Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.290
Filter
1.
Ecol Evol ; 14(7): e11590, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966244

ABSTRACT

Numerous factors influence mountain biodiversity variation across elevational gradients and recognizing the relative importance is vital for understanding species distribution mechanisms. We examined oribatid mites at nine elevations (from 600 to 2200 m a.s.l) and four vegetation types from mixed coniferous and broad-leaved forests to alpine tundra on Changbai Mountain. We assessed the contribution of environmental factors (climatic and local factors) and spatial processes (geographic or elevation distances) to oribatid mite community assembly and identified 59 oribatid mite species from 38 families and 51 genera. With increasing elevation, species richness and the Shannon index declined significantly, whereas abundance followed a hump-shaped trend. Soil TP, NH4 +-N, MAT, MAP, and elevation were the critical variables shaping oribatid mite communities based on random forest analysis. Moreover, environmental and spatial factors, and oribatid mite communities were significantly correlated based on Mantel and partial Mantel tests. Local characteristics (3.9%), climatic factors (1.9%), and spatial filtering (8.8%) played crucial roles in determining oribatid mite communities across nine elevational bands (based on variation partitioning analyses of abundance data). Within the same vegetation types, spatial processes had relatively little effects, with local characteristics the dominant drivers of oribatid mite community variation. Environmental and spatial filters together shape oribatid mite community assembly and their relative roles varied with elevation and vegetation type. These findings are crucial for the conservation, restoration, and management of Changbai mountain ecosystems in the context of climate change, along with the prediction of future vertical biotic gradient pattern evolution.

2.
Food Chem ; 458: 140302, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38968706

ABSTRACT

Texture-modified, multi-nutrient composite foods are essential in clinical treatment for dysphagia individuals. Herein, fibrous whey protein-stabilized emulsion and different crystalline starches (wheat, corn, rice, potato, sweet potato, cassava, mung bean and pea) were used to structure composite emulsion gels (CEGs). These CEGs then underwent 3D printing to explore the feasibility of developing a dysphagia diet. The network of molded CEGs was mainly maintained by hydrophobic interactions and hydrogen bonds. Rice and cassava starches were better suited for structuring soft-textured CEGs. Compared with molded CEGs, 3D printing decreased hydrogen bonds and the compactness of the nano-aggregate structure within the gel system, forming a looser gel network and softening the CEGs. Interestingly, these effects were more pronounced for the CEGs with high initial hardness. This study provided new strategy to fabricate CEGs as dysphagia diet using fibrous whey protein and starch, and to design texture-modified foods for patients using 3D printing.

3.
Food Chem ; 458: 140188, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38964098

ABSTRACT

Oleogels have been used in the gelled surimi products to replace animal fats due to its structure characteristics. The effect of structure characteristics in fish oil oleogels on the mechanism of oil/water retention was investigated in meat emulsions. Beeswax assembly improved the oil and water retention. The unsaturation degree of fatty acids lowered the mobility of bound water, immobilized water as well as bound fat in the fish oil oleogel, but enhanced the mobility of free water and protons of unsaturated fatty acids. Beeswax addition and oil phase characteristics could enhance ß-sheets, disulfide bonds and hydrophobic force to improve the viscoelasticity, gel strength and oil/water retention. Beeswax assembly facilitated the tight micro-sol network and filling effect, and high unsaturation degree promoted the emulsification effect, thus reducing phase transition temperature and juice loss. The study could lay the foundation for development of gelled shrimp meat products with EPA and DHA.

4.
Water Res ; 261: 122001, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38964215

ABSTRACT

Impounded lakes are often interconnected in large-scale water diversion projects to form a coordinated system for water allocation and regulation. The alternating runoff and transferred water can significantly impact local ecosystems, which are initially reflected in the sensitive phytoplankton. Nonetheless, limited information is available on the temporal dynamics and assembly patterns of phytoplankton community in impounded lakes responding to continuous and periodic water diversion. Herein, a long-term monitoring from 2013 to 2020 were conducted to systematically investigate the response of phytoplankton community, including its characteristics, stability, and the ecological processes governing community assembly, in representative impounded lakes to the South-to-North Water Diversion Project (SNWDP) in China. In the initial stage of the SNWDP, the phytoplankton diversity indices experienced a decrease during both non-water diversion periods (8.5 %∼21.2 %) and water diversion periods (5.6 %∼12.2 %), implying a disruption in the aquatic ecosystem. But the regular delivery of high-quality water from the Yangtze River gradually increased phytoplankton diversity and mediated ecological assembly processes shifting from stochastic to deterministic. Meanwhile, reduced nutrients restricted the growth of phytoplankton, pushing species to interact more closely to maintain the functionality and stability of the co-occurrence network. The partial least squares path model revealed that ecological process (path coefficient = 0.525, p < 0.01) and interspecies interactions in networks (path coefficient = -0.806, p < 0.01) jointly influenced the keystone and dominant species, ultimately resulting in an improvement in stability (path coefficient = 0.878, p < 0.01). Overall, the phytoplankton communities experienced an evolutionary process from short-term disruption to long-term adaptation, demonstrating resilience and adaptability in response to the challenges posed by the SNWDP. This study revealed the response and adaptation mechanism of phytoplankton communities in impounded lakes to water diversion projects, which is helpful for maintaining the lake ecological health and formulating rational water management strategies.

5.
Angew Chem Int Ed Engl ; : e202410722, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965047

ABSTRACT

In this work, a noncoplanar terphenyl served as building block to synthesize a novel 3,3'-substituted bipyridyl ligand (L1) which further reacted with binuclear half-sandwich units A/B, giving rise to two aesthetical 41 metalla-knots in high yields via coordination-driven self-assembly strategy. Furthermore, given the inherent compactness of the 41 metalla-knots, it creates favorable conditions for the emergence of steric repulsion. We focused on progressively introducing nitrogen atoms featuring lone pair electrons (LPEs) into ligand L1 to manipulate the balance of H···H/LPEs···LPEs steric repulsion during the assembly process, ultimately achieving controlled assembly from 41 metalla-knots to the pseudo-Solomon link and then to molecular tweezer-like assembly facilitated by stacking interactions. All the assemblies were well characterized by solution-state NMR techniques, ESI-TOF/MS, and single-crystal X-ray diffraction. The evolutionary process of topological architectures is equivalent to visualizing the synergistic effect of steric hindrance and stacking interactions on structural assembly, providing a new avenue for achieving the controlled synthesis of different topologies.

6.
Small ; : e2401845, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966869

ABSTRACT

Drug-resistant bacterial infections and their lipopolysaccharide-related inflammatory complications continue to pose significant challenges in traditional treatments. Inspired by the rapid initiation of resident macrophages to form aggregates for efficient antibacterial action, this study proposes a multifunctional and enhanced antibacterial strategy through the construction of novel biomimetic cell membrane polypeptide nanonets (R-DPB-TA-Ce). The design involves the fusion of end-terminal lipidated polypeptides containing side-chain cationic boronic acid groups (DNPLBA) with cell membrane intercalation engineering (R-DPB), followed by coordination with the tannic acid-cerium complex (TA-Ce) to assemble into a biomimetic nanonet through boronic acid-polyphenol-metal ion interactions. In addition to the ability of RAW 264.7 macrophages cell membrane components' (R) ability to neutralize lipopolysaccharide (LPS), R-DPB-TA-Ce demonstrated enhanced capture of bacteria and its LPS, leveraging nanoconfinement-enhanced multiple interactions based on the boronic acid-polyphenol nanonets skeleton combined with polysaccharide. Utilizing these advantages, indocyanine green (ICG) is further employed as a model drug for delivery, showcasing the exceptional treatment effect of R-DPB-TA-Ce as a new biomimetic assembled drug delivery system in antibacterial, anti-inflammatory, and wound healing promotion. Thus, this strategy of mimicking macrophage aggregates is anticipated to be further applicable to various types of cell membrane engineering for enhanced antibacterial treatment.

7.
J Sci Food Agric ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967325

ABSTRACT

BACKGROUND: Sturgeon cartilage type II collagen peptides (SHCPs) can self-assemble and be used to prepare collagen peptide assemblies. Self-assembled peptides have great potential for applications in the food industry. In the present study, self-assembled peptides were prepared from sturgeon cartilage and then characterized. RESULTS: The SHCPs self-assembled and formed collagen peptide assemblies. After response surface experiment optimization, the optimal enzyme digestion process comprised 43.1 °C, 3.37 h and 0.96% enzyme addition, and the peptide yield was 78.46%. Physicochemical analysis showed that the SHCPs were amphiphilic, with an average molecular weight of 1081 Da, and were rich in hydrophobic amino acids. Peptide sequence identification showed that the peptides of SHCPs with polar amino acids followed by hydrophobic amino acids could be self-assembled through hydrogen bonding and hydrophobic interaction. Through turbidity experiments, Fourier transform infrared spectroscopy and scanning electron microscopy, we demonstrated that SHCPs can self-assemble into reticular and tubular structures under specific conditions. Furthermore, both the SHCPs-Ca and SHCPs-Mg assemblies were stabilized within a pH range consistent with that of the human gastrointestinal tract. CONCLUSION: The present study provides a simple and safe method for preparing novel self-assembled peptide materials from sturgeon by-products, providing a scientific basis for the exploitation of sturgeon cartilage and potentially reducing resource wastage. © 2024 Society of Chemical Industry.

8.
Chemistry ; : e202401909, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972837

ABSTRACT

Modulating the assembly pathway is an indispensable strategy for optimizing the performance of optical materials. However, implementing this strategy is nontrivial for metal nanocluster building blocks, due to the limited functional modification of nanoclusters and complexity of their emission mechanism. In this report, we demonstrate that a gold nanocluster modified by 4,6-diamino-2-pyrimidinethiol (DPT-AuNCs) self-assembles into two distinct aggregation structures in methanol (MeOH)/water mixed solvent, thus exhibiting pathway complexity. Kinetic studies show that DPT-AuNCs firstly assembles into non-luminescent nanofibers (kinetically controlled), which further transforms into strongly luminescent microflowers (thermodynamicallycontrolled). In-depth analysis of the assembly mechanism reveals that the transformation of aggregation structures involves the disassembly of nanofibers and a subsequent nucleation-growth process. Temperature-dependent photoluminescence (PL) spectroscopy and infrared (IR) measurements reveal that inter-cluster hydrogen bonding bridged by solvent molecules and C-H···π interaction are the key factors for emission enhancement. The photoluminescent property of DPT-AuNCs can be controlled by varying the cosolvent in water, enabling DPT-AuNCs to distinguish different kind of alcohols, particularly the isomerism n-propanol (NPA) and isopropanol (IPA). Additionally, he addition of seeds effectively regulate the assembly kinetics of DPT-AuNCs. This study advances our understanding of assembly pathways and improves the luminescent performance of nanoclusters (NCs).

9.
Small ; : e2403099, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973084

ABSTRACT

Bottom-up patterning technology plays a significant role in both nature and synthetic materials, owing to its inherent advantages such as ease of implementation, spontaneity, and noncontact attributes, etc. However, constrained by the uncontrollability of molecular movement, energy interaction, and stress, obtained micropatterns tend to exhibit an inevitable arched outline, resulting in the limitation of applicability. Herein, inspired by auxin's action mode in apical dominance, a versatile strategy is proposed for fabricating precision self-organizing micropatterns with impressive height based on polymerization-induced acropetal migration. The copolymer containing fluorocarbon chains (low surface energy) and tertiary amine (coinitiator) is designed to self-assemble on the surface of the photo-curing system. The selective exposure under a photomask establishes a photocuring boundary and the radicals would be generated on the surface, which is pivotal in generating a vertical concentration difference of monomer. Subsequent heating treatment activates the material continuously transfers from the unexposed area to the exposed area and is accompanied by the obviously vertical upward mass transfer, resulting in the manufacture of a rectilinear profile micropattern. This strategy significantly broadens the applicability of self-organizing patterns, offering the potential to mitigate the complexity and time-consuming limitations associated with top-down methods.

10.
Adv Sci (Weinh) ; : e2403358, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973351

ABSTRACT

Conductive polymer hydrogels exhibit unique electrical, electrochemical, and mechanical properties, making them highly competitive electrode materials for stretchable high-capacity energy storage devices for cutting-edge wearable electronics. However, it remains extremely challenging to simultaneously achieve large mechanical stretchability, high electrical conductivity, and excellent electrochemical properties in conductive polymer hydrogels because introducing soft insulating networks for improving stretchability inevitably deteriorates the connectivity of rigid conductive domain and decreases the conductivity and electrochemical activity. This work proposes a distinct confinement self-assembly and multiple crosslinking strategy to develop a new type of organic-inorganic hybrid conductive hydrogels with biphase interpenetrating cross-linked networks. The hydrogels simultaneously exhibit high conductivity (2000 S m-1), large stretchability (200%), and high electrochemical activity, outperforming existing conductive hydrogels. The inherent mechanisms for the unparalleled comprehensive performances are thoroughly investigated. Elastic all-hydrogel supercapacitors are prepared based on the hydrogels, showing high specific capacitance (212.5 mF cm-2), excellent energy density (18.89 µWh cm-2), and large deformability. Moreover, flexible self-powered luminescent integrated systems are constructed based on the supercapacitors, which can spontaneously shine anytime and anywhere without extra power. This work provides new insights and feasible avenues for developing high-performance stretchable electrode materials and energy storage devices for wearable electronics.

11.
Adv Sci (Weinh) ; : e2403991, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973355

ABSTRACT

Though sterile diet, post-transplantation surgery is a clinical strategy for patient care to prevent the infiltration of gut pathogens, less is known about its effects on the gut microbiome. Here, the gut microbiome dynamics of leukemia patients following a 120-day "sterile-normal" diet strategy posthematopoietic cell transplantation are examined. In contrast to the traditional idea, a sterile diet leads to the lowest gut microbiota diversity (p < 0.05) and short-chain fatty acids, promoted the proliferation of potential pathogens such as Streptococcus (up by 16.93%) and Lactobacillus (up by 40.30%), and 43.32% reduction in nodes and an 85.33% reduction in edges within the microbial interaction's network. Interestingly, a normal diet allows the gut microbiome recovery and significantly promotes the abundance of beneficial bacteria. These results indicate that a sterile diet leads to a collapse of the patient's gut microbiome and promoted the proliferation of potential pathogens. This assay is a starting point for a more sophisticated assessment of the effects of a sterile diet. The work also suggests a basic principle for the re-establishment of microbial equilibrium that supplementation of microbial taxa may be the key to the restoration of the degraded ecosystem.

12.
G3 (Bethesda) ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973709

ABSTRACT

The giant freshwater prawn (Macrobrachium rosenbergii) is a key species in the aquaculture industry in several Asian, African and South American countries. Despite a considerable growth in its production worldwide, the genetic complexities of M. rosenbergii various morphotypes pose challenges in cultivation. This study reports the first chromosome-scale reference genome and a high-quality full-length transcriptome assembly for M. rosenbergii. We employed the PacBio High Fidelity (HiFi) sequencing to obtain an initial draft assembly and further scaffolded it with the chromatin contact mapping (Hi-C) technique to achieve a final assembly of 3.73-Gb with an N50 scaffold length of 33.6 Mb. Repetitive elements constituted nearly 60% of the genome assembly, with simple sequence repeats and retrotransposons being the most abundant. The availability of both the chromosome-scale assembly and the full-length transcriptome assembly enabled us to thoroughly probe alternative splicing events in M. rosenbergii. Among the 2,041 events investigated, exon skipping represented the most prevalent class, followed by intron retention. Interestingly, specific isoforms were observed across multiple tissues. Additionally, within a single tissue type, transcripts could undergo alternative splicing, yielding multiple isoforms. We believe that the availability of a chromosome-level reference genome for M. rosenbergii along with its full-length transcriptome will be instrumental in advancing our understanding of the giant freshwater prawn biology and enhancing its molecular breeding programs, paving the way for the development of M. rosenbergii with valuable traits in commercial aquaculture.

13.
Int J Biol Macromol ; 275(Pt 1): 133441, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955302

ABSTRACT

To improve the techno-functional properties of rapeseed protein (RP), this work tried to regulate the molecular structure of RP via inducing the co-assembly of RP with zein and whey protein (WP). The results showed that WP and zein mainly regulate the folding process of RP through hydrophobic and disulfide bonds, thereby altering the structural conformation and forming stable complex RP (CRP). WP addition not only increased the number of surface charges and hydrophilicity of proteins, but also decreased their sizes, improved the water solubility, as well as the availability of active groups. These changes significantly increased the foaming capacity (from 60 % to 147 %) and in vitro gastric digestion rate (from 10 % to 60 %) of CRP. Besides, WP also contributed to the formation of gels and the regulation of their textural profiles. Comparatively, zein improved the hydrophobicity of CRP and balanced degree of intermolecular forces, which effectively increased the emulsifying activity index of CRP from 22 m2/g to 90 m2/g. Zein decreased the hardness, springiness and water-holding capacity of gel, but increased its gumminess and chewiness. Overall, both WP and zein effectively changed the structural conformation of RP, and improved its techno-functional properties, which provides an effective strategy to modify protein.

14.
Insect Mol Biol ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970387

ABSTRACT

Insect reproductive capacity can affect effective pest control and infertility studies and has become an important focus in recent molecular genetic research. Nucleosome assembly protein (Nap) is highly conserved across multiple species and is involved in forming the sperm nucleus in many species. We used clustered regularly interspaced palindromic repeats/Cas9 technology to knockout BmNap in Bombyx mori and observed that the mutations caused female infertility, whereas male fertility was not affected. BmNap mutants grew and mated normally; however, female mutants laid smaller eggs that could not be fertilised and did not hatch. In addition, female sterility produced by the mutation could be inherited stably via male mutants; therefore, Nap could be used as a potential target for lepidopteran pest control through population regulation. In the current study, we elucidated a new function of BmNap, increased the understanding of the oogenesis regulation network in Lepidoptera and promoted the development of insect sterility technologies.

15.
Front Microbiol ; 15: 1415931, 2024.
Article in English | MEDLINE | ID: mdl-38952450

ABSTRACT

Exploring the effects of seasonal variation on the gut microbiota of cold-water fish plays an important role in understanding the relationship between seasonal variation and cold-water fish. Gut samples of cold-water fish and environmental samples were collected during summer and winter from the lower reaches of the Yalong River. The results of the 16S rRNA sequencing showed that significant differences were identified in the composition and diversity of gut bacteria of cold-water fish. Co-occurrence network complexity of the gut bacteria of cold-water fish was higher in summer compared to winter (Sum: nodes: 256; edges: 20,450; Win: nodes: 580; edges: 16,725). Furthermore, from summer to winter, the contribution of sediment bacteria (Sum: 5.3%; Win: 23.7%) decreased in the gut bacteria of cold-water fish, while the contribution of water bacteria (Sum: 0%; Win: 27.7%) increased. The normalized stochastic ratio (NST) and infer community assembly mechanisms by phylogenetic bin-based null model analysis (iCAMP) showed that deterministic processes played a more important role than stochastic processes in the microbial assembly mechanism of gut bacteria of cold-water fish. From summer to winter, the contribution of deterministic processes to gut bacteria community assembly mechanisms decreased, while the contribution of stochastic processes increased. Overall, these results demonstrated that seasonal variation influenced the gut bacteria of cold-water fish and served as a potential reference for future research to understand the adaptation of fish to varying environments.

16.
Photochem Photobiol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953399

ABSTRACT

Aiming at the application to photodynamic therapy, natural bacteriochlorophyll-a was converted to chemically stable free-base derivatives possessing different kinds of hydrophilic C17-propionate residues. These semi-synthetic bacteriochlorins were found to have self-assembling ability in an aqueous environment and formed stable J-type aggregates in a cell culture medium containing 0.2% DMSO. The electronic absorption spectra of all the sensitizers showed Qy absorption maxima at 754 nm in DMSO as their monomeric states, while a drastic shift of the red-most bands to ca. 880 nm was observed in the aqueous medium. The circular dichroism spectra in the medium showed much intense signals compared to those measured in DMSO, supporting the formation of well-ordered supramolecular structures. By introducing hydrophilic side chains, the bacteriochlorin sensitizers could be dispersed in the aqueous medium as their J-aggregates without the use of any surfactants. Cellular uptake efficiencies as well as photodynamic activities were evaluated using human cervical adenocarcinoma HeLa cells. Among the 11 photosensitizers investigated, the best result was obtained for a charged derivative possessing trimethylammonium terminal (17-CH2CH2COOCH2CH2N+(CH3)3I-) and photocytotoxicity of EC50 = 0.09 µM was achieved by far-red light illumination of 35 J/cm2 from an LED panel (730 nm).

17.
Ergonomics ; : 1-21, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953513

ABSTRACT

This study proposes a systematic approach to address ergonomic factors, including physical, environmental and psychosocial aspects, in solving assembly line balancing problems. A three-stage framework is developed, starting with determining weights for ergonomic risk assessment methods using the interval-valued spherical fuzzy analytical hierarchy process. In the second stage, a fuzzy logic model for integrated ergonomic risk assessment is constructed based on these weights, and the integrated ergonomic risk score is determined. In the third stage, a mathematical model is formulated to minimise the cycle time while balancing the ergonomic risk level. A case study conducted in a wire harness factory validated the effectiveness of the proposed approach, showing a 10-11% improvement in line efficiency and a 12-25% enhancement in ergonomic risk balancing performance. These findings underscore the potential benefits of implementing this approach, which can significantly improve occupational safety and overall performance.


This article presents a practical and systematic approach for enhancing ergonomic conditions in assembly lines. The proposed approach aims to balance the ergonomic risk level while minimising the cycle time by considering physical, environmental and psychosocial risk factors. A case study conducted in a wire harness factory demonstrated significant improvements in balancing ergonomic risks, highlighting the real-world applicability of this research.

18.
Angew Chem Int Ed Engl ; : e202410908, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954489

ABSTRACT

Efficient occlusion of particulate additives into a single crystal has garnered an ever-increasing attention in materials science because it offers a counter-intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spatial distribution of the guest additives within a host crystal remains highly challenging. We herein demonstrate a unique, straightforward method to engineer the spatial distribution of copolymer nanoparticles within calcite (CaCO3) single crystals by judiciously adjusting initial [Ca2+] concentration used for the calcite precipitation. More specifically, polymerization-induced self-assembly is employed to synthesize well-defined and highly anionic poly(3-sulfopropyl methacrylate potassium)41-block-poly(benzyl methacrylate)500 [PSPMA41-PBzMA500] diblock copolymer nanoparticles, which are subsequently used as model additives during the growth of calcite crystals. Impressively, such guest nanoparticles are preferentially occluded into specific regions of calcite depending on the initial [Ca2+] concentration. These unprecedented phenomena are most probably caused by dynamic change in electrostatic interaction between Ca2+ ions and PSPMA41 chains based on systematic investigations. This study not only showcases a significant advancement in controlling the spatial distribution of guest nanoparticles within host crystals, enabling the internal structure of composite crystals to be rationally tailored via a spatioselective occlusion strategy, but also provides new insights into biomineralization.

19.
Neuron ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38955183

ABSTRACT

Brain oscillations are crucial for perception, memory, and behavior. Parvalbumin-expressing (PV) interneurons are critical for these oscillations, but their population dynamics remain unclear. Using voltage imaging, we simultaneously recorded membrane potentials in up to 26 PV interneurons in vivo during hippocampal ripple oscillations in mice. We found that PV cells generate ripple-frequency rhythms by forming highly dynamic cell assemblies. These assemblies exhibit rapid and significant changes from cycle to cycle, varying greatly in both size and membership. Importantly, this variability is not just random spiking failures of individual neurons. Rather, the activities of other PV cells contain significant information about whether a PV cell spikes or not in a given cycle. This coordination persists without network oscillations, and it exists in subthreshold potentials even when the cells are not spiking. Dynamic assemblies of interneurons may provide a new mechanism to modulate postsynaptic dynamics and impact cognitive functions flexibly and rapidly.

20.
Theranostics ; 14(9): 3634-3652, 2024.
Article in English | MEDLINE | ID: mdl-38948059

ABSTRACT

Rationale: Molecular imaging of microenvironment by hypoxia-activatable fluorescence probes has emerged as an attractive approach to tumor diagnosis and image-guided treatment. Difficulties remain in its translational applications due to hypoxia heterogeneity in tumor microenvironments, making it challenging to image hypoxia as a reliable proxy of tumor distribution. Methods: We report a modularized theranostics platform to fluorescently visualize hypoxia via light-modulated signal compensation to overcome tumor heterogeneity, thereby serving as a diagnostic tool for image-guided surgical resection and photodynamic therapy. Specifically, the platform integrating dual modules of fluorescence indicator and photodynamic moderator using supramolecular host-guest self-assembly, which operates cooperatively as a cascaded "AND" logic gate. First, tumor enrichment and specific fluorescence turn-on in hypoxic regions were accessible via tumor receptors and cascaded microenvironment signals as simultaneous inputs of the "AND" gate. Second, image guidance by a lighted fluorescence module and light-mediated endogenous oxygen consumption of a photodynamic module as dual inputs of "AND" gate collaboratively enabled light-modulated signal compensation in situ, indicating homogeneity of enhanced hypoxia-related fluorescence signals throughout a tumor. Results: In in vitro and in vivo analyses, the biocompatible platform demonstrated several strengths including a capacity for dual tumor targeting to progressively facilitate specific fluorescence turn-on, selective signal compensation, imaging-time window extension conducive to precise normalized image-guided treatment, and the functionality of tumor glutathione depletion to improve photodynamic efficacy. Conclusion: The hypoxia-activatable, image-guided theranostic platform demonstrated excellent potential for overcoming hypoxia heterogeneity in tumors.


Subject(s)
Optical Imaging , Theranostic Nanomedicine , Animals , Theranostic Nanomedicine/methods , Humans , Optical Imaging/methods , Mice , Tumor Microenvironment , Cell Line, Tumor , Fluorescent Dyes/chemistry , Photochemotherapy/methods , Neoplasms/diagnostic imaging , Neoplasms/therapy , Mice, Nude , Surgery, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL