Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
J Biomed Opt ; 29(Suppl 3): S33306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39247899

ABSTRACT

Significance: The arterial input function (AIF) plays a crucial role in correcting the time-dependent concentration of the contrast agent within the arterial system, accounting for variations in agent injection parameters (speed, timing, etc.) across patients. Understanding the significance of the AIF can enhance the accuracy of tissue vascular perfusion assessment through indocyanine green-based dynamic contrast-enhanced fluorescence imaging (DCE-FI). Aim: We evaluate the impact of the AIF on perfusion assessment through DCE-FI. Approach: A total of 144 AIFs were acquired from 110 patients using a pulse dye densitometer. Simulation and patient intraoperative imaging were conducted to validate the significance of AIF for perfusion assessment based on kinetic parameters extracted from fluorescence images before and after AIF correction. The kinetic model accuracy was evaluated by assessing the variability of kinetic parameters using individual AIF versus population-based AIF. Results: Individual AIF can reduce the variability in kinetic parameters, and population-based AIF can potentially replace individual AIF for estimating wash-out rate ( k ep ), maximum intensity ( I max ), ingress slope with lower differences compared with those in estimating blood flow, volume transfer constant ( K trans ), and time to peak. Conclusions: Individual AIF can provide the most accurate perfusion assessment compared with assessment without AIF or based on population-based AIF correction.


Subject(s)
Indocyanine Green , Optical Imaging , Humans , Optical Imaging/methods , Indocyanine Green/chemistry , Indocyanine Green/pharmacokinetics , Female , Middle Aged , Aged , Male , Contrast Media/chemistry , Adult , Arteries/diagnostic imaging , Perfusion Imaging/methods , Computer Simulation
2.
NMR Biomed ; : e5225, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107878

ABSTRACT

Both inflow and the partial volume effect (PVE) are sources of error when measuring the arterial input function (AIF) in dynamic contrast-enhanced (DCE) MRI. This is relevant, as errors in the AIF can propagate into pharmacokinetic parameter estimations from the DCE data. A method was introduced for flow correction by estimating and compensating the number of the perceived pulse of spins during inflow. We hypothesized that the PVE has an impact on concentration-time curves similar to inflow. Therefore, we aimed to study the efficiency of this method to compensate for both effects simultaneously. We first simulated an AIF with different levels of inflow and PVE contamination. The peak, full width at half-maximum (FWHM), and area under curve (AUC) of the reconstructed AIFs were compared with the true (simulated) AIF. In clinical data, the PVE was included in AIFs artificially by averaging the signal in voxels surrounding a manually selected point in an artery. Subsequently, the artificial partial volume AIFs were corrected and compared with the AIF from the selected point. Additionally, corrected AIFs from the internal carotid artery (ICA), the middle cerebral artery (MCA), and the venous output function (VOF) estimated from the superior sagittal sinus (SSS) were compared. As such, we aimed to investigate the effectiveness of the correction method with different levels of inflow and PVE in clinical data. The simulation data demonstrated that the corrected AIFs had only marginal bias in peak value, FWHM, and AUC. Also, the algorithm yielded highly correlated reconstructed curves over increasingly larger neighbourhoods surrounding selected arterial points in clinical data. Furthermore, AIFs measured from the ICA and MCA produced similar peak height and FWHM, whereas a significantly larger peak and lower FWHM was found compared with the VOF. Our findings indicate that the proposed method has high potential to compensate for PVE and inflow simultaneously. The corrected AIFs could thereby provide a stable input source for DCE analysis.

3.
Diagnostics (Basel) ; 14(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125466

ABSTRACT

The accurate estimation of the tracer arterial blood concentration is crucial for reliable quantitative kinetic analysis in PET. In the current work, we demonstrate the automatic extraction of an image-derived input function (IDIF) from a CT AI-based aorta segmentation subsequently resliced to a dynamic PET series acquired on a Siemens Vision Quadra long-axial field of view scanner in 10 human subjects scanned with [15O]H2O. We demonstrate that the extracted IDIF is quantitative and in excellent agreement with a delay- and dispersion-corrected sampled arterial input function (AIF). Perfusion maps in the brain are calculated and compared from the IDIF and AIF, respectively, showed a high degree of correlation. The results demonstrate the possibility of defining a quantitatively correct IDIF compared with AIFs from the new-generation high-sensitivity and high-time-resolution long-axial field-of-view PET/CT scanners.

4.
Tomography ; 10(5): 660-673, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38787011

ABSTRACT

Background: The arterial input function (AIF) is vital for myocardial blood flow quantification in cardiac MRI to indicate the input time-concentration curve of a contrast agent. Inaccurate AIFs can significantly affect perfusion quantification. Purpose: When only saturated and biased AIFs are measured, this work investigates multiple ways of leveraging tissue curve information, including using AIF + tissue curves as inputs and optimizing the loss function for deep neural network training. Methods: Simulated data were generated using a 12-parameter AIF mathematical model for the AIF. Tissue curves were created from true AIFs combined with compartment-model parameters from a random distribution. Using Bloch simulations, a dictionary was constructed for a saturation-recovery 3D radial stack-of-stars sequence, accounting for deviations such as flip angle, T2* effects, and residual longitudinal magnetization after the saturation. A preliminary simulation study established the optimal tissue curve number using a bidirectional long short-term memory (Bi-LSTM) network with just AIF loss. Further optimization of the loss function involves comparing just AIF loss, AIF with compartment-model-based parameter loss, and AIF with compartment-model tissue loss. The optimized network was examined with both simulation and hybrid data, which included in vivo 3D stack-of-star datasets for testing. The AIF peak value accuracy and ktrans results were assessed. Results: Increasing the number of tissue curves can be beneficial when added tissue curves can provide extra information. Using just the AIF loss outperforms the other two proposed losses, including adding either a compartment-model-based tissue loss or a compartment-model parameter loss to the AIF loss. With the simulated data, the Bi-LSTM network reduced the AIF peak error from -23.6 ± 24.4% of the AIF using the dictionary method to 0.2 ± 7.2% (AIF input only) and 0.3 ± 2.5% (AIF + ten tissue curve inputs) of the network AIF. The corresponding ktrans error was reduced from -13.5 ± 8.8% to -0.6 ± 6.6% and 0.3 ± 2.1%. With the hybrid data (simulated data for training; in vivo data for testing), the AIF peak error was 15.0 ± 5.3% and the corresponding ktrans error was 20.7 ± 11.6% for the AIF using the dictionary method. The hybrid data revealed that using the AIF + tissue inputs reduced errors, with peak error (1.3 ± 11.1%) and ktrans error (-2.4 ± 6.7%). Conclusions: Integrating tissue curves with AIF curves into network inputs improves the precision of AI-driven AIF corrections. This result was seen both with simulated data and with applying the network trained only on simulated data to a limited in vivo test dataset.


Subject(s)
Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Contrast Media , Coronary Circulation/physiology , Computer Simulation , Neural Networks, Computer , Image Processing, Computer-Assisted/methods
5.
Eur J Nucl Med Mol Imaging ; 51(9): 2625-2637, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38676734

ABSTRACT

PURPOSE: Functional PET (fPET) is a novel technique for studying dynamic changes in brain metabolism and neurotransmitter signaling. Accurate quantification of fPET relies on measuring the arterial input function (AIF), traditionally achieved through invasive arterial blood sampling. While non-invasive image-derived input functions (IDIF) offer an alternative, they suffer from limited spatial resolution and field of view. To overcome these issues, we developed and validated a scan protocol for brain fPET utilizing cardiac IDIF, aiming to mitigate known IDIF limitations. METHODS: Twenty healthy individuals underwent fPET/MR scans using [18F]FDG or 6-[18F]FDOPA, utilizing bed motion shuttling to capture cardiac IDIF and brain task-induced changes. Arterial and venous blood sampling was used to validate IDIFs. Participants performed a monetary incentive delay task. IDIFs from various blood pools and composites estimated from a linear fit over all IDIF blood pools (3VOI) and further supplemented with venous blood samples (3VOIVB) were compared to the AIF. Quantitative task-specific images from both tracers were compared to assess the performance of each input function to the gold standard. RESULTS: For both radiotracer cohorts, moderate to high agreement (r: 0.60-0.89) between IDIFs and AIF for both radiotracer cohorts was observed, with further improvement (r: 0.87-0.93) for composite IDIFs (3VOI and 3VOIVB). Both methods showed equivalent quantitative values and high agreement (r: 0.975-0.998) with AIF-derived measurements. CONCLUSION: Our proposed protocol enables accurate non-invasive estimation of the input function with full quantification of task-specific changes, addressing the limitations of IDIF for brain imaging by sampling larger blood pools over the thorax. These advancements increase applicability to any PET scanner and clinical research setting by reducing experimental complexity and increasing patient comfort.


Subject(s)
Positron-Emission Tomography , Humans , Positron-Emission Tomography/methods , Male , Female , Adult , Brain/diagnostic imaging , Fluorodeoxyglucose F18 , Heart/diagnostic imaging , Image Processing, Computer-Assisted/methods , Dihydroxyphenylalanine/analogs & derivatives , Middle Aged
6.
EJNMMI Res ; 14(1): 33, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558200

ABSTRACT

BACKGROUND: Accurate measurement of the arterial input function (AIF) is crucial for parametric PET studies, but the AIF is commonly derived from invasive arterial blood sampling. It is possible to use an image-derived input function (IDIF) obtained by imaging a large blood pool, but IDIF measurement in PET brain studies performed on standard field of view scanners is challenging due to lack of a large blood pool in the field-of-view. Here we describe a novel automated approach to estimate the AIF from brain images. RESULTS: Total body 18F-FDG PET data from 12 subjects were split into a model adjustment group (n = 6) and a validation group (n = 6). We developed an AIF estimation framework using wavelet-based methods and unsupervised machine learning to distinguish arterial and venous activity curves, compared to the IDIF from the descending aorta. All of the automatically extracted AIFs in the validation group had similar shape to the IDIF derived from the descending aorta IDIF. The average area under the curve error and normalised root mean square error across validation data were - 1.59 ± 2.93% and 0.17 ± 0.07. CONCLUSIONS: Our automated AIF framework accurately estimates the AIF from brain images. It reduces operator-dependence, and could facilitate the clinical adoption of parametric PET.

7.
Phys Imaging Radiat Oncol ; 29: 100548, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38380153

ABSTRACT

Background and purpose: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) describes tissue microvasculature and has prognostic and predictive potential in radiotherapy for head and neck cancer (HNC). However, lack in standardization of DCE-MRI hinders comparison of studies and clinical implementation. This study investigated the accuracy and robustness of the population arterial input function (AIF), correlations between pharmacokinetic parameters and their association to T stage and human papillomavirus (HPV) status for HNC. Materials and methods: DCE-MRI was acquired for 44 HNC patients. Population AIFs were calculated with six different approaches. DCE-MRI was analysed in primary and lymph node tumours using Tofts model (TM) with population AIFs and individual AIFs, extended TM (ETM) with individual AIFs, Brix model (BM), and areas under the curve (AUCs). Intraclass correlation, concordance correlation, Pearson correlation and Whitney Mann U test helped examining the robustness and accuracy of population AIF, correlations between DCE-MRI parameters and their association to T stage and HPV status, respectively. Results: The population AIF was robust but differed from individual AIFs. There was significant correlation between KtransTM/ETM and ve, TM/ETM, and KtransTM/ETM and Kep, TM/ETM. ABrix and AUCs correlated for lymph nodes. Kep, Brix correlated with ABrix, KtransTM/ETM and Kep, TM/ETM for primary tumours. Kep, TM significantly decreased with increasing T stage. Both the correlations and the parameters' association to T stage were stronger for HPV negative lesions. Conclusions: Individual AIF was preferred for accurate pharmacokinetic modelling of DCE-MRI. DCE-MRI parameters and their correlations were affected by the lesion type, HPV status and T staging.

8.
EJNMMI Res ; 14(1): 1, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38169031

ABSTRACT

BACKGROUND: In parametric PET, kinetic parameters are extracted from dynamic PET images. It is not commonly used in clinical practice because of long scan times and the requirement for an arterial input function (AIF). To address these limitations, we designed an 18F-fluorodeoxyglucose (18F-FDG) triple injection dynamic PET protocol for brain imaging with a standard field of view PET scanner using a 24-min imaging window and an input function modeled using measurements from a region of interest placed over the left ventricle. METHODS: To test the protocol in 6 healthy participants, we examined the quality of voxel-based maps of kinetic parameters in the brain generated using the two-tissue compartment model and compared estimated parameter values with previously published values. We also utilized data from a 36-min validation imaging window to compare (1) the modeled AIF against the input function measured in the validation window; and (2) the net influx rate ([Formula: see text]) computed using parameter estimates from the short imaging window against the net influx rate obtained using Patlak analysis in the validation window. RESULTS: Compared to the AIF measured in the validation window, the input function estimated from the short imaging window achieved a mean area under the curve error of 9%. The voxel-wise Pearson's correlation between [Formula: see text] estimates from the short imaging window and the validation imaging window exceeded 0.95. CONCLUSION: The proposed 24-min triple injection protocol enables parametric 18F-FDG neuroimaging with noninvasive estimation of the AIF from cardiac images using a standard field of view PET scanner.

9.
EJNMMI Phys ; 11(1): 12, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38291187

ABSTRACT

Pharmacokinetic positron emission tomography (PET) studies rely on the measurement of the arterial input function (AIF), which represents the time-activity curve of the radiotracer concentration in the blood plasma. Traditionally, obtaining the AIF requires invasive procedures, such as arterial catheterization, which can be challenging, time-consuming, and associated with potential risks. Therefore, the development of non-invasive techniques for AIF measurement is highly desirable. This study presents a detector for the non-invasive measurement of the AIF in PET studies. The detector is based on the combination of scintillation fibers and silicon photomultipliers (SiPMs) which leads to a very compact and rugged device. The feasibility of the detector was assessed through Monte Carlo simulations conducted on mouse tail and human wrist anatomies studying relevant parameters such as energy spectrum, detector efficiency and minimum detectable activity (MDA). The simulations involved the use of 18F and 68Ga isotopes, which exhibit significantly different positron ranges. In addition, several prototypes were built in order to study the different components of the detector including the scintillation fiber, the coating of the fiber, the SiPMs, and the operating configuration. Finally, the simulations were compared with experimental measurements conducted using a tube filled with both 18F and 68Ga to validate the obtained results. The MDA achieved for both anatomies (approximately 1000 kBq/mL for mice and 1 kBq/mL for humans) falls below the peak radiotracer concentrations typically found in PET studies, affirming the feasibility of conducting non-invasive AIF measurements with the fiber detector. The sensitivity for measurements with a tube filled with 18F (68Ga) was 1.2 (2.07) cps/(kBq/mL), while for simulations, it was 2.81 (6.23) cps/(kBq/mL). Further studies are needed to validate these results in pharmacokinetic PET studies.

10.
NMR Biomed ; 37(1): e5038, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712359

ABSTRACT

The arterial input function (AIF) plays a crucial role in estimating quantitative perfusion properties from dynamic susceptibility contrast (DSC) MRI. An important issue, however, is that measuring the AIF in absolute contrast-agent concentrations is challenging, due to uncertainty in relation to the measured R 2 ∗ -weighted signal, signal depletion at high concentration, and partial-volume effects. A potential solution could be to derive the AIF from separately acquired dynamic contrast enhanced (DCE) MRI data. We aim to compare the AIF determined from DCE MRI with the AIF from DSC MRI, and estimated perfusion coefficients derived from DSC data using a DCE-driven AIF with perfusion coefficients determined using a DSC-based AIF. AIFs were manually selected in branches of the middle cerebral artery (MCA) in both DCE and DSC data in each patient. In addition, a semi-automatic AIF-selection algorithm was applied to the DSC data. The amplitude and full width at half-maximum of the AIFs were compared statistically using the Wilcoxon rank-sum test, applying a 0.05 significance level. Cerebral blood flow (CBF) was derived with different AIF approaches and compared further. The results showed that the AIFs extracted from DSC scans yielded highly variable peaks across arteries within the same patient. The semi-automatic DSC-AIF had significantly narrower width compared with the manual AIFs, and a significantly larger peak than the manual DSC-AIF. Additionally, the DCE-based AIF provided a more stable measurement of relative CBF and absolute CBF values estimated with DCE-AIFs that were compatible with previously reported values. In conclusion, DCE-based AIFs were reproduced significantly better across vessels, showed more realistic profiles, and delivered more stable and reasonable CBF measurements. The DCE-AIF can, therefore, be considered as an alternative AIF source for quantitative perfusion estimations in DSC MRI.


Subject(s)
Arteries , Contrast Media , Humans , Reproducibility of Results , Magnetic Resonance Imaging/methods , Algorithms , Perfusion
11.
EJNMMI Phys ; 10(1): 72, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37987874

ABSTRACT

Full quantification of Positron Emission Tomography (PET) requires an arterial input function (AIF) for measurement of certain targets, or using particular radiotracers, or for the quantification of specific outcome measures. The AIF represents the measurement of radiotracer concentrations in the arterial blood plasma over the course of the PET examination. Measurement of the AIF is prone to error as it is a composite measure created from the combination of multiple measurements of different samples with different equipment, each of which can be sources of measurement error. Moreover, its measurement requires a high degree of temporal granularity for early time points, which necessitates a compromise between quality and quantity of recorded samples. For these reasons, it is often desirable to fit models to this data in order to improve its quality before using it for quantification of radiotracer binding in the tissue. The raw observations of radioactivity in arterial blood and plasma samples are derived from radioactive decay, which is measured as a number of recorded counts. Count data have several specific properties, including the fact that they cannot be negative as well as a particular mean-variance relationship. Poisson regression is the most principled modelling strategy for working with count data, as it both incorporates and exploits these properties. However, no previous studies to our knowledge have taken this approach, despite the advantages of greater efficiency and accuracy which result from using the appropriate distributional assumptions. Here, we implement a Poisson regression modelling approach for the AIF as proof-of-concept of its application. We applied both parametric and non-parametric models for the input function curve. We show that a negative binomial distribution is a more appropriate error distribution for handling overdispersion. Furthermore, we extend this approach to a hierarchical non-parametric model which is shown to be highly resilient to missing data. We thus demonstrate that Poisson regression is both feasible and effective when applied to AIF data, and propose that this is a promising strategy for modelling blood count data for PET in future.

12.
Insights Imaging ; 14(1): 161, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37775600

ABSTRACT

OBJECTIVES: To investigate whether utilizing a convolutional neural network (CNN)-based arterial input function (AIF) improves the volumetric estimation of core and penumbra in association with clinical measures in stroke patients. METHODS: The study included 160 acute ischemic stroke patients (male = 87, female = 73, median age = 73 years) with approval from the institutional review board. The patients had undergone CTP imaging, NIHSS and ASPECTS grading. convolutional neural network (CNN) model was trained to fit a raw AIF curve to a gamma variate function. CNN AIF was utilized to estimate the core and penumbra volumes which were further validated with clinical scores. RESULTS: Penumbra estimated by CNN AIF correlated positively with the NIHSS score (r = 0.69; p < 0.001) and negatively with the ASPECTS (r = - 0.43; p < 0.001). The CNN AIF estimated penumbra and core volume matching the patient symptoms, typically in patients with higher NIHSS (> 20) and lower ASPECT score (< 5). In group analysis, the median CBF < 20%, CBF < 30%, rCBF < 38%, Tmax > 10 s, Tmax > 10 s volumes were statistically significantly higher (p < .05). CONCLUSIONS: With inclusion of the CNN AIF in perfusion imaging pipeline, penumbra and core estimations are more reliable as they correlate with scores representing neurological deficits in stroke. CRITICAL RELEVANCE STATEMENT: With CNN AIF perfusion imaging pipeline, penumbra and core estimations are more reliable as they correlate with scores representing neurological deficits in stroke.

13.
Neuroimage ; 278: 120284, 2023 09.
Article in English | MEDLINE | ID: mdl-37507078

ABSTRACT

PURPOSE: In Dynamic contrast-enhanced MRI (DCE-MRI), Arterial Input Function (AIF) has been shown to be a significant contributor to uncertainty in the estimation of kinetic parameters. This study is to assess the feasibility of using a deep learning network to estimate local Capillary Input Function (CIF) to estimate blood-brain barrier (BBB) permeability, while reducing the required scan time. MATERIALS AND METHOD: A total of 13 healthy subjects (younger (<40 y/o): 8, older (> 67 y/o): 5) were recruited and underwent 25-min DCE-MRI scans. The 25 min data were retrospectively truncated to 10 min to simulate a reduced scan time of 10 min. A deep learning network was trained to predict the CIF using simulated tissue contrast dynamics with two vascular transport models. The BBB permeability (PS) was measured using 3 methods: (i) Ca-25min, using DCE-MRI data of 25 min with individually sampled AIF (Ca); (ii) Ca-10min, using truncated 10min data with AIF (Ca); and (iii) Cp-10min, using truncated 10 min data with CIF (Cp). The PS estimates from the Ca-25min method were used as reference standard values to assess the accuracy of the Ca-10min and Cp-10min methods in estimating the PS values. RESULTS: When compared to the reference method(Ca-25min), the Ca-10min and Cp-10min methods resulted in an overestimation of PS by 217 ± 241 % and 48.0 ± 30.2 %, respectively. The Bland Altman analysis showed that the mean difference from the reference was 8.85 ± 1.78 (x10-4 min-1) with the Ca-10min, while it was reduced to 1.63 ± 2.25 (x10-4 min-1) with the Cp-10min, resulting in an average reduction of 81%. The limits of agreement also reduced by up to 39.2% with the Cp-10min. We found a 75% increase of BBB permeability in the gray matter and a 35% increase in the white matter, when comparing the older group to the younger group. CONCLUSIONS: We demonstrated the feasibility of estimating the capillary-level input functions using a deep learning network. We also showed that this method can be used to estimate subtle age-related changes in BBB permeability with reduced scan time, without compromising accuracy. Moreover, the trained deep learning network can automatically select CIF, reducing the potential uncertainty resulting from manual user-intervention.


Subject(s)
Blood-Brain Barrier , Deep Learning , Humans , Blood-Brain Barrier/diagnostic imaging , Contrast Media , Retrospective Studies , Magnetic Resonance Imaging/methods , Capillary Permeability , Permeability , Reproducibility of Results
14.
Eur J Nucl Med Mol Imaging ; 50(12): 3538-3557, 2023 10.
Article in English | MEDLINE | ID: mdl-37460750

ABSTRACT

BACKGROUND: Positron emission tomography (PET) scanning is an important diagnostic imaging technique used in disease diagnosis, therapy planning, treatment monitoring, and medical research. The standardized uptake value (SUV) obtained at a single time frame has been widely employed in clinical practice. Well beyond this simple static measure, more detailed metabolic information can be recovered from dynamic PET scans, followed by the recovery of arterial input function and application of appropriate tracer kinetic models. Many efforts have been devoted to the development of quantitative techniques over the last couple of decades. CHALLENGES: The advent of new-generation total-body PET scanners characterized by ultra-high sensitivity and long axial field of view, i.e., uEXPLORER (United Imaging Healthcare), PennPET Explorer (University of Pennsylvania), and Biograph Vision Quadra (Siemens Healthineers), further stimulates valuable inspiration to derive kinetics for multiple organs simultaneously. But some emerging issues also need to be addressed, e.g., the large-scale data size and organ-specific physiology. The direct implementation of classical methods for total-body PET imaging without proper validation may lead to less accurate results. CONCLUSIONS: In this contribution, the published dynamic total-body PET datasets are outlined, and several challenges/opportunities for quantitation of such types of studies are presented. An overview of the basic equation, calculation of input function (based on blood sampling, image, population or mathematical model), and kinetic analysis encompassing parametric (compartmental model, graphical plot and spectral analysis) and non-parametric (B-spline and piece-wise basis elements) approaches is provided. The discussion mainly focuses on the feasibilities, recent developments, and future perspectives of these methodologies for a diverse-tissue environment.


Subject(s)
Algorithms , Positron-Emission Tomography , Humans , Kinetics , Positron-Emission Tomography/methods
15.
J Cardiovasc Magn Reson ; 25(1): 35, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37344848

ABSTRACT

BACKGROUND: First-pass perfusion imaging in magnetic resonance imaging (MRI) is an established method to measure myocardial blood flow (MBF). An obstacle for accurate quantification of MBF is the saturation of blood pool signal intensity used for arterial input function (AIF). The objective of this project was to validate a new simplified method for AIF estimation obtained from single-bolus and single sequence perfusion measurements. The reference MBF was measured simultaneously on 13N-ammonia positron emission tomography (PET). METHODS: Sixteen patients with clinically confirmed myocardial ischemia were imaged in a clinical whole-body PET-MRI system. PET perfusion imaging was performed in a 10-min acquisition after the injection of 10 mCi of 13N-ammonia. The MRI perfusion acquisition started simultaneously with the start of the PET acquisition after the injection of a 0.075 mmol/kg gadolinium contrast agent. Cardiac stress imaging was initiated after the administration of regadenoson 20 s prior to PET-MRI scanning. The saturation part of the MRI AIF data was modeled as a gamma variate curve, which was then estimated for a true AIF by minimizing a cost function according to various boundary conditions. A standard AHA 16-segment model was used for comparative analysis of absolute MBF from PET and MRI. RESULTS: Overall, there were 256 segments in 16 patients, mean resting perfusion for PET was 1.06 ± 0.34 ml/min/g and 1.04 ± 0.30 ml/min/g for MRI (P = 0.05), whereas mean stress perfusion for PET was 2.00 ± 0.74 ml/min/g and 2.12 ± 0.76 ml/min/g for MRI (P < 0.01). Linear regression analysis in MBF revealed strong correlation (r = 0.91, slope = 0.96, P < 0.001) between PET and MRI. Myocardial perfusion reserve, calculated from the ratio of stress MBF over resting MBF, also showed a strong correlation between MRI and PET measurements (r = 0.82, slope = 0.81, P < 0.001). CONCLUSION: The results demonstrated the feasibility of the simplified AIF estimation method for the accurate quantification of MBF by MRI with single sequence and single contrast injection. The MRI MBF correlated strongly with PET MBF obtained simultaneously. This post-processing technique will allow easy transformation of clinical perfusion imaging data into quantitative information.


Subject(s)
Ammonia , Myocardial Perfusion Imaging , Humans , Coronary Circulation/physiology , Predictive Value of Tests , Magnetic Resonance Imaging/methods , Positron-Emission Tomography , Perfusion , Magnetic Resonance Spectroscopy , Myocardial Perfusion Imaging/methods
16.
Cancers (Basel) ; 15(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37190282

ABSTRACT

Dynamic contrast-enhanced MRI (DCE) is an emerging modality in the study of vertebral body malignancies. DCE-MRI analysis relies on a pharmacokinetic model, which assumes that contrast uptake is simultaneous in the feeding of arteries and tissues of interest. While true in the highly vascularized brain, the perfusion of the spine is delayed. This delay of contrast reaching vertebral body lesions can affect DCE-MRI analyses, leading to misdiagnosis for the presence of active malignancy in the bone marrow. To overcome the limitation of delayed contrast arrival to vertebral body lesions, we shifted the arterial input function (AIF) curve over a series of phases and recalculated the plasma volume values (Vp) for each phase shift. We hypothesized that shifting the AIF tracer curve would better reflect actual contrast perfusion, thereby improving the accuracy of Vp maps in metastases. We evaluated 18 biopsy-proven vertebral body metastases in which standard DCE-MRI analysis failed to demonstrate the expected increase in Vp. We manually delayed the AIF curve for multiple phases, defined as the scan-specific phase temporal resolution, and analyzed DCE-MRI parameters with the new AIF curves. All patients were found to require at least one phase-shift delay in the calculated AIF to better visualize metastatic spinal lesions and improve quantitation of Vp. Average normalized Vp values were 1.78 ± 1.88 for zero phase shifts (P0), 4.72 ± 4.31 for one phase shift (P1), and 5.59 ± 4.41 for two phase shifts (P2). Mann-Whitney U tests obtained p-values = 0.003 between P0 and P1, and 0.0004 between P0 and P2. This study demonstrates that image processing analysis for DCE-MRI in patients with spinal metastases requires a careful review of signal intensity curve, as well as a possible adjustment of the phase of aortic AIF to increase the accuracy of Vp.

17.
Phys Med Biol ; 68(11)2023 05 30.
Article in English | MEDLINE | ID: mdl-37164022

ABSTRACT

Purpose.Dynamic positron emission tomography (dPET) requires the acquisition of the arterial input function (AIF), conventionally obtained via invasive arterial blood sampling. To obtain the AIF non-invasively, our group developed and combined two novel solutions consisting of (1) a detector, placed on a patient's wrist during the PET scans to measure the radiation leaving the wrist and (2) a Geant4-based Monte Carlo simulation software. The simulations require patient-specific wrist geometry. The aim of this study was to develop a graphical user interface (GUI) allowing the user to import 2D ultrasound scans of a patient's wrist, and measure the wrist features needed to calculate the AIF.Methods.The GUI elements were implemented using Qt5 and VTK-8.2.0. The user imports a patient's wrist ultrasound scans, measures the radial artery and veins' surface and depth to model a wrist phantom, then specifies the radioactive source used during the dPET scan. The phantom, the source, and the number of decay events are imported into the Geant4-based Monte Carlo software to run a simulation. In this study, 100 million decays of18F and68Ga were simulated in a wrist phantom designed based on an ultrasound scan. The detector's efficiency was calculated and the results were analyzed using a clinical data processing algorithm developed in a previous study.Results.The detector's total efficiency decreased by 3.5% for18F and by 51.7% for68Ga when using a phantom based on ultrasound scans compared to a generic wrist phantom. Similarly, the data processing algorithm's accuracy decreased when using the patient-specific phantom, giving errors greater than 1.0% for both radioisotopes.Conclusions.This toolkit enables the user to run Geant4-based Monte Carlo simulations for dPET detector development applications using a patient-specific wrist phantom. Leading to a more precise simulation of the developed detector during dPET and the calculation of a personalized AIF.


Subject(s)
Positron-Emission Tomography , Software , Humans , Positron-Emission Tomography/methods , Computer Simulation , Algorithms , Wrist , Monte Carlo Method , Phantoms, Imaging
18.
Mol Imaging Biol ; 25(4): 638-647, 2023 08.
Article in English | MEDLINE | ID: mdl-37166575

ABSTRACT

PURPOSE: We demonstrated earlier in mouse models of pancreatic ductal adenocarcinoma (PDA) that Ktrans derived from dynamic contrast-enhanced (DCE) MRI detected microvascular effect induced by PEGPH20, a hyaluronidase which removes stromal hyaluronan, leading to reduced interstitial fluid pressure in the tumor (Clinical Cancer Res (2019) 25: 2314-2322). How the choice of pharmacokinetic (PK) model and arterial input function (AIF) may impact DCE-derived markers for detecting such an effect is not known. PROCEDURES: Retrospective analyses of the DCE-MRI of the orthotopic PDA model are performed to examine the impact of individual versus group AIF combined with Tofts model (TM), extended-Tofts model (ETM), or shutter-speed model (SSM) on the ability to detect the microvascular changes induced by PEGPH20 treatment. RESULTS: Individual AIF exhibit a marked difference in peak gadolinium concentration. However, across all three PK models, kep values show a significant correlation between individual versus group-AIF (p < 0.01). Regardless individual or group AIF, when kep is obtained from fitting the DCE-MRI data using the SSM, kep shows a significant increase after PEGPH20 treatment (p < 0.05 compared to the baseline); %change of kep from baseline to post-treatment is also significantly different between PEGPH20 versus vehicle group (p < 0.05). In comparison, when kep is derived from the TM, only the use of individual AIF leads to a significant increase of kep after PEGPH20 treatment, whereas the %change of kep is not different between PEGPH20 versus vehicle group. Group AIF but not individual AIF allows detection of a significant increase of Vp (derived from the ETM) in PEGPH20 versus vehicle group (p < 0.05). Increase of Vp is consistent with a large increase of mean capillary lumen area estimated from immunostaining. CONCLUSION: Our results suggest that kep derived from SSM and Vp from ETM, both using group AIF, are optimal for the detection of microvascular changes induced by stroma-directed drug PEGPH20. These analyses provide insights in the choice of PK model and AIF for optimal DCE protocol design in mouse pancreatic cancer models.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Contrast Media/pharmacokinetics , Retrospective Studies , Image Enhancement/methods , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy , Disease Models, Animal , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/drug therapy , Magnetic Resonance Imaging/methods , Reproducibility of Results , Pancreatic Neoplasms
19.
Front Physiol ; 14: 1074052, 2023.
Article in English | MEDLINE | ID: mdl-37035658

ABSTRACT

Introduction: Dynamic positron emission tomography (PET) and the application of kinetic models can provide important quantitative information based on its temporal information. This however requires arterial blood sampling, which can be challenging to acquire. Nowadays, state-of-the-art PET/CT systems offer fully automated, whole-body (WB) kinetic modelling protocols using image-derived input functions (IDIF) to replace arterial blood sampling. Here, we compared the validity of an automatic WB kinetic model protocol to the reference standard arterial input function (AIF) for both clinical and research settings. Methods: Sixteen healthy participants underwent dynamic WB [18F]FDG scans using a continuous bed motion PET/CT system with simultaneous arterial blood sampling. Multiple processing pipelines that included automatic and manually generated IDIFs derived from the aorta and left ventricle, with and without motion correction were compared to the AIF. Subsequently generated quantitative images of glucose metabolism were compared to evaluate performance of the different input functions. Results: We observed moderate to high correlations between IDIFs and the AIF regarding area under the curve (r = 0.49-0.89) as well as for the cerebral metabolic rate of glucose (CMRGlu) (r = 0.68-0.95). Manual placing of IDIFs and motion correction further improved their similarity to the AIF. Discussion: In general, the automatic vendor protocol is a feasible approach for the quantification of CMRGlu for both, clinical and research settings where expertise or time is not available. However, we advise on a rigorous inspection of the placement of the volume of interest, the resulting IDIF, and the quantitative values to ensure valid interpretations. In protocols requiring longer scan times or where cohorts are prone to involuntary movement, manual IDIF definition with additional motion correction is recommended, as this has greater accuracy and reliability.

20.
Phys Med Biol ; 68(8)2023 04 07.
Article in English | MEDLINE | ID: mdl-36944257

ABSTRACT

Objective.Blood pool region of interest (ROI) data extracted from the field of view of a PET scanner can be impacted by both dispersive and background effects. This circumstance compromises the ability to correctly extract the arterial input function (AIF) signal. The paper explores a novel approach to addressing this difficulty.Approach.The method involves representing the AIF in terms of the whole-body impulse response (IR) to the injection profile. Analysis of a collection/population of directly sampled arterial data sets allows the statistical behaviour of the tracer's impulse response to be evaluated. It is proposed that this information be used to develop a penalty term for construction of a data-adaptive method of regularisation estimator of the AIF when dispersive and/or background effects maybe impacting the blood pool ROI data.Main results.Computational efficiency of the approach derives from the linearity of the impulse response representation of the AIF and the ability to substantially rely on quadratic programming techniques for numerical implementation. Data from eight different tracers, used in PET cancer imaging studies, are considered. Sample image-based AIF extractions for brain studies with:18F-labeled fluoro-deoxyglucose and fluoro-thymidine (FLT),11C-labeled carbon dioxide (CO2) and15O-labeled water (H2O) are presented. Results are compared to the true AIF based on direct arterial sampling. Formal numerical simulations are used to evaluate the performance of the AIF extraction method when the ROI data has varying amounts of contamination, in comparison to a direct approach that ignores such effects. It is found that even with quite small amounts of contamination, the mean squared error of the regularised AIF is significantly better than the error associated with direct use of the ROI data.Significance.The proposed IR-based AIF extraction scheme offers a practical methodological approach for situations where the available image ROI data may be contaminated by background and/or dispersion effects.


Subject(s)
Arteries , Brain , Positron-Emission Tomography/methods , Algorithms , Head
SELECTION OF CITATIONS
SEARCH DETAIL