Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
1.
Sci Total Environ ; 931: 172689, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38692315

ABSTRACT

Cyanobacterial Harmful Algal Blooms (CyanoHABs) pose a significant threat to communities globally, impacting ecosystems and public health. This study provides an in-depth review of the current state of cyanotoxins and the distribution of CyanoHABs species in Brazil, while also detailing the methods used for their detection. Four hundred and twenty-one incidents were analyzed from 1993 to 2021, compiling cyanotoxin records and toxic CyanoHABs occurrences. The investigation begins with the first detection of microcystins in 1994 and highlights pivotal moments, like the 1996 "Caruaru Syndrome" outbreak. This event encouraged research and updated cyanotoxin-monitoring guidelines. The Brazilian drought period of 2015-2016 exacerbated cyanobacterial growth and saxitoxin levels, coinciding with Zika-related microcephaly. This study delves into methods used for cyanotoxin analysis, including ELISA, bioassays, HPLC, and LC-MS. Additionally, we investigated the toxicity of 37 cyanobacterial strains isolated from various Brazilian environments. Extracts were tested against Artemia salina and analyzed by LC-MS. Results revealed toxicity in extracts from 49 % of cyanobacterial strains. LC-MS results were analyzed using GNPS MS/MS molecular networking for comparing experimental spectra with those of cyanotoxin standards against in-house databases and the existing literature. Our research underscores the variability in cyanotoxin production among species and over time, extending beyond microcystins. LC-MS results, interpreted through the GNPS platform, revealed six cyanotoxin groups in Brazilian strains. Yet, compounds present in 75 % of the toxic extracts remained unidentified. Further research is crucial for fully comprehending the impact of potentially harmful organisms on water quality and public health management strategies. The study highlights the urgent need for continuously monitoring cyanobacteria and the cyanotoxin inclusion of management in public health policies.


Subject(s)
Cyanobacteria , Environmental Monitoring , Harmful Algal Bloom , Microcystins , Brazil/epidemiology , Environmental Monitoring/methods , Microcystins/analysis , Bacterial Toxins/analysis , Marine Toxins/analysis
2.
Toxicon X ; 22: 100195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38606385

ABSTRACT

Mice are routinely used in snake venom research but are costly and subject to pain and suffering. The crustacean Artemia salina could be an alternative to mice, but data to support its adoption in snake venom research is limited. The aim of the present study was to evaluate the suitability of A. salina as a surrogate of mice in assessing the toxicity of venoms and the preclinical efficacy of antivenoms. The toxicity of venoms from 22 snakes of medical importance in sub-Saharan Africa was evaluated in mice (intraperitoneally; i.p. and intravenously; i.v.) and in A. salina. Subsequently, the capacity of a commercial antivenom to neutralize the toxicity of these venoms in mice and A. salina was investigated. There was a positive correlation between the i.v. median lethal doses (LD50s) and the i.p. LD50s in mice (r = 0.804; p < 0.0001), a moderate correlation between the i.v. LD50s in mice and the median lethal concentrations (LC50s) in A. salina (r = 0.606; p = 0.003), and a moderate correlation between the i.p. LD50s in mice and the LC50s in A. salina (r = 0.426; p = 0.048). Moreover, there was a strong correlation between the i.p. median effective doses (ED50s) and the i.v. ED50s in mice (r = 0.941, p < 0.0001), between the i.p. ED50s in mice and the ED50s in A. salina (r = 0.818, p < 0.0001), and between the i.v. ED50s in mice and the ED50s in A. salina (r = 0.972, p < 0.0001). These findings present A. salina as a promising candidate for reducing reliance on mice in snake venom research. Future investigations should build upon these findings, addressing potential limitations and expanding the scope of A. salina in venom research and antivenom development.

3.
Clin Exp Optom ; : 1-7, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653499

ABSTRACT

CLINICAL RELEVANCE: This clinical trial was conducted as part of the marketing procedures for a medical device comprising artificial tears containing Artemia salina extract with dinucleotides. These molecules previously demonstrated secretagogue properties by enhancing the production of aqueous, mucinous, and lipidic components of the tears. BACKGROUND: After confirming the efficacy of artificial tears containing Artemia salina extract in an animal model, this study proceeded to evaluate their efficacy and safety on dry eye participants. METHODS: A randomised controlled clinical trial was performed on 36 dry eye participants (41.6 ± 20.6 years). Half of the participants were treated with saline solution as a placebo for four weeks, while the other half were treated with artificial tears containing Artemia salina, randomly assigned. After a wash-out period of two weeks, the treatments were crossed for another four weeks. Participants were assessed at baseline and after one week, two weeks, and four weeks. Efficacy variables were: eye dryness frequency (primary), eye comfort, visual satisfaction, tear secretion, tear break-up time, corneal staining, conjunctival staining, and conjunctival hyperaemia. Safety variables were: high- and low-contrast visual acuity, intraocular pressure, and eye fundus images analysis. RESULTS: Compared with the baseline, the saline solution showed no significant changes in any of the studied variables after four weeks of treatment (p ≥ 0.05). However, the topical instillation of the artificial tears with Artemia salina for four weeks significantly improved eye dryness frequency (p = 0.014) and corneal staining (p = 0.010). No systemic or ocular adverse events were reported during the clinical trial. CONCLUSION: The topical instillation of artificial tears containing Artemia salina in mild to moderate dry eye participants for four weeks slightly improved their symptoms related to eye dryness frequency and reduced corneal damage, with no undesirable side effects observed.

4.
Front Pharmacol ; 15: 1369768, 2024.
Article in English | MEDLINE | ID: mdl-38681195

ABSTRACT

Background: The present study investigated the efficacy of Conyza bonariensis, Commiphora africana, Senna obtusifolia, Warburgia ugandensis, Vernonia glabra, and Zanthoxylum usambarense against Bitis arietans venom (BAV), Naja ashei venom (NAV), and Naja subfulva venom (NSV). Methods: 40 extracts and fractions were prepared using n-hexane, dichloromethane, ethyl acetate, and methanol. In vitro efficacy against snake venom phospholipase A2 (svPLA2) was determined in 96-well microtiter and agarose-egg yolk coagulation assays. in vivo efficacy against venom-induced cytotoxicity was determined using Artemia salina. Two commercial antivenoms were used for comparison. Results: The 96-well microtiter assay revealed poor svPLA2 inhibition of BAV by antivenom (range: 20.76% ± 13.29% to 51.29% ± 3.26%) but strong inhibition (>90%) by dichloromethane and hexane fractions of C. africana, hexane and ethyl acetate extracts and fraction of W. ugandensis, dichloromethane fraction of V. glabra, and the methanol extract of S. obtusifolia. The methanol extract and fraction of C. africana, and the hexane extract of Z. usambarense strongly inhibited (>90%) svPLA2 activity in NAV. The hexane and ethyl acetate fractions of V. glabra and the dichloromethane, ethyl acetate, and methanol extracts of C. africana strongly inhibited (>90%) svPLA2 in NSV. The agarose egg yolk coagulation assay showed significant inhibition of BAV by the dichloromethane fraction of C. africana (EC50 = 3.51 ± 2.58 µg/mL), significant inhibition of NAV by the methanol fraction of C. africana (EC50 = 7.35 ± 1.800 µg/mL), and significant inhibition of NSV by the hexane extract of V. glabra (EC50 = 7.94 ± 1.50 µg/mL). All antivenoms were non-cytotoxic in A. salina but the methanol extract of C. africana and the hexane extracts of V. glabra and Z. usambarense were cytotoxic. The dichloromethane fraction of C. africana significantly neutralized BAV-induced cytotoxicity, the methanol fraction and extract of C. africana neutralized NAV-induced cytotoxicity, while the ethyl acetate extract of V. glabra significantly neutralized NSV-induced cytotoxicity. Glycosides, flavonoids, phenolics, and tannins were identified in the non-cytotoxic extracts/fractions. Conclusion: These findings validate the local use of C. africana and V. glabra in snakebite but not C. bonariensis, S. obtusifolia, W. ugandensis, and Z. usambarense. Further work is needed to isolate pure compounds from the effective plants and identify their mechanisms of action.

5.
Mycologia ; 116(3): 355-369, 2024.
Article in English | MEDLINE | ID: mdl-38573188

ABSTRACT

The discovery of bioactive compounds from fungal natural sources holds immense potential for the development of novel therapeutics. The present study investigates the extracts of soil-borne Penicillium notatum and rhizosphere-inhabiting Aspergillus flavus for their antibacterial, antifungal, and cytotoxic potential. Additionally, two compounds were purified using chromatographic and spectroscopic techniques. The results demonstrated that the ethyl acetate fraction of A. flavus exhibited prominent cytotoxic activity against Artemia salina, whereas the ethyl acetate fraction of P. notatum displayed promising antibacterial potential. At dose concentrations of 10, 100, and 1000 µg mL-1, the ethyl acetate fraction of A. flavus showed mortality percentages of 7.6%, 66.4%, and 90%, respectively. The ethyl acetate fraction of P. notatum extract exhibited significant antibacterial activity, forming inhibition zones measuring 41, 38, 34, 34, and 30 mm against B. subtilis, S. flexneri, E. coli, K. pneumoniae, and S. aureus, respectively, at 1000 µg mL-1. At this concentration, inhibition zones of 28, 27, and 15 mm were recorded for P. vulgaris, S. typhi, and X. oryzae. Using bioassay-guided approach, one compound each was purified from the fungal extracts. The initial purification involved mass spectroscopic analysis, followed by structural elucidation using 500 MHz nuclear magnetic resonance (NMR) spectroscopy. Compound 1, derived from A. flavus, was identified as ethyl 2-hydroxy-5,6-dimethyl-4-oxocyclohex-2-ene-1-carboxylate, with a mass of 212, whereas compound 2, isolated from P. notatum, was identified as 3-amino-2-(cyclopenta-2,4-dien-1-ylamino)-8-methoxy-4H-chromen-4-one, with an exact mass of 270. Based on bioassay results, compound 1 was subjected to brine shrimp lethality assay and compound 2 was tested for its antibacterial potential. Compound 1 exhibited 30% lethality against brine shrimp larvae at a concentration of 100 µg mL-1, whereas at 1000 µg mL-1 the mortality increased to 70%. Compound 2 displayed notable antibacterial potential, forming inhibition zones of 30, 24, 19, and 12 mm against S. aureus, E. coli, B. subtilis, and S. flexneri, respectively. In comparison, the standard antibiotic tetracycline produced inhibition zones of 18, 18, 15, and 10 mm against the respective bacterial strains at the same concentration.


Subject(s)
Anti-Bacterial Agents , Artemia , Aspergillus flavus , Penicillium , Soil Microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Artemia/drug effects , Aspergillus flavus/drug effects , Penicillium/chemistry , Penicillium/drug effects , Animals , Microbial Sensitivity Tests , Bacteria/drug effects , Rhizosphere , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification
6.
Altern Lab Anim ; 52(3): 142-148, 2024 May.
Article in English | MEDLINE | ID: mdl-38578132

ABSTRACT

The use of the brine shrimp Artemia salina (Leach) in acute toxicity assays has great potential due to its simplicity, low cost and reproducibility. In the current study, some of the variables that can influence the reliability of the assay in terms of test organism survival, were evaluated as part of its implementation in our laboratory. The quality and type of water used, the buffer components and other parameters (salinity, pH and dissolved oxygen level), were all evaluated for optimisation purposes. DMSO (dimethyl sulphoxide) was used as the test substance in the toxicity assay, to evaluate the concentration limits as a solvent in sample preparation. Regarding the buffer salinity, pH and dissolved oxygen level, we found that a 25% to 30% deviation from the standard values did not affect the survival of the nauplii (the first-instar larval stage) under assay conditions. In summary, we corroborate the potential use of this model for the prediction of the toxic potential of substances, to inform future testing strategies.


Subject(s)
Artemia , Toxicity Tests, Acute , Animals , Artemia/drug effects , Toxicity Tests, Acute/methods , Hydrogen-Ion Concentration , Salinity , Dimethyl Sulfoxide/toxicity
7.
Molecules ; 29(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474459

ABSTRACT

The essential oils and aroma derived from the leaves (L), stems (St), and spikes (s) of Piper nigrum L. cv. Guajarina were extracted; the essential oils were extracted using hydrodistillation (HD), and steam distillation (SD), and the aroma was obtained by simultaneous distillation and extraction (SDE). Chemical constituents were identified and quantified using GC/MS and GC-FID. Preliminary biological activity was assessed by determining the toxicity against Artemia salina Leach larvae, calculating mortality rates, and determining lethal concentration values (LC50). The predominant compounds in essential oil samples included α-pinene (0-5.6%), ß-pinene (0-22.7%), limonene (0-19.3%), 35 linalool (0-5.3%), δ-elemene (0-10.1%), ß-caryophyllene (0.5-21.9%), γ-elemene (7.5-33.9%), and curzerene (6.9-31.7%). Multivariate analysis, employing principal component analysis (PCA) and hierarchical cluster analysis (HCA), revealed three groups among the identified classes and two groups among individual compounds. The highest antioxidant activity was found for essential oils derived from the leaves (167.9 41 mg TE mL-1). Larvicidal potential against A. salina was observed in essential oils obtained from the leaves (LC50 6.40 µg mL-1) and spikes (LC50 6.44 µg mL-1). The in silico studies demonstrated that the main compounds can interact with acetylcholinesterase, thus showing the potential molecular interaction responsible for the toxicity of the essential oil in A. salina.


Subject(s)
Arthropods , Oils, Volatile , Piper nigrum , Piper , Sesquiterpenes , Animals , Oils, Volatile/chemistry , Acetylcholinesterase , Gas Chromatography-Mass Spectrometry , Piper/chemistry , Plant Oils/chemistry
8.
Mol Biol Rep ; 51(1): 418, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483678

ABSTRACT

BACKGROUND: The present work demonstrated the green synthesis and characterization of silver nanoparticles (AgNPs) utilizing Elaeocarpus serratus fruit extract. The study examined the effectiveness of phytocompounds in fruit extract in reducing Ag+ to Ag° ions. METHODS: The water-soluble biobased substance production from silver ions to AgNPs in 45 min at room temperature. Surface plasmon resonance (SPR) peak was seen in the UV-visible absorption spectrum of the biologically altered response mixture. Examination with X-ray diffraction (XRD) showed that AgNPs are strong and have a face-centered cubic shape. Scanning electron microscope (SEM) investigation proved the production of AgNPs in a cuboidal shape. RESULTS: The AgNPs demonstrated remarkable antibacterial activity and a potent capacity to neutralize DPPH (2,2-Diphenyl-1-picrylhydrazyl) radicals. The highest growth inhibition was found for E. serratus against S. dysenteriae (18.5 ± 1.0 mm) and S. aureus (18 ± 1.2 mm). These nanoparticles exhibited robust antiradical efficacy even at low concentrations. The AgNPs additionally exhibited cytotoxic effects on (HT-29) human colon adenocarcinoma cancer cells. The MTT assay (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) indicated an inhibitory concentration (IC50) value of 49.1 ± 2.33 µg/mL for AgNPs, contrasting with the untreated cells of the negative control. The biotoxicity assessment using A. salina displayed mortality rates ranging from 8 to 69.33%, attributable to the E. serratus synthesized AgNPs. CONCLUSIONS: In our results concluded that simply first-hand information on that E. serattus fruit extract synthesized AgNPs were efficiently synthesized without the addition of any hazardous substances, and that they may be a strong antibacterial, antioxidant, and potential cytotoxic effects for the treatment of colon carcinoma cell lines.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Colonic Neoplasms , Metal Nanoparticles , Animals , Humans , Silver/chemistry , Antioxidants/chemistry , Artemia , Metal Nanoparticles/chemistry , Fruit/chemistry , Staphylococcus aureus , Colonic Neoplasms/drug therapy , Anti-Bacterial Agents , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , HT29 Cells , Ions , Plant Extracts/pharmacology , Plant Extracts/chemistry
9.
Nat Prod Res ; : 1-12, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538562

ABSTRACT

The chemical composition and biological activities of the essential oils obtained from Serbian Artemisia species (A. alba, A. absinthium, A. annua, A. vulgaris, and A. scoparia) were analysed. The essential oil was obtained by merging several samples (same plant species, different localities) and the chemical composition was compared with pre-merging results. In the merged A. scoparia sample four components were not found in any pre-merging sample and one of those is present in the highest percentage (capillin 35.7%). The least toxic essential oil in Artemia salina test was A. annua, followed by A. alba (both showing medium toxicity), while A. absinthium, A. vulgaris, and A. scoparia showed strong toxicity. All tested samples showed activity against Drosophila melanogaster larvae in descending order ΣAS > ΣAN > ΣAV > ΣAB > ΣAA. The essential oil of A. scoparia has exceptional larvicidal activity (in concentrations of 2% and 1% causes complete mortality).

10.
Environ Sci Pollut Res Int ; 31(9): 13207-13217, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38240975

ABSTRACT

The increasing use of polypropylene (PP) in consumer products leads to the microplastic (PP MPs) contamination of the aquatic ecosystems. Comprehensive toxicological studies of weathered/aged and new PP MPs with Artemia salina are a need of the hour. Our study explores the toxicological differences between naturally weathered (aged) and prepared new PP MPs on Artemia salina. Both the weathered and new PP MPs were prepared using controlled grinding and sieving at ≤ 125 µm. Artemia salina was treated with different concentrations (0.25, 0.5, and 1 mg/mL) of PP MP particles for up to 48 h. The uptake of weathered PP MP particles by Artemia salina was higher than the new PP MPs. The accumulation of PP MP particles was found in the intestine. There was increased oxidative stress recorded in the animal treated with the weathered PP MPs than the new PP MPs. Artemia salina treated with weathered PP MPs showed higher ROS generation and increased, activity of oxidative enzymes like LPO, SOD, and CAT. Collectively, our findings underscore the detrimental effects of weathered and prepared new PP MPs on Artemia salina, which is an ecologically significant species of zooplankton. There is an urgent need and effective measures required to address plastic disposal strategies in an environmentally safe manner.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Polypropylenes/toxicity , Plastics/toxicity , Artemia , Ecosystem , Water Pollutants, Chemical/toxicity
11.
Bol. latinoam. Caribe plantas med. aromát ; 23(1): 29-40, ene. 2024. tab, graf
Article in Spanish | LILACS | ID: biblio-1552792

ABSTRACT

The essential oils of Lippia citriodora (Ort.) and Lippia origanoides (Kunth) have shown antimicrobial activity associated with mastitis. The objective of this study was to evaluate its ecotoxic effect with the Artemia salina bioassay and the prevention of mastitis through an in vivo test in cattle (n=20) with a product based on these oils using a conventional product as a control. Contact hypersensitivity, the effect on somatic cells, and residuality in mil k samples were evaluated. The results of the Artemia salina bioassay were 10.05 and 19.36 (µg/mL) respectively. No negative effects or contact hypersensitivity were observed, and no residual metabolites were found in post - test milk. The somatic cell count showed 75% effectiveness in the prevention of mastitis with essential oils compared to 62.5% with the conventional product. The evaluated formulation could be used in the prevention of bovine mastitis safely, further investigation is required.


Los aceites esenciales de Lippia citriodora (Ort.) y Lippia origanoides (Kunth), han mostrado acti vidad antimicrobiana asociada a la mastitis. El objetivo de este estudio fue evaluar su efecto ecotóxico con el bioensayo Artemia salina y la prevención de mastitis mediante un ensayo in vivo en bovinos (n=20) con un producto a base de estos aceites utiliz ando como control un producto convencional. Se evaluó la hipersensibilidad de contacto, efecto en células somáticas y residualidad en muestra de leche. Los resultados del bioensayo de Artemia salina fueron 10,05 y 19,36 (µg/mL) respectivamente. No se obser varon efectos negativos, ni hipersensibilidad de contacto, y no se encontraron metabolitos residuales en leche posterior al ensayo. El conteo de células somáticas mostró efectividad en la prevención de mastitis del 75% con aceites esenciales frente al 62.5 % del producto convencional. La formulación evaluada podría ser utilizada en la prevención de la mastitis bovina de forma segura, se requiere profundizar en la investigación.


Subject(s)
Plant Oils/pharmacology , Mastitis, Bovine/prevention & control , Plants/chemistry , Mastitis, Bovine/drug therapy
12.
Biodegradation ; 35(3): 299-313, 2024 Jun.
Article in English | MEDLINE | ID: mdl-37792261

ABSTRACT

The anthropogenic activities toward meeting the energy requirements have resulted in an alarming rise in environmental pollution levels. Among pollutants, polycyclic aromatic hydrocarbons (PAHs) are the most predominant due to their persistent and toxic nature. Amidst the several pollutants depuration methods, bioremediation utilizing biodegradation is the most viable alternative. This study investigated the biodegradation efficacy using developed microbial consortium PBR-21 for 2-4 ringed PAHs named naphthalene (NAP), anthracene (ANT), fluorene (FLU), and pyrene (PYR). The removal efficiency was observed up to 100 ± 0.0%, 70.26 ± 4.2%, 64.23 ± 2.3%, and 61.50 ± 2.6%, respectively, for initial concentrations of 400 mg L-1 for NAP, ANT, FLU, and PYR respectively. Degradation followed first-order kinetics with rate constants of 0.39 d-1, 0.10 d-1, 0.08 d-1, and 0.07 d-1 and half-life t 1 / 2  of 1.8 h, 7.2 h, 8.5 h, and 10 h, respectively. The microbial consortia were found to be efficient towards the co-contaminants with 1 mM concentration. Toxicity examination indicated that microbial-treated PAHs resulted in lesser toxicity in aquatic crustaceans (Artemia salina) than untreated PAHs. Also, the study suggests that indigenous microbial consortia PBR-21 has the potential to be used in the bioremediation of PAH-contaminated environment.


Subject(s)
Anthracenes , Environmental Pollutants , Naphthalenes , Polycyclic Aromatic Hydrocarbons , Pyrenes , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/metabolism , Microbial Consortia , Fluorenes/toxicity , Biodegradation, Environmental , Soil Pollutants/metabolism
13.
Animals (Basel) ; 13(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37835758

ABSTRACT

Currents, wave motion, solar radiation, and abrasion are mechanisms responsible for the degradation of large plastic artifacts and contribute to the dispersion of micro and nanoplastics into aquatic ecosystems, which are, currently, the most dangerous threats due to their invisibility and persistence. The present work evaluated the possible lethal and sublethal effects of amino-modified polystyrene nanoplastics (nPS-NH2) with diameters of 50 nm and 100 nm on Artemia salina (A. salina), an organism at the base of the trophic chain of the aquatic system, using a widely used model for the analysis of embryotoxicity from environmental pollutants. For this purpose, after evaluating the biodistribution of nanoplastics in the body of the tested animals, several endpoints such as anomalies, apoptosis, and ROS production were assessed. In addition, particular attention was dedicated to evaluating the correlation between toxicity and the particle size tested. The results reported that, despite the absence of a lethal impact, several sublethal effects involving gut and body size malformations, as well as the enhancement of apoptosis and oxidative stress in relation to an increase in tested concentration and a decrease in nanoparticle size.

14.
J Environ Manage ; 348: 119367, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37871546

ABSTRACT

Ocean acidification and microplastic pollution are two of the major ecological concerns. The distribution of large quantities of plastic debris and microplastics all across the oceans emphasises the need to determine the influence of microplastics in ocean acidification and to evaluate its concomitant toxicological effects on aquatic life forms. Studies on the combined impact of both the stressors are very limited, but much needed in the current scenario. Where most of the present-day research use purchased microplastics of defined size and morphology (microspheres, fibres, rods, etc.), the present study employs prepared "true to life microplastics" that resemble the environmental microplastic pollutants in morphology and size heterogeneity. The present study focusses on evaluating the fate and impact of oceanic microplastics on the physiology and development of Artemia salina (Brine shrimp), one among the most ecologically significant zooplankton species. Natural sea water was acidified by controlled perturbation of carbon dioxide using a valve system. The hatching rate of A. salina cysts receded significantly (p < 0.05) upon singular exposures to microplastics and low pH (7.80), whereas combined effect was insignificant. The reactive oxygen species (ROS) elevated as a result of individual exposures to microplastics and low pH. However, only in 0.5 mg mL-1 PE treatments at pH 7.80, an additive impact was reported for ROS activity (p < 0.05). The SOD activities increased significantly but it can be attributed as the individual responses towards exposure to both the stressors. A significant additive impact was not observed for SOD activity (p > 0.05). But during the development, significant morphological anomalies were observed. Changes in the appendages of nauplii and juveniles as a result of combined exposure to microplastics and low pH treatments are significant findings. Our observations suggest that coupled exposure to microplastics and low pH could induce significant oxidative stress in the marine zooplanktons and also adversely affect their normal development. Findings from the current study emphasise the need for further research to understand the coupled toxicological impacts of ocean acidification and predominant pollutants such as microplastics to other marine animals as well.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Plastics/toxicity , Artemia/physiology , Seawater , Reactive Oxygen Species , Hydrogen-Ion Concentration , Ocean Acidification , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Exposure , Superoxide Dismutase
15.
Environ Res ; 238(Pt 1): 117118, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37704075

ABSTRACT

A biofilm consists of Gram positive and Gram-negative bacteria enclosed in a matrix. Industrial biofouling is caused by biofilms, which can exhibit antimicrobial resistance during infections. Many biofilm studies find that nearly all biofilm communities consist of Gram positive and Gram-negative bacteria. It is therefore necessary to better understand the conserved themes in biofilm formation to develop therapeutics based on biofilm formation. Plant extracts can effectively combat pathogenic bacterial biofilms. This study evaluated the antibacterial and antibiofilm activity of Aerva lanata flower extract against Staphylococcus aureus and Pseudomonas aeruginosa. Methanol extract of dried A. lanata flower was tested against S. aureus and P. aeruginosa to determine the antibacterial activity (10, 25, 50, 75, 100 µg/mL) resulted in a maximum of 0.5-1 log reduction and 2 log reduction in comparison to the control or untreated bacterial cells respectively. A. lanata showed maximum biofilm inhibition up to 1.5-fold and 1-fold against P. aeruginosa and S. aureus. Light microscopic analysis of biofilm treated with A. lanata extract showed efficient distortion of the biofilm matrix. Further, the in vivo analysis of A. lanata in the Artemia salina brine shrimp model showed >50% survival and thus proving the efficacy of A. lanata extract in rescuing the brine shrimps against P. aeruginosa and S. aureus infection.


Subject(s)
Artemia , Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria , Bacteria , Gram-Negative Bacteria , Plant Extracts/pharmacology , Flowers , Biofilms , Microbial Sensitivity Tests
16.
Toxics ; 11(8)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37624221

ABSTRACT

The escalating global anthropogenic activities associated with industrial development have led to the increased introduction of heavy metals (HMs) into marine environments through effluents. This study aimed to assess the toxicity of three HMs (Cr, Cu, and Cd) on organisms spanning different trophic levels: Phaeodactylum tricornutum (a primary producer), Artemia salina (a primary consumer), and Aurelia aurita (a secondary consumer). The EC50 values obtained revealed varying relative toxicities for the tested organisms. Phaeodactylum tricornutum exhibited the highest sensitivity to Cu, followed by Cd and Cr, while Artemia salina displayed the highest sensitivity to Cr, followed by Cu and Cd. A. aurita, on the other hand, demonstrated the highest sensitivity to Cu, followed by Cr and Cd. This experimental investigation further supported previous studies that have suggested A. aurita as a suitable model organism for ecotoxicity testing. Our experiments encompassed sublethal endpoints, such as pulsation frequency, acute effects, and mortality, highlighting different levels of sensitivity among the organisms.

17.
Molecules ; 28(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37570784

ABSTRACT

The essential oils (OEs) of the leaves, stems, and spikes of P. marginatum were obtained by hydrodistillation, steam distillation, and simultaneous extraction. The chemical constituents were identified and quantified by GC/MS and GC-FID. The preliminary biological activity was determined by assessing the toxicity of the samples to Artemia salina Leach larvae and calculating the mortality rate and lethal concentration (LC50). The antioxidant activity of the EOs was determined by the DPPH radical scavenging method. Molecular modeling was performed using molecular docking and molecular dynamics, with acetylcholinesterase being the molecular target. The OES yields ranged from 1.49% to 1.83%. The EOs and aromatic constituents of P. marginatum are characterized by the high contents of (E)-isoosmorhizole (19.4-32.9%), 2-methoxy-4,5-methylenedioxypropiophenone (9.0-19.9%), isoosmorhizole (1.6-24.5%), and 2-methoxy-4,5-methylenedioxypropiophenone isomer (1.6-14.3%). The antioxidant potential was significant in the OE of the leaves and stems of P. marginatum extracted by SD in November (84.9 ± 4.0 mg TE·mL-1) and the OEs of the leaves extracted by HD in March (126.8 ± 12.3 mg TE·mL-1). Regarding the preliminary toxicity, the OEs of Pm-SD-L-St-Nov and Pm-HD-L-St-Nov had mortality higher than 80% in concentrations of 25 µg·mL-1. This in silico study on essential oils elucidated the potential mechanism of interaction of the main compounds, which may serve as a basis for advances in this line of research.


Subject(s)
Oils, Volatile , Piper , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Piper/chemistry , Antioxidants/pharmacology , Molecular Docking Simulation , Acetylcholinesterase
18.
Polymers (Basel) ; 15(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37571109

ABSTRACT

This research focused on developing new materials for endodontic treatments to restore tissues affected by infectious or inflammatory processes. Three materials were studied, namely tricalcium phosphate ß-hydroxyapatite (ß-TCP), commercial and natural hydroxyapatite (HA), and chitosan (CS), in different proportions. The chemical characterization using infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the composition of the composite. Scanning electron microscopy (SEM) demonstrated that the design and origin of the HA, whether natural or commercial, did not affect the morphology of the composites. In vitro studies using Artemia salina (A. salina) indicated that all three experimental materials were biocompatible after 24 h, with no significant differences in mortality rate observed among the groups. The subdermal implantation of the materials in block form exhibited biocompatibility and biodegradability after 30 and 60 days, with the larger particles undergoing fragmentation and connective tissue formation consisting of collagen type III fibers, blood vessels, and inflammatory cells. The implanted material continued to undergo resorption during this process. The results obtained in this research contribute to developing endodontic technologies for tissue recovery and regeneration.

19.
Arch Toxicol ; 97(9): 2329-2342, 2023 09.
Article in English | MEDLINE | ID: mdl-37394624

ABSTRACT

Cell culture and invertebrate animal models reflect a significant evolution in scientific research by providing reliable evidence on the physiopathology of diseases, screening for new drugs, and toxicological tests while reducing the need for mammals. In this review, we discuss the progress and promise of alternative animal and non-animal methods in biomedical research, with a special focus on drug toxicity.


Subject(s)
Biomedical Research , Animals , Models, Animal , Mammals
20.
Article in English | MEDLINE | ID: mdl-37403396

ABSTRACT

BACKGROUND: The microplate benchtop brine shrimp test (BST) has been widely used for screening and bio-guided isolation of many active compounds, including natural products. Although the interpretation given to the results appears dissimilar, our findings suggest a correlation between positive results with a specific mechanism of action. OBJECTIVE: This study aimed to evaluate drugs belonging to fifteen pharmacological categories having diverse mechanisms of action and carry out a bibliometric analysis of over 700 citations related to microwell BST. METHODS: Test compounds were evaluated in a serial dilution on the microwell BST using healthy nauplii of Artemia salina and after 24 hrs of exposition, the number of alive and dead nauplii was determined, and the LC50 was estimated. A metric study regarding the citations of the BST miniaturized method, sorted by type of documents cited, contributing country, and interpretation of results was conducted on 706 selected citations found in Google Scholar. RESULTS: Out of 206 drugs tested belonging to fifteen pharmacological categories, twenty-six showed LC50 values <100 µM, most of them belonging to the category of antineoplastic drugs; compounds with different therapeutical uses were found to be cytotoxic as well. A bibliometric analysis showed 706 documents citing the miniaturized BST; 78% of them belonged to academic laboratories from developing countries located on all continents, 63% interpreted their results as cytotoxic activity and 35% indicated general toxicity assessment. CONCLUSION: BST is a simple, affordable, benchtop assay, capable of detecting cytotoxic drugs with specific mechanisms of action, such as protein synthesis inhibition, antimitotic, DNA binding, topoisomerase I inhibitors, and caspases cascade interfering drugs. The microwell BST is a technique that is used worldwide for the bio-guided isolation of cytotoxic compounds from different sources.

SELECTION OF CITATIONS
SEARCH DETAIL
...