Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Neurogenetics ; 25(1): 33-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38105315

ABSTRACT

Typical retinitis pigmentosa (RP) may not be the only retinal phenotype encountered in ataxia with vitamin E deficiency (AVED). The following short case series describes a novel form of retinopathy in AVED. We describe two patients with AVED belonging to the same consanguineous sibship. Both presented an unusual retinopathy consisting of scattered, multifocal, nummular, hyperautofluorescent atrophic retinal patches. The retinopathy remained stable under vitamin E supplementation. We hypothesize these changes to be the result of arrested AVED-related RP following early supplementation with α-tocopherol acetate.


Subject(s)
Retinitis Pigmentosa , Vitamin E Deficiency , Humans , Carrier Proteins/genetics , Ataxia/complications , Ataxia/genetics , Vitamin E Deficiency/complications , Vitamin E Deficiency/genetics , Retinitis Pigmentosa/complications , Retinitis Pigmentosa/genetics , Pedigree , Mutation
3.
World J Clin Cases ; 10(23): 8271-8276, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36159513

ABSTRACT

BACKGROUND: Ataxia with vitamin E deficiency (AVED) is a type of autosomal recessive cerebellar ataxia. Clinical manifestations include progressive cerebellar ataxia and movement disorders. TTPA gene mutations cause the disease. CASE SUMMARY: We report the case of a 32-year-old woman who presented with progressive cerebellar ataxia, dysarthria, dystonic tremors and a remarkably decreased serum vitamin E concentration. Brain magnetic resonance images showed that her brainstem and cerebellum were within normal limits. Acquired causes of ataxia were excluded. Whole exome sequencing subsequently identified a novel homozygous variant (c.473T>C, p.F158S) of the TPPA gene. Bioinformatic analysis predicted that F185S is harmful to protein function. After supplementing the patient with vitamin E 400 mg three times per day for 2 years, her symptoms remained stable. CONCLUSION: We identified an AVED patient caused by novel mutation in TTPA gene. Our findings widen the known TTPA gene mutation spectrum.

4.
J Med Invest ; 68(3.4): 400-403, 2021.
Article in English | MEDLINE | ID: mdl-34759169

ABSTRACT

Here we report two siblings with ataxia and peripheral neuropathy. One patient showed head tremors. Genetic analysis revealed a mutation in the hepatic α-tocopherol transfer protein (α-TTP) gene (TTPA) on chromosome 8q13. They were diagnosed with ataxia with vitamin E deficiency which is firstly reported in the Philippines. As the symptoms of ataxia with vitamin E deficiency can be alleviated with lifelong vitamin E administration, differential diagnosis from similar syndromes is important. In addition, ataxia with vitamin E deficiency causes movement disorders. Therefore, a common hereditary disease in the Philippines, X-linked dystonia-parkinsonism, could be another differential diagnosis. The Philippines is an archipelago comprising 7,107 islands, and the prevalence of rare hereditary diseases among the populations of small islands is still unclear. For neurologists, establishing a system of genetic diagnosis and counseling in rural areas remains challenging. These unresolved problems should be addressed in the near future. J. Med. Invest. 68 : 400-403, August, 2021.


Subject(s)
Siblings , Vitamin E Deficiency , Ataxia/genetics , Humans , Philippines , Vitamin E Deficiency/complications , Vitamin E Deficiency/diagnosis , Vitamin E Deficiency/genetics
5.
Free Radic Biol Med ; 177: 212-225, 2021 12.
Article in English | MEDLINE | ID: mdl-34699937

ABSTRACT

α-Tocopherol (α-T) is a required dietary nutrient for humans and thus is a vitamin. This narrative review focuses on vitamin E structures, functions, biological determinants and its deficiency symptoms in humans. The mechanisms for the preferential α-T tissue enrichment in the human body include the α-T transfer protein (TTPA) and the preferential metabolism of non-α-T forms. Potential new α-T biomarkers, pharmacokinetic data, and whether there are better approaches to evaluate and set the α-T dietary requirement are discussed. Finally, the possible role of α-T supplements in delay of chronic diseases and the evaluation of vitamin E safety are considered.


Subject(s)
Vitamin E Deficiency , Vitamin E , Diet , Dietary Supplements , Humans , alpha-Tocopherol
6.
Free Radic Biol Med ; 176: 162-175, 2021 11 20.
Article in English | MEDLINE | ID: mdl-34563650

ABSTRACT

α-Tocopherol transfer protein (α-TTP) is so far the only known protein that specifically recognizes α-tocopherol (α-Toc), the most abundant and most biologically active form of vitamin E, in higher animals. α-TTP is highly expressed in the liver where α-TTP selects α-Toc among vitamin E forms taken up via plasma lipoproteins and promotes its secretion to circulating lipoproteins. Thus, α-TTP is a major determinant of plasma α-Toc concentrations. Familial vitamin E deficiency, also called Ataxia with vitamin E deficiency, is caused by mutations in the α-TTP gene. More than 20 different mutations have been found in the α-TTP gene worldwide, among which some missense mutations provided valuable clues to elucidate the molecular mechanisms underlying intracellular α-Toc transport. In hepatocytes, α-TTP catalyzes the vectorial transport of α-Toc from the endocytotic compartment to the plasma membrane (PM) by targeting phosphatidylinositol phosphates (PIPs) such as PI(4,5)P2. By binding PIPs at the PM, α-TTP opens the lid covering the hydrophobic pocket, thus facilitating the release of bound α-Toc to the PM.


Subject(s)
Carrier Proteins , Vitamin E Deficiency , Animals , Carrier Proteins/genetics , Vitamin E , alpha-Tocopherol
7.
Free Radic Biol Med ; 176: 80-91, 2021 11 20.
Article in English | MEDLINE | ID: mdl-34555455

ABSTRACT

This review discusses why the embryo requires vitamin E (VitE) and shows that its lack causes metabolic dysregulation and impacts morphological changes at very early stages in development, which occur prior to when a woman knows she is pregnant. VitE halts the chain reactions of lipid peroxidation (LPO). Metabolomic analyses indicate that thiols become depleted in E- embryos because LPO generates products that require compensation using limited amino acids and methyl donors that are also developmentally relevant. Thus, VitE protects metabolic networks and the integrated gene expression networks that control development. VitE is critical especially for neurodevelopment, which is dependent on trafficking by the α-tocopherol transfer protein (TTPa). VitE-deficient (E-) zebrafish embryos initially appear normal, but by 12 and 24 h post-fertilization (hpf) E- embryos are developmentally abnormal with expression of pax2a and sox10 mis-localized in the midbrain-hindbrain boundary, neural crest cells and throughout the spinal neurons. These patterning defects indicate cells that are especially in need of VitE-protection. They precede obvious morphological abnormalities (cranial-facial malformation, pericardial edema, yolksac edema, skewed body-axis) and impaired behavioral responses to locomotor activity tests. The TTPA gene (ttpa) is expressed at the leading edges of the brain ventricle border. Ttpa knockdown using morpholinos is 100% lethal by 24 hpf, while E- embryo brains are often over- or under-inflated at 24 hpf. Further, E- embryos prior to 24 hpf have increased expression of genes involved in glycolysis and the pentose phosphate pathway, and decreased expression of genes involved in anabolic pathways and transcription. Combined data from both gene expression and the metabolome in E- embryos at 24 hpf suggest that the activity of the mechanistic Target of Rapamycin (mTOR) signaling pathway is decreased, which may impact both metabolism and neurodevelopment. Further evaluation of VitE deficiency in neurogenesis and its subsequent impact on learning and behavior is needed.


Subject(s)
Vitamin E , Zebrafish , Animals , Embryo, Nonmammalian , Female , Humans , Lipid Peroxidation , Models, Animal , Nervous System , Pregnancy , Zebrafish/genetics
9.
Nutrition ; 63-64: 57-60, 2019.
Article in English | MEDLINE | ID: mdl-30933726

ABSTRACT

Vitamin E is an essential micronutrient with relevant antioxidant and anti-inflammatory properties found in plant leaves, seeds, and products derived from their processing. Familial vitamin E deficiency is a rare inherited syndrome characterized by ataxia and peripheral neuropathy with a massive decrease in plasma vitamin E (<0.5 mg/dL). This report describes the history of two siblings suffering from ataxia with vitamin E deficiency who developed premature systemic disorders (atherosclerotic vascular disease, ischemic heart disease, and liver steatosis) in absence of relevant risk factors. The association of neuromuscular symptoms and multiorgan involvement in patients with ataxia with vitamin E deficiency has not been reported to our knowledge. The lack of an effective vitamin E activity seems to be implicated in the pathogenesis of cardiovascular, gastrointestinal, and other diseases in which oxidative stress is a risk factor.


Subject(s)
Ataxia/genetics , Oxidative Stress/genetics , Vitamin E Deficiency/genetics , Adult , Atherosclerosis/genetics , Fatty Liver/genetics , Female , Humans , Male , Middle Aged , Myocardial Ischemia/genetics
10.
CNS Neurol Disord Drug Targets ; 17(3): 161-171, 2018.
Article in English | MEDLINE | ID: mdl-29676235

ABSTRACT

BACKGROUND & OBJECTIVE: Ataxia is clinically characterized by unsteady gait and imbalance. Cerebellar disorders may arise from many causes such as metabolic diseases, stroke or genetic mutations. The genetic causes are classified by mode of inheritance and include autosomal dominant, X-linked and autosomal recessive ataxias. Many years have passed since the description of the Friedreich's ataxia, the most common autosomal recessive ataxia, and mutations in many other genes have now been described. The genetic mutations mostly result in the accumulation of toxic metabolites which causes Purkinje neuron lost and eventual cerebellar dysfunction. Unfortunately, the recessive ataxias remain a poorly known group of diseases and most of them are yet untreatable. CONCLUSION: The aim of this review is to provide a comprehensive clinical profile and to review the currently available therapies. We overview the physiopathology, neurological features and diagnostic approach of the common recessive ataxias. The emphasis is also made on potential drugs currently or soon-to-be in clinical trials. For instance, promising gene therapies raise the possibility of treating differently Friedreich's ataxia, Ataxia-telangiectasia, Wilson's disease and Niemann-Pick disease in the next few years.


Subject(s)
Cerebellar Ataxia/therapy , Clinical Trials as Topic , Animals , Carrier Proteins/genetics , Cerebellar Ataxia/classification , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/physiopathology , Copper-Transporting ATPases/genetics , Humans , Iron-Binding Proteins/genetics , Mixed Function Oxygenases/genetics , Mutation/genetics , Vitamin E Deficiency/complications , Frataxin
11.
Article in English | MEDLINE | ID: mdl-27536460

ABSTRACT

BACKGROUND: The autosomal recessive ataxias are a heterogeneous group of disorders that are characterized by complex neurological features in addition to progressive ataxia. Hyperkinetic movement disorders occur in a significant proportion of patients, and may sometimes be the presenting motor symptom. Presentations with involuntary movements rather than ataxia are diagnostically challenging, and are likely under-recognized. METHODS: A PubMed literature search was performed in October 2015 utilizing pairwise combinations of disease-related terms (autosomal recessive ataxia, ataxia-telangiectasia, ataxia with oculomotor apraxia type 1 (AOA1), ataxia with oculomotor apraxia type 2 (AOA2), Friedreich ataxia, ataxia with vitamin E deficiency), and symptom-related terms (movement disorder, dystonia, chorea, choreoathetosis, myoclonus). RESULTS: Involuntary movements occur in the majority of patients with ataxia-telangiectasia and AOA1, and less frequently in patients with AOA2, Friedreich ataxia, and ataxia with vitamin E deficiency. Clinical presentations with an isolated hyperkinetic movement disorder in the absence of ataxia include dystonia or dystonia with myoclonus with predominant upper limb and cervical involvement (ataxia-telangiectasia, ataxia with vitamin E deficiency), and generalized chorea (ataxia with oculomotor apraxia type 1, ataxia-telangiectasia). DISCUSSION: An awareness of atypical presentations facilitates early and accurate diagnosis in these challenging cases. Recognition of involuntary movements is important not only for diagnosis, but also because of the potential for effective targeted symptomatic treatment.

12.
Neuroscience ; 260: 120-9, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24342566

ABSTRACT

α-Tocopherol (vitamin E) is an essential dietary antioxidant with important neuroprotective functions. α-Tocopherol deficiency manifests primarily in neurological pathologies, notably cerebellar dysfunctions such as spinocerebellar ataxia. To study the roles of α-tocopherol in the cerebellum, we used the α-tocopherol transfer protein for the murine version (Ttpa(-/)(-)) mice which lack the α-tocopherol transfer protein (TTP) and are a faithful model of vitamin E deficiency and oxidative stress. When fed vitamin E-deficient diet, Ttpa(-/)(-) mice had un-detectable levels of α-tocopherol in plasma and several brain regions. Dietary supplementation with α-tocopherol normalized plasma levels of the vitamin, but only modestly increased its levels in the cerebellum and prefrontal cortex, indicating a critical function of brain TTP. Vitamin E deficiency caused an increase in cerebellar oxidative stress evidenced by increased protein nitrosylation, which was prevented by dietary supplementation with the vitamin. Concomitantly, vitamin E deficiency precipitated cellular atrophy and diminished dendritic branching of Purkinje neurons, the predominant output regulator of the cerebellar cortex. The anatomic decline induced by vitamin E deficiency was paralleled by behavioral deficits in motor coordination and cognitive functions that were normalized upon vitamin E supplementation. These observations underscore the essential role of vitamin E and TTP in maintaining CNS function, and support the notion that α-tocopherol supplementation may comprise an effective intervention in oxidative stress-related neurological disorders.


Subject(s)
Purkinje Cells/drug effects , Purkinje Cells/metabolism , alpha-Tocopherol/pharmacology , Animals , Carrier Proteins/genetics , Cerebellum/drug effects , Cerebellum/metabolism , Cerebellum/pathology , Mice , Mice, Knockout , Motor Activity/drug effects , Motor Activity/physiology , Oxidative Stress/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Purkinje Cells/pathology , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Vitamin E Deficiency/pathology , Vitamin E Deficiency/physiopathology , alpha-Tocopherol/blood
SELECTION OF CITATIONS
SEARCH DETAIL