Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 203: 161-9, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25701612

ABSTRACT

The ultimate aim of this study was to develop asulacrine (ASL)-loaded long-circulating liposomes to prevent phlebitis during intravenous (i.v.) infusion for chemotherapy. Poly(ethylene)glycol (PEG) and poloxamer 188-modified liposomes (ASL-PEGL and ASL-P188L) were developed, and ASL was loaded using a remote loading method facilitated with a low concentration of sulfobutyl ether-ß-cyclodextrin as a drug solubilizer. The liposomes were characterized in terms of morphology, size, release properties and stability. Pharmacokinetics and venous tissue tolerance of the formulations were simultaneously studied in rabbits following one-hour i.v. infusion via the ear vein. The irritancy was assessed using a rat paw-lift/lick model after subplantar injections. High drug loading 9.0% w/w was achieved with no drug leakage found from ASL-PEGL or ASL-P188L suspended in a 5% glucose solution at 30days. However, a rapid release (leakage) from ASL-PEGL was observed when PBS was used as release medium, partially related to the use of cyclodextrin in drug loading. Post-insertion of poloxamer 188 to the liposomes appeared to be able to restore the drug retention possibly by increasing the packing density of phospholipids in the membrane. In rabbits (n=5), ASL-P188L had a prolonged half-life with no drug precipitation or inflammation in the rabbit ear vein in contrast to ASL solution. Following subplantar (footpad) injections in rats ASL solution induced paw-lick/lift responses in all rats whereas ASL-P188L caused no response (n=8). PEGylation showed less benefit possibly due to the drug 'leakage'. In conclusion, drug precipitation in the vein and the drug mild irritancy may both contribute to the occurrence of phlebitis caused by the ASL solution, and could both be prevented by encapsulation of the drug in liposomes. Poloxamer 188 appeared to be able to 'seal' the liposomal membrane and enhance drug retention. The study also highlighted the importance of bio-relevant in vitro release study in formulation screening.


Subject(s)
Amsacrine/analogs & derivatives , Antineoplastic Agents/administration & dosage , Infusion Pumps/adverse effects , Liposomes/chemistry , Phlebitis/etiology , Poloxamer/chemistry , Polyethylene Glycols/chemistry , Amsacrine/administration & dosage , Amsacrine/adverse effects , Amsacrine/pharmacokinetics , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Chemical Precipitation , Injections/adverse effects , Male , Phlebitis/chemically induced , Phlebitis/prevention & control , Rabbits , Rats, Sprague-Dawley
2.
Int J Pharm ; 473(1-2): 528-35, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25079434

ABSTRACT

To facilitate the development of a liposomal formulation for cancer therapy, the physicochemical properties of asulacrine (ASL), an anticancer drug candidate, were characterized. Nano-liposomes were prepared by thin-film hydration in conjugation with active drug loading using ammonium sulphate and post-insertion with Poloxamer 188. A stability-indicating HPLC assay with diode array detection was developed for the determination of ASL concentrations. The U-shaped pH-solubility profile in aqueous solutions, with a lowest solubility at pH 7.4 (0.843 µg/mL), indicated that ASL is an ampholyte, and dilution or neutralization of acidic drug solutions used in clinical trials with physiological fluids may cause drug precipitation. The basic pKa value measured by absorbance spectroscopy was 6.72. The logD value at pH 3.8 was 1.15 which increased to 3.24 as pH increased to 7.4. ASL was found to be the most stable in acidic conditions and degraded most rapidly in alkaline conditions. An extra-liposomal pH of 5.6 during drug loading was found to be optimal to achieve the highest drug loading (DL) of 4.76% and entrapment efficiency (EE) of 99.9%. At this pH, >90% of ASL was ionized conferring high drug solubility (1mg/mL) and acted as a reservoir of unionized ASL to be transported into liposomal cores. As a suspension the optimized liposomes showed great physicochemical stability for five months at 4°C. In summary, the obtained physicochemical parameters provided insightful information useful to maximise DL into the liposomes, and explain a tendency of drug precipitation of pH-solubilized formulations following intravenous infusion.


Subject(s)
Amsacrine/analogs & derivatives , Antineoplastic Agents/chemistry , Amsacrine/chemistry , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid , Drug Stability , Hydrogen-Ion Concentration , Liposomes , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL