70957-0.72495) and εNd(0) (-24.0 to -9.3), showed pronounced spatial variability. These proxies were further tagged with their source profiles of surrounding land masses based on the origin of air mass back trajectories (AMBTs). We also encountered two dust storms (DS), one on 27 January 2020 (87Sr/86Sr: 0.70957; εNd(0): -9.3) and the second one on 10 February 2020 (87Sr/86Sr: 0.71474, εNd(0):-12.5), which showed distinct isotopic signatures. AMBTs and satellite imagery together revealed that DS1 is from the Arabian Peninsula and DS2 is from Iran and/or the Indo-Gangetic Plain. Notably, the Sr and Nd isotope composition of DS1 is further consistent with other dust samples collected over the pelagic waters, suggesting the impact of dust outbreaks from the Arabian Peninsula during winter season. Such documentation based on the 87Sr/86Sr and εNd(0) over the Arabian Sea, hitherto, is lacking in literature and, thus, highlights the need for more measurements.


Subject(s)
Air Pollutants , Trace Elements , Dust/analysis , Air Pollutants/analysis , Seasons , Isotopes , Environmental Monitoring , Aerosols/analysis
20.
J Fish Biol ; 103(1): 113-117, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37170471

ABSTRACT

The deep-sea spiny eels of the genus Notacanthus Bloch 1788 are currently represented by six valid species, of which only one, Notacanthus indicus, has been described so far from the Arabian Sea, part of the Western Indian Ocean. This paper reports the discovery of a new species, described herein as Notacanthus laccadiviensis, from the outer reef drop-off, off the Kavaratti Island, Lakshadweep Archipelago, Arabian Sea. The new species differs from its congeners in the shape of the head; morphology of dorsal, pectoral and anal fins; number of gill rakers; number of vertebrae; and body colour, and specifically from N. indicus (the only known congener from the Indian Ocean) in the unusual morphology of the dorsal fin, and number of rays in the dorsal and pectoral fins.


Subject(s)
Fishes , Perciformes , Animals , Indian Ocean , Gills , Eels , Perciformes/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL