Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 553
Filter
1.
Article in English | MEDLINE | ID: mdl-38972623

ABSTRACT

Polystyrene polymers cause severe toxicity to aquatic animals. However, the process and mechanisms of innate immunity of invertebrates living at the bottom of the food chain to these pollutants remain unclear. In this study, the blood system responses of zooplankton Artemia were assessed through in vivo and in vitro exposure to amino-modified polystyrene nanoplastics (PS-NH2 NPs). The results indicated that the LC50 values of PS-NH2 NPs were 1.09 µg·mL-1 over 48 h and 0.42 µg·mL-1 over 7 d. Based on the five hemocyte subpopulations identified in Artemia, in vitro exposure assays revealed that phagocytosis was performed by plasmocytes and granulocytes with phagocytic rate of 22.64 %. TEM analysis further showed that PS-NH2 NPs caused cytoplasm vacuolization, swollen mitochondria, and lipid processing disorder. Gene expression pattern results demonstrated that Spatzle, Tollip, Hsp70, Hsp90, Casp8, API5and Pxn were significantly upregulated upon acute and chronic exposure (p < 0.05), while chronic exposure could induce significantly upregulation of ProPO (p < 0.05). Moreover, PS-NH2 NPs exposure remarkably varied the hemolymph microbiota and hemogram, particularly by increasing the proportion of adipohemocytes and phagocytes (p < 0.05). Our findings suggest that PS-NH2 NPs induce different responses in Artemia hemocyte, as primarily reflected by phagocytic processes, expression of immune and apoptosis relating genes, cell fates, hemogram and hemolymph microbiota variations. These findings support the possibility of using Artemia hemocytes as bioindicator to estimate nanoplastics pollution, thus contributing to hematological toxicity research in response to nanoplastics.


Subject(s)
Artemia , Hemocytes , Nanoparticles , Phagocytosis , Polystyrenes , Animals , Hemocytes/drug effects , Hemocytes/immunology , Polystyrenes/toxicity , Artemia/drug effects , Nanoparticles/toxicity , Phagocytosis/drug effects , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Immunity, Innate/drug effects
2.
Nat Prod Res ; : 1-5, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078872

ABSTRACT

Callistemon viminalis has been widely known due to its therapeutic properties. Tuberculosis is a deadly infectious disease caused predominantly by Mycobacterium tuberculosis. Other respiratory diseases may also be caused by nontuberculous mycobacteria. Malassezia furfur causes dermal inflammation and tissue damage. This study aimed to evaluate in vitro inhibitory effects of essential oils (EOs) from C. viminalis leaves (EO-CL) and flowers (EO-CF) against M. tuberculosis, Mycobacterium kansasii, Mycobacterium avium and M. furfur strains. Their cytotoxic activity was evaluated by the brine shrimp assay. Resulting MIC values of all EOs under study were promising since they ranged from 50 to 100 µg/mL. Both EO-CL and EO-CF showed nontoxicity against Artemia salina by the brine shrimp assay (LC50 > 1000 µg/mL). GC-FID and GC-MS analyses showed that 1,8-cineole was the major component of both EOs. These results revealed the promising potential of EO-CL and EO-CF to develop new antibacterial and antifungal drugs.

3.
J Hazard Mater ; 476: 134959, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38925053

ABSTRACT

Microplastics (MPs) are pervasive environmental contaminants that have infiltrated even the most remote ecosystems. Despite their widespread distribution, the transfer patterns and impacts of MPs in remote lakes remain poorly understood. This study aimed to address the knowledge gap regarding the pathways and consequences of MP pollution in these isolated environments. Focusing on Kyêbxang Co, a remote salt lake in Tibet, this study investigated the transfer patterns, sources and ecological impacts of MPs, providing insights into their mobility and fate in pristine ecosystems. Water, sediment and biota (brine shrimp) samples from Kyêbxang Co, collected during the summer of 2020, were analyzed using µ-Raman spectroscopy to determine MP abundances, polymer types and potential sources. Findings indicated significant MP contamination in all examined media, with concentrations highlighting the role of runoff in transporting MPs to remote locations. The majority of detected MPs were small fragments (<0.5 mm), constituting over 93 %, with polypropylene being the predominant polymer type. The presence of a halocline may slow the descent of MPs, potentially increasing the exposure and ingestion risk to brine shrimp. Despite the currently low ecological risk estimated for MPs, this study underscores the need for long-term monitoring and development of a comprehensive ecological risk assessment model for MPs.


Subject(s)
Artemia , Environmental Monitoring , Geologic Sediments , Lakes , Microplastics , Water Pollutants, Chemical , Animals , Microplastics/analysis , Microplastics/toxicity , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Geologic Sediments/analysis , Risk Assessment , Artemia/drug effects , Tibet , Environmental Monitoring/methods
4.
Ecotoxicol Environ Saf ; 281: 116586, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880006

ABSTRACT

Sunscreens contain several substances that cause damage to species where they are disposed. New formulations have been created to prevent such marine environmental damages. One promising formulation is the microencapsulated sunscreen. The objective of this study was to evaluate the possible safety to marine environment of one microencapsulated sunscreen formulation. The animal model Artemia salina (cists and nauplii) was tested with two sunscreen formulations (microencapsulated and non-microencapsulated) and toxicological, behavioral, morphological parameters as well as biochemical assays (lipoperoxidation and carbonylation tests) were analyzed. Results showed that microencapsulated sunscreen impeded some toxic effects caused by the release of the substances within the microcapsule in the highest concentration, reestablishing the mortality and hatching rates to control levels, while removing the sunscreen microcapsule by adding 1 % DMSO reduced the cyst hatching rate, increasing the nauplii mortality rate and decreased locomotor activity in higher concentrations. Finally, nauplii with 24 hours of life and exposed to sunscreen without the microcapsule showed an increase in mitochondrial activity (assessed at 48 hours after exposure) and presented malformations when exposed to the highest concentration non-microencapsulated concentration (assessed by SEM at 72 hours after exposure), when compared to the control group. These results together allow us to conclude that the microencapsulation process of a sunscreen helps protecting A. salina from the harmful effects of higher concentrations of said sunscreens. However, long-term studies must be carried out as it is not known how long a microencapsulated sunscreen can remain in the environment without causing harmful effects to the marine ecosystem and becoming an ecologically relevant pollutant.


Subject(s)
Artemia , Drug Compounding , Sunscreening Agents , Water Pollutants, Chemical , Sunscreening Agents/toxicity , Sunscreening Agents/chemistry , Animals , Artemia/drug effects , Water Pollutants, Chemical/toxicity , Behavior, Animal/drug effects , Lipid Peroxidation/drug effects
5.
Heliyon ; 10(9): e29796, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707297

ABSTRACT

We document the morphology, morphometric variations among the morphotypes of the brine shrimp, Artemia franciscana. From the samples collected at four different locations in South India, Tamil Nadu viz. Kelambakkam, Vedaranyam, Tuticorin and Nagarcoil we identified six morphotypes: M1, M3, M4 in males and F1, F2, F3 in females. The Scanning electron micrographs of male morphotypes show distinct variation in the basal width, shape and number of cuticular cones on the second antennae. Similarly, the female morphotypes show various shape and sizes of the ovisac with or without spines. However, the cyst surface topography is smooth without any specific variation/ornamentation in all three female morphotypes. Multivariate analysis of eighteen morphological traits measured in males and fifteen in females to elucidate the intraspecific variations among morphotypes indicate significant dissimilarity between males and females. Furthermore, relative length measurements showed distinct morphometric variation of traits between the morphotypes encountered at different sampling sites.

6.
Plants (Basel) ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38794444

ABSTRACT

Argemone mexicana L. has been used in traditional Mexican medicine. Among its bioactive constituents, berberine (BER) has garnered attention for its cytotoxic properties against different tumor cell lines. This study investigates the in vitro toxicity against HEP-G2 (human hepatocellular carcinoma) and murine lymphoma (L5178Y-R) cells using the MTT assay of the methanol extract (AmexM), sub-partitions of A. mexicana, and BER. Selectivity indices (SIs) were determined by comparing their cytotoxic effects on VERO (monkey kidney epithelial) and PBMC (human peripheral blood mononuclear) non-tumoral cells. Additionally, the anti-hemolytic effect of these treatments was assessed using the AAPH method. The treatment with the most promising activity against tumor cells and anti-hemolytic efficacy underwent further evaluation for toxicity in Artemia salina and antioxidant activities using DPPH, ABTS, and FRAP assays. BER demonstrated an IC50 = 56.86 µg/mL in HEP-G2 cells and IC50 < 5.0 µg/mL in L5178Y-R cells, with SI values of 15.97 and >5.40 in VERO and PBMC cells, respectively. No significant hemolytic effects were observed, although AmexM and BER exhibited the highest anti-hemolytic activity. BER also demonstrated superior antioxidant efficacy, with lower toxicity in A. salina nauplii compared to the control. Additionally, BER significantly attenuated nitric oxide production. This study highlights the antiproliferative effects of A. mexicana, particularly BER, against HEP-G2 and L5178Y-R tumor cell lines, along with its selectivity towards normal cells. Furthermore, its anti-hemolytic and antioxidant potentials were demonstrated, suggesting that BER is a promising candidate for potent chemotherapeutic agents.

7.
Toxins (Basel) ; 16(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38787061

ABSTRACT

Peptide toxins from marine invertebrates have found use as drugs and in biotechnological applications. Many marine habitats, however, remain underexplored for natural products, and the Southern Ocean is among them. Here, we report toxins from one of the top predators in Antarctic waters: the nemertean worm Parborlasia corrugatus (McIntosh, 1876). Transcriptome mining revealed a total of ten putative toxins with a cysteine pattern similar to that of alpha nemertides, four nemertide-beta-type sequences, and two novel full-length parborlysins. Nemertean worms express toxins in the epidermal mucus. Here, the expression was determined by liquid chromatography combined with mass spectrometry. The findings include a new type of nemertide, 8750 Da, containing eight cysteines. In addition, we report the presence of six cysteine-containing peptides. The toxicity of tissue extracts and mucus fractions was tested in an Artemia assay. Notably, significant activity was observed both in tissue and the high-molecular-weight mucus fraction, as well as in a parborlysin fraction. Membrane permeabilization experiments display the membranolytic activity of some peptides, most prominently the parborlysin fraction, with an estimated EC50 of 70 nM.


Subject(s)
Peptides , Animals , Antarctic Regions , Peptides/toxicity , Peptides/chemistry , Marine Toxins/toxicity , Marine Toxins/chemistry , Marine Toxins/analysis , Mucus/metabolism , Mucus/chemistry , Artemia
8.
Sci Total Environ ; 931: 172689, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38692315

ABSTRACT

Cyanobacterial Harmful Algal Blooms (CyanoHABs) pose a significant threat to communities globally, impacting ecosystems and public health. This study provides an in-depth review of the current state of cyanotoxins and the distribution of CyanoHABs species in Brazil, while also detailing the methods used for their detection. Four hundred and twenty-one incidents were analyzed from 1993 to 2021, compiling cyanotoxin records and toxic CyanoHABs occurrences. The investigation begins with the first detection of microcystins in 1994 and highlights pivotal moments, like the 1996 "Caruaru Syndrome" outbreak. This event encouraged research and updated cyanotoxin-monitoring guidelines. The Brazilian drought period of 2015-2016 exacerbated cyanobacterial growth and saxitoxin levels, coinciding with Zika-related microcephaly. This study delves into methods used for cyanotoxin analysis, including ELISA, bioassays, HPLC, and LC-MS. Additionally, we investigated the toxicity of 37 cyanobacterial strains isolated from various Brazilian environments. Extracts were tested against Artemia salina and analyzed by LC-MS. Results revealed toxicity in extracts from 49 % of cyanobacterial strains. LC-MS results were analyzed using GNPS MS/MS molecular networking for comparing experimental spectra with those of cyanotoxin standards against in-house databases and the existing literature. Our research underscores the variability in cyanotoxin production among species and over time, extending beyond microcystins. LC-MS results, interpreted through the GNPS platform, revealed six cyanotoxin groups in Brazilian strains. Yet, compounds present in 75 % of the toxic extracts remained unidentified. Further research is crucial for fully comprehending the impact of potentially harmful organisms on water quality and public health management strategies. The study highlights the urgent need for continuously monitoring cyanobacteria and the cyanotoxin inclusion of management in public health policies.


Subject(s)
Cyanobacteria , Environmental Monitoring , Harmful Algal Bloom , Microcystins , Brazil/epidemiology , Environmental Monitoring/methods , Microcystins/analysis , Bacterial Toxins/analysis , Marine Toxins/analysis
9.
Mar Pollut Bull ; 203: 116386, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703625

ABSTRACT

Ecotoxicological tools, namely biomarkers and bioassays, may provide insights on the ecological quality status of mangroves under restoration. We investigated how 1) physicochemical parameters and water bioassays using Artemia franciscana; and 2) quantification of sublethal (osmoregulatory capacity, biochemical, and oxidative stress) and individual biomarkers (density, length-weight relationship [LWR], parasitic prevalence) in the sentinel fiddler crab Minuca rapax, can improve restoration indicators in mangroves from the Yucatán Peninsula, Southern Gulf of Mexico. We showed that water quality was improved with restoration, but still presented toxicity. Regarding sublethal biomarkers, M rapax from restored areas lower osmotic regulatory capacity, higher oxidative stress, and showed lipid peroxidation. As to the individual biomarkers, the density, LWR, and the prevalence of parasites in M. rapax was higher in restored areas. The use of bioassays/biomarkers were useful as early warning indicators to better assess the health of mangroves under restoration.


Subject(s)
Ecotoxicology , Environmental Monitoring , Wetlands , Animals , Mexico , Environmental Monitoring/methods , Biomarkers , Brachyura , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Water Quality , Artemia , Biological Assay , Environmental Restoration and Remediation , Oxidative Stress , Gulf of Mexico
10.
Toxicon X ; 22: 100195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38606385

ABSTRACT

Mice are routinely used in snake venom research but are costly and subject to pain and suffering. The crustacean Artemia salina could be an alternative to mice, but data to support its adoption in snake venom research is limited. The aim of the present study was to evaluate the suitability of A. salina as a surrogate of mice in assessing the toxicity of venoms and the preclinical efficacy of antivenoms. The toxicity of venoms from 22 snakes of medical importance in sub-Saharan Africa was evaluated in mice (intraperitoneally; i.p. and intravenously; i.v.) and in A. salina. Subsequently, the capacity of a commercial antivenom to neutralize the toxicity of these venoms in mice and A. salina was investigated. There was a positive correlation between the i.v. median lethal doses (LD50s) and the i.p. LD50s in mice (r = 0.804; p < 0.0001), a moderate correlation between the i.v. LD50s in mice and the median lethal concentrations (LC50s) in A. salina (r = 0.606; p = 0.003), and a moderate correlation between the i.p. LD50s in mice and the LC50s in A. salina (r = 0.426; p = 0.048). Moreover, there was a strong correlation between the i.p. median effective doses (ED50s) and the i.v. ED50s in mice (r = 0.941, p < 0.0001), between the i.p. ED50s in mice and the ED50s in A. salina (r = 0.818, p < 0.0001), and between the i.v. ED50s in mice and the ED50s in A. salina (r = 0.972, p < 0.0001). These findings present A. salina as a promising candidate for reducing reliance on mice in snake venom research. Future investigations should build upon these findings, addressing potential limitations and expanding the scope of A. salina in venom research and antivenom development.

11.
Clin Exp Optom ; : 1-7, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653499

ABSTRACT

CLINICAL RELEVANCE: This clinical trial was conducted as part of the marketing procedures for a medical device comprising artificial tears containing Artemia salina extract with dinucleotides. These molecules previously demonstrated secretagogue properties by enhancing the production of aqueous, mucinous, and lipidic components of the tears. BACKGROUND: After confirming the efficacy of artificial tears containing Artemia salina extract in an animal model, this study proceeded to evaluate their efficacy and safety on dry eye participants. METHODS: A randomised controlled clinical trial was performed on 36 dry eye participants (41.6 ± 20.6 years). Half of the participants were treated with saline solution as a placebo for four weeks, while the other half were treated with artificial tears containing Artemia salina, randomly assigned. After a wash-out period of two weeks, the treatments were crossed for another four weeks. Participants were assessed at baseline and after one week, two weeks, and four weeks. Efficacy variables were: eye dryness frequency (primary), eye comfort, visual satisfaction, tear secretion, tear break-up time, corneal staining, conjunctival staining, and conjunctival hyperaemia. Safety variables were: high- and low-contrast visual acuity, intraocular pressure, and eye fundus images analysis. RESULTS: Compared with the baseline, the saline solution showed no significant changes in any of the studied variables after four weeks of treatment (p ≥ 0.05). However, the topical instillation of the artificial tears with Artemia salina for four weeks significantly improved eye dryness frequency (p = 0.014) and corneal staining (p = 0.010). No systemic or ocular adverse events were reported during the clinical trial. CONCLUSION: The topical instillation of artificial tears containing Artemia salina in mild to moderate dry eye participants for four weeks slightly improved their symptoms related to eye dryness frequency and reduced corneal damage, with no undesirable side effects observed.

12.
Front Pharmacol ; 15: 1369768, 2024.
Article in English | MEDLINE | ID: mdl-38681195

ABSTRACT

Background: The present study investigated the efficacy of Conyza bonariensis, Commiphora africana, Senna obtusifolia, Warburgia ugandensis, Vernonia glabra, and Zanthoxylum usambarense against Bitis arietans venom (BAV), Naja ashei venom (NAV), and Naja subfulva venom (NSV). Methods: 40 extracts and fractions were prepared using n-hexane, dichloromethane, ethyl acetate, and methanol. In vitro efficacy against snake venom phospholipase A2 (svPLA2) was determined in 96-well microtiter and agarose-egg yolk coagulation assays. in vivo efficacy against venom-induced cytotoxicity was determined using Artemia salina. Two commercial antivenoms were used for comparison. Results: The 96-well microtiter assay revealed poor svPLA2 inhibition of BAV by antivenom (range: 20.76% ± 13.29% to 51.29% ± 3.26%) but strong inhibition (>90%) by dichloromethane and hexane fractions of C. africana, hexane and ethyl acetate extracts and fraction of W. ugandensis, dichloromethane fraction of V. glabra, and the methanol extract of S. obtusifolia. The methanol extract and fraction of C. africana, and the hexane extract of Z. usambarense strongly inhibited (>90%) svPLA2 activity in NAV. The hexane and ethyl acetate fractions of V. glabra and the dichloromethane, ethyl acetate, and methanol extracts of C. africana strongly inhibited (>90%) svPLA2 in NSV. The agarose egg yolk coagulation assay showed significant inhibition of BAV by the dichloromethane fraction of C. africana (EC50 = 3.51 ± 2.58 µg/mL), significant inhibition of NAV by the methanol fraction of C. africana (EC50 = 7.35 ± 1.800 µg/mL), and significant inhibition of NSV by the hexane extract of V. glabra (EC50 = 7.94 ± 1.50 µg/mL). All antivenoms were non-cytotoxic in A. salina but the methanol extract of C. africana and the hexane extracts of V. glabra and Z. usambarense were cytotoxic. The dichloromethane fraction of C. africana significantly neutralized BAV-induced cytotoxicity, the methanol fraction and extract of C. africana neutralized NAV-induced cytotoxicity, while the ethyl acetate extract of V. glabra significantly neutralized NSV-induced cytotoxicity. Glycosides, flavonoids, phenolics, and tannins were identified in the non-cytotoxic extracts/fractions. Conclusion: These findings validate the local use of C. africana and V. glabra in snakebite but not C. bonariensis, S. obtusifolia, W. ugandensis, and Z. usambarense. Further work is needed to isolate pure compounds from the effective plants and identify their mechanisms of action.

13.
Curr Issues Mol Biol ; 46(4): 3676-3693, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38666959

ABSTRACT

Artemia is a widely distributed small aquatic crustacean, renowned for its ability to enter a state of embryonic diapause. The embryonic diapause termination (EDT) is closely linked to environmental cues, but the precise underlying mechanisms remain elusive. In this study, ATAC-seq and RNA-seq sequencing techniques were employed to explore the gene expression profiles in Artemia cysts 30 min after EDT. These profiles were compared with those during diapause and 5 h after EDT. The regulatory mechanisms governing the EDT process were analyzed through Gene Ontology (GO) enrichment analysis of differentially expressed genes. Furthermore, the active G-protein-coupled receptors (GPCRs) were identified through structural analysis. The results unveiled that the signaling transduction during EDT primarily hinges on GPCRs and the cell surface receptor signaling pathway, but distinct genes are involved across different stages. Hormone-mediated signaling pathways and the tachykinin receptor signaling pathway exhibited heightened activity in the '0-30 min' group, whereas the Wnt signaling pathway manifested its function solely in the '30 min-5 h' group. These results imply a complete divergence in the mechanisms of signal regulation during these two stages. Moreover, through structural analysis, five GPCRs operating at different stages of EDT were identified. These findings provide valuable insights into the signal regulation mechanisms governing Artemia diapause.

14.
Microorganisms ; 12(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38674619

ABSTRACT

Cefotaxime (CTX) is an easily detectable antibiotic pollutant in the water environment, but little is known about its toxic effects on aquatic invertebrates, especially on the intestine. Here, we determined the oxidative stress conditions of A. sinica under CTX exposure with five concentrations (0, 0.001, 0.01, 0.1 and 1 mg/L) for 14 days. After that, we focused on changes in intestinal tissue morphology and gut microbiota in A. sinica caused by CTX exposure at 0.01 mg/L. We found malondialdehyde (MDA) was elevated in CTX treatment groups, suggesting the obvious antibiotic-induced oxidative stress. We also found CTX exposure at 0.01 mg/L decreased the villus height and muscularis thickness in gut tissue. The 16S rRNA gene analysis indicated that CTX exposure reshaped the gut microbiota diversity and community composition. Proteobacteria, Actinobacteriota and Bacteroidota were the most widely represented phyla in A. sinica gut. The exposure to CTX led to the absence of Verrucomicrobia in dominant phyla and an increase in Bacteroidota abundance. At the genus level, eleven genera with an abundance greater than 0.1% exhibited statistically significant differences among groups. Furthermore, changes in gut microbiota composition were accompanied by modifications in gut microbiota functions, with an up-regulation in amino acid and drug metabolism functions and a down-regulation in xenobiotic biodegradation and lipid metabolism-related functions under CTX exposure. Overall, our study enhances our understanding of the intestinal damage and microbiota disorder caused by the cefotaxime pollutant in aquatic invertebrates, which would provide guidance for healthy aquaculture.

15.
Altern Lab Anim ; 52(3): 142-148, 2024 May.
Article in English | MEDLINE | ID: mdl-38578132

ABSTRACT

The use of the brine shrimp Artemia salina (Leach) in acute toxicity assays has great potential due to its simplicity, low cost and reproducibility. In the current study, some of the variables that can influence the reliability of the assay in terms of test organism survival, were evaluated as part of its implementation in our laboratory. The quality and type of water used, the buffer components and other parameters (salinity, pH and dissolved oxygen level), were all evaluated for optimisation purposes. DMSO (dimethyl sulphoxide) was used as the test substance in the toxicity assay, to evaluate the concentration limits as a solvent in sample preparation. Regarding the buffer salinity, pH and dissolved oxygen level, we found that a 25% to 30% deviation from the standard values did not affect the survival of the nauplii (the first-instar larval stage) under assay conditions. In summary, we corroborate the potential use of this model for the prediction of the toxic potential of substances, to inform future testing strategies.


Subject(s)
Artemia , Toxicity Tests, Acute , Animals , Artemia/drug effects , Toxicity Tests, Acute/methods , Hydrogen-Ion Concentration , Salinity , Dimethyl Sulfoxide/toxicity
16.
Mar Biotechnol (NY) ; 26(3): 562-574, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38683457

ABSTRACT

The potential functional role(s) of heat shock protein 70 (Hsp70) in the brine shrimp, Artemia franciscana, a crucial crustacean species for aquaculture and stress response studies, was investigated in this study. Though we have previously reported that Hsp70 knockdown may have little or no impact on Artemia development, the gestational survival and number of offspring released by adult females were impaired by obscuring Hsp70 synthesis. Transcriptomic analysis revealed that several cuticle and chitin synthetic genes were downregulated, and carbohydrate metabolic genes were differentially expressed in Hsp70-knockdown individuals. A more comprehensive microscopic examination performed in this study revealed exoskeleton structural destruction and abnormal eye lenses featured in Hsp70-deficient adult females 48 h after Hsp70 dsRNA injection. Cysts produced by these Hsp70-deficient broods, instead, had a defective shell and were smaller in size, whereas nauplii had shorter first antennae and a rougher body epicuticle surface. Changes in carbohydrate metabolism caused by Hsp70 knockdown affected glycogen levels in adult Artemia females, as well as trehalose in cysts released from these broods, indicating that Hsp70 may play a role in energy storage preservation. Outcomes from this work provided novel insights into the roles of Hsp70 in Artemia reproduction performance, cyst formation, and exoskeleton structure preservation. The findings also support our previous observation that Hsp70 knockdown reduced Artemia nauplius tolerance to bacterial pathogens, which could be explained by the fact that loss of Hsp70 downregulated several Toll receptor genes (NT1 and Spaetzle) and reduced the integrity of the exoskeleton, allowing pathogens to enter and cause infection, ultimately resulting in mortality.


Subject(s)
Artemia , HSP70 Heat-Shock Proteins , Reproduction , Animals , Artemia/genetics , Female , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Reproduction/genetics , Gene Knockdown Techniques , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Gene Expression Profiling , Animal Shells/metabolism , Carbohydrate Metabolism/genetics , Embryo, Nonmammalian/metabolism
17.
Mycologia ; 116(3): 355-369, 2024.
Article in English | MEDLINE | ID: mdl-38573188

ABSTRACT

The discovery of bioactive compounds from fungal natural sources holds immense potential for the development of novel therapeutics. The present study investigates the extracts of soil-borne Penicillium notatum and rhizosphere-inhabiting Aspergillus flavus for their antibacterial, antifungal, and cytotoxic potential. Additionally, two compounds were purified using chromatographic and spectroscopic techniques. The results demonstrated that the ethyl acetate fraction of A. flavus exhibited prominent cytotoxic activity against Artemia salina, whereas the ethyl acetate fraction of P. notatum displayed promising antibacterial potential. At dose concentrations of 10, 100, and 1000 µg mL-1, the ethyl acetate fraction of A. flavus showed mortality percentages of 7.6%, 66.4%, and 90%, respectively. The ethyl acetate fraction of P. notatum extract exhibited significant antibacterial activity, forming inhibition zones measuring 41, 38, 34, 34, and 30 mm against B. subtilis, S. flexneri, E. coli, K. pneumoniae, and S. aureus, respectively, at 1000 µg mL-1. At this concentration, inhibition zones of 28, 27, and 15 mm were recorded for P. vulgaris, S. typhi, and X. oryzae. Using bioassay-guided approach, one compound each was purified from the fungal extracts. The initial purification involved mass spectroscopic analysis, followed by structural elucidation using 500 MHz nuclear magnetic resonance (NMR) spectroscopy. Compound 1, derived from A. flavus, was identified as ethyl 2-hydroxy-5,6-dimethyl-4-oxocyclohex-2-ene-1-carboxylate, with a mass of 212, whereas compound 2, isolated from P. notatum, was identified as 3-amino-2-(cyclopenta-2,4-dien-1-ylamino)-8-methoxy-4H-chromen-4-one, with an exact mass of 270. Based on bioassay results, compound 1 was subjected to brine shrimp lethality assay and compound 2 was tested for its antibacterial potential. Compound 1 exhibited 30% lethality against brine shrimp larvae at a concentration of 100 µg mL-1, whereas at 1000 µg mL-1 the mortality increased to 70%. Compound 2 displayed notable antibacterial potential, forming inhibition zones of 30, 24, 19, and 12 mm against S. aureus, E. coli, B. subtilis, and S. flexneri, respectively. In comparison, the standard antibiotic tetracycline produced inhibition zones of 18, 18, 15, and 10 mm against the respective bacterial strains at the same concentration.


Subject(s)
Anti-Bacterial Agents , Artemia , Aspergillus flavus , Penicillium , Soil Microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Artemia/drug effects , Aspergillus flavus/drug effects , Penicillium/chemistry , Penicillium/drug effects , Animals , Microbial Sensitivity Tests , Bacteria/drug effects , Rhizosphere , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification
18.
Nat Prod Res ; : 1-12, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538562

ABSTRACT

The chemical composition and biological activities of the essential oils obtained from Serbian Artemisia species (A. alba, A. absinthium, A. annua, A. vulgaris, and A. scoparia) were analysed. The essential oil was obtained by merging several samples (same plant species, different localities) and the chemical composition was compared with pre-merging results. In the merged A. scoparia sample four components were not found in any pre-merging sample and one of those is present in the highest percentage (capillin 35.7%). The least toxic essential oil in Artemia salina test was A. annua, followed by A. alba (both showing medium toxicity), while A. absinthium, A. vulgaris, and A. scoparia showed strong toxicity. All tested samples showed activity against Drosophila melanogaster larvae in descending order ΣAS > ΣAN > ΣAV > ΣAB > ΣAA. The essential oil of A. scoparia has exceptional larvicidal activity (in concentrations of 2% and 1% causes complete mortality).

19.
Cell Stress Chaperones ; 29(2): 285-299, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428516

ABSTRACT

Females of the extremophile crustacean, Artemia franciscana, either release motile nauplii via the ovoviviparous pathway or encysted embryos (cysts) via the oviparous pathway. Cysts contain an abundant amount of the ATP-independent small heat shock protein that contributes to stress tolerance and embryo development, however, little is known of the role of ATP-dependent molecular chaperone, heat shock protein 90 (Hsp90) in the two processes. In this study, a hsp90 was cloned from A. franciscana. Characteristic domains of ArHsp90 were simulated from the deduced amino acid sequence, and 3D structures of ArHsp90 and Hsp90s of organisms from different groups were aligned. RNA interference was then employed to characterize ArHsp90 in A. franciscana nauplii and cysts. The partial knockdown of ArHsp90 slowed the development of nauplius-destined, but not cyst-destined embryos. ArHsp90 knockdown also reduced the survival and stress tolerance of nauplii newly released from A. franciscana females. Although the reduction of ArHsp90 had no effect on the development of diapause-destined embryos, the resulting cysts displayed reduced tolerance to desiccation and low temperature, two stresses normally encountered by A. franciscana in its natural environment. The results reveal that Hsp90 contributes to the development, growth, and stress tolerance of A. franciscana, an organism of practical importance as a feed source in aquaculture.


Subject(s)
Artemia , Cysts , Animals , Female , Artemia/metabolism , Molecular Chaperones/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Embryonic Development , Embryo, Nonmammalian/metabolism , Cysts/metabolism , Adenosine Triphosphate/metabolism
20.
Molecules ; 29(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474459

ABSTRACT

The essential oils and aroma derived from the leaves (L), stems (St), and spikes (s) of Piper nigrum L. cv. Guajarina were extracted; the essential oils were extracted using hydrodistillation (HD), and steam distillation (SD), and the aroma was obtained by simultaneous distillation and extraction (SDE). Chemical constituents were identified and quantified using GC/MS and GC-FID. Preliminary biological activity was assessed by determining the toxicity against Artemia salina Leach larvae, calculating mortality rates, and determining lethal concentration values (LC50). The predominant compounds in essential oil samples included α-pinene (0-5.6%), ß-pinene (0-22.7%), limonene (0-19.3%), 35 linalool (0-5.3%), δ-elemene (0-10.1%), ß-caryophyllene (0.5-21.9%), γ-elemene (7.5-33.9%), and curzerene (6.9-31.7%). Multivariate analysis, employing principal component analysis (PCA) and hierarchical cluster analysis (HCA), revealed three groups among the identified classes and two groups among individual compounds. The highest antioxidant activity was found for essential oils derived from the leaves (167.9 41 mg TE mL-1). Larvicidal potential against A. salina was observed in essential oils obtained from the leaves (LC50 6.40 µg mL-1) and spikes (LC50 6.44 µg mL-1). The in silico studies demonstrated that the main compounds can interact with acetylcholinesterase, thus showing the potential molecular interaction responsible for the toxicity of the essential oil in A. salina.


Subject(s)
Arthropods , Oils, Volatile , Piper nigrum , Piper , Sesquiterpenes , Animals , Oils, Volatile/chemistry , Acetylcholinesterase , Gas Chromatography-Mass Spectrometry , Piper/chemistry , Plant Oils/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL