Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Front Immunol ; 15: 1431403, 2024.
Article in English | MEDLINE | ID: mdl-39224589

ABSTRACT

Introduction: There are no reports in LATAM related to longitudinal humoral and cellular response to adenovirus based COVID-19 vaccines in people with Multiple Sclerosis (pwMS) under different disease modifying therapies (DMTs) and neutralization of the Omicron and Wuhan variants of SARS-COV-2. Methods: IgG anti- SARS-COV-2 spike titer were measured in a cohort of 101 pwMS under fingolimod, dimethyl fumarate, cladribine and antiCD20, as well as 28 healthy controls (HC) were measured 6 weeks after vaccination with 2nd dose (Sputnik V or AZD1222) and 3nd dose (homologous or heterologous schedule). Neutralizing capacity was against Omicron (BA.1) and Wuhan (D614G) variants and pseudotyped particles and Cellular response were analyzed. Results: Multivariate regression analysis showed anti-cd20 (ß= -,349, 95% CI: -3655.6 - -369.01, p=0.017) and fingolimod (ß=-,399, 95% CI: -3363.8 - -250.9, p=0.023) treatments as an independent factor associated with low antibody response (r2 adjusted=0.157). After the 2nd dose we found a correlation between total and neutralizing titers against D614G (rho=0.6; p<0.001; slope 0.8, 95%CI:0.4-1.3), with no differences between DMTs. Neutralization capacity was lower for BA.1 (slope 0.3, 95%CI:0.1-0.4). After the 3rd dose, neutralization of BA.1 improved (slope: 0.9 95%CI:0.6-1.2), without differences between DMTs. A fraction of pwMS generated anti-Spike CD4+ and CD8+ T cell response. In contrast, pwMS under antiCD20 generated CD8+TNF+IL2+ response without differences with HC, even in the absence of humoral response. The 3rd dose significantly increased the neutralization against the Omicron, as observed in the immunocompetent population. Discussion: Findings regarding humoral and cellular response are consistent with previous reports.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunosuppressive Agents , Multiple Sclerosis , SARS-CoV-2 , Humans , Male , Female , Immunosuppressive Agents/therapeutic use , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Middle Aged , Multiple Sclerosis/immunology , Multiple Sclerosis/drug therapy , COVID-19/immunology , COVID-19/prevention & control , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Argentina , Adenoviridae/genetics , Adenoviridae/immunology , Immunity, Humoral , Spike Glycoprotein, Coronavirus/immunology
2.
Euro Surveill ; 29(35)2024 Aug.
Article in English | MEDLINE | ID: mdl-39212062

ABSTRACT

BackgroundCOVID-19 remains a major infectious disease with substantial implications for individual and public health including the risk of a post-infection syndrome, long COVID. The continuous changes in dominant variants of SARS-CoV-2 necessitate a careful study of the effect of preventative strategies.AimWe aimed to estimate the effectiveness of post-vaccination, post-infection and hybrid immunity against severe cases requiring oxygen support caused by infections with SARS-CoV-2 variants BA1/2 and BA4/5+, and against long COVID in the infected population and their changes over time.MethodsWe used a Cox regression analysis with time-varying covariates and calendar time and logistic regression applied to national-level data from Czechia from December 2021 until August 2023.ResultsRecently boosted vaccination, post-infection and hybrid immunity provide significant protection against a severe course of COVID-19, while unboosted vaccination more than 10 months ago has a negligible protective effect. The post-vaccination immunity against the BA1/2 or BA4/5+ variants, especially based on the original vaccine types, appears to wane rapidly compared with post-infection and hybrid immunity. Once infected, however, previous immunity plays only a small protective role against long COVID.ConclusionVaccination remains an effective preventative measure against a severe course of COVID-19 but its effectiveness wanes over time thus highlighting the importance of booster doses. Once infected, vaccines may have a small protective effect against the development of long COVID.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , COVID-19/epidemiology , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Female , Male , Middle Aged , Vaccination , Adult , Czech Republic/epidemiology , Immunization, Secondary , Post-Acute COVID-19 Syndrome , Aged
3.
Vaccine ; 42(22): 126159, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39121698

ABSTRACT

Identifying immune correlates of risk following COVID-19 vaccine boosters has become paramount as a result of the challenges in generating additional efficacy data. The trial data described here was collected in the United States, with a large part of the study conduct coinciding with the emergence of the SARS-CoV-2 Omicron BA.1 variant. The vaccine trial involved the administration of a booster dose of Ad26.COV2·S at least 6 months after primary vaccination with either a single dose of Ad26.COV2·S or a 2-dose BNT162b2 vaccine regimen. Immunogenicity was assessed through Wuhan Spike binding antibodies (bAb), neutralizing antibodies (nAb), and Omicron BA.1 cross-neutralizing antibodies (nAb BA.1) at Day 1 (pre-boost), Day 15-, and 6-months post-boost. Immune correlates analyses demonstrate that, higher titers of bAb, nAb, and nAb BA.1 at Day 15 were consistently associated with a lower risk of symptomatic COVID-19 following a booster dose of Ad26.COV2·S, irrespective of the primary vaccine regimen. Similar results were obtained using multivariable analyses. Furthermore, Day 1 nAb levels against the Wuhan reference strain exhibited a statistically significant inverse relationship with the risk of symptomatic COVID-19. These findings highlight the value of assessing immune correlates for vaccine boosters, especially in the context of emerging SARS-CoV-2 variants. Clinical trials registration:NCT04999111.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/prevention & control , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , SARS-CoV-2/immunology , Male , Female , Middle Aged , Adult , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Immunogenicity, Vaccine , Young Adult , Ad26COVS1/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Aged , Spike Glycoprotein, Coronavirus/immunology
4.
Mol Biol Rep ; 51(1): 892, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110319

ABSTRACT

Background The emergence and rapid spread of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), poses a significant threat to human health and public safety. While next-generation sequencing (NGS) is capable of detecting and tracking new COVID-19 variants for disease diagnosis and prevention, its high cost and time-consuming nature limit its widespread use. In this study, our aim was to develop a highly adaptable and accurate RT-PCR method for identifying the Delta or BA.1 variants in inactivated COVID-19 vaccine. We devised three two-plex RT-PCR methods targeting specific mutation sites: S: Δ156-157, S: N211-, L212I, and S: Δ142-144, Y145D. The RT-PCR method targeting the S: Δ156-157 mutation site was able to distinguish the Delta variant from other COVID-19 virus strains, while the RT-PCR methods targeting the S: N211-, L212I or S: Δ142-144, Y145D mutation sites were able to distinguish the BA.1 variant from other COVID-19 virus strains. We separately validated these three two-plex RT-PCR methods, and the results demonstrated good linearity, repeatability, reproducibility, and specificity for each method. Moreover, all three methods can be applied in the production of SARS-CoV-2 variant inactivated vaccines, enabling the identification of Delta or BA.1 variants in virus cultures as well as in inactivated vaccine stocks. This study presents a systematic approach to identify COVID-19 variants using multiple RT-PCR methods. We successfully developed three two-plex RT-PCR methods that can identify Delta and BA.1 variants based on specific mutation sites, and we completed the validation of these three methods.


Subject(s)
COVID-19 Vaccines , COVID-19 , Mutation , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Vaccines, Inactivated , COVID-19 Vaccines/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Humans , Vaccines, Inactivated/immunology , Vaccines, Inactivated/genetics , COVID-19/prevention & control , COVID-19/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
5.
BMC Infect Dis ; 24(1): 670, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965495

ABSTRACT

BACKGROUND: The clinical benefit of coronavirus disease 2019 (COVID-19) treatments against new circulating variants remains unclear. We sought to describe characteristics and clinical outcomes of highest risk patients with COVID-19 receiving early COVID-19 treatments in Scotland. METHODS: Retrospective cohort study of non-hospitalized patients diagnosed with COVID-19 from December 1, 2021-October 25, 2022, using Scottish administrative health data. We included adult patients who met ≥ 1 of the National Health Service highest risk criteria for early COVID-19 treatment and received outpatient treatment with sotrovimab, nirmatrelvir/ritonavir or molnupiravir, or no early COVID-19 treatment. Index date was defined as the earliest of COVID-19 diagnosis or early COVID-19 treatment. Baseline characteristics and acute clinical outcomes in the 28 days following index were reported. Values of ≤ 5 were suppressed. RESULTS: In total, 2548 patients were included (492: sotrovimab, 276: nirmatrelvir/ritonavir, 71: molnupiravir, and 1709: eligible highest risk untreated). Patients aged ≥ 75 years accounted for 6.9% (n = 34/492), 21.0% (n = 58/276), 16.9% (n = 12/71) and 13.2% (n = 225/1709) of the cohorts, respectively. Advanced renal disease was reported in 6.7% (n = 33/492) of sotrovimab-treated and 4.7% (n = 81/1709) of untreated patients, and ≤ 5 nirmatrelvir/ritonavir-treated and molnupiravir-treated patients. All-cause hospitalizations were experienced by 5.3% (n = 25/476) of sotrovimab-treated patients, 6.9% (n = 12/175) of nirmatrelvir/ritonavir-treated patients, ≤ 5 (suppressed number) molnupiravir-treated patients and 13.3% (n = 216/1622) of untreated patients. There were no deaths in the treated cohorts; mortality was 4.3% (n = 70/1622) among untreated patients. CONCLUSIONS: Sotrovimab was often used by patients who were aged < 75 years. Among patients receiving early COVID-19 treatment, proportions of 28-day all-cause hospitalization and death were low.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Disease Progression , SARS-CoV-2 , Humans , Antiviral Agents/therapeutic use , Retrospective Studies , Male , Female , Middle Aged , Aged , SARS-CoV-2/drug effects , COVID-19/mortality , Adult , Treatment Outcome , Scotland/epidemiology , Antibodies, Monoclonal, Humanized/therapeutic use , Ritonavir/therapeutic use , Aged, 80 and over , Cytidine/analogs & derivatives , Hydroxylamines
6.
Acta Clin Belg ; 79(3): 174-183, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39081095

ABSTRACT

OBJECTIVE: Sotrovimab, a dual-action, engineered human monoclonal antibody, has been demonstrated to significantly reduce the risk of hospitalisation and death in high-risk patients with COVID-19. Here, we describe the real-world use of, and outcomes from, sotrovimab treatment in Belgium during the Delta and Omicron waves among patients with COVID-19 at high risk of developing severe disease. METHODS: This was a multicentric, single-arm observational cohort study of non-hospitalised patients receiving outpatient sotrovimab treatment between 1 November 2021 and 2 August 2022 at nine hospitals in Belgium. The primary outcomes were all-cause and COVID-19-related hospitalisations and all-cause deaths during the 29-day acute follow-up period from first administration of sotrovimab. RESULTS: A total of 634 patients were included (63.4% aged < 65 years; 50.3% male). A high proportion (67.7%; n = 429/634) of patients were immunocompromised, with 36.9% (n = 234/634) actively treated for malignancy. During the 29-day acute period, 12.5% (n = 79/634) of sotrovimab-treated patients were hospitalised due to any cause (median duration 4 days; median time to hospitalisation 14 days) and 1.1% (n = 7/634) died due to any cause. The proportion of sotrovimab-treated patients experiencing COVID-19-related hospitalisation was highest during the Delta predominance and Delta/BA.1 codominance (both 6.3%) periods. During the BA.1 predominance, BA.1/BA.2 codominance and BA.2/BA.5 codominance periods, COVID-19-related hospitalisations were consistently low (all ≤2.7%). CONCLUSION: This study indicated low rates of COVID-19-related hospitalisations and all-cause deaths in sotrovimab-treated patients in Belgium, including during Omicron subvariant periods, despite over two-thirds of the study population being immunocompromised.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 Drug Treatment , COVID-19 , Hospitalization , Humans , Male , Belgium/epidemiology , Female , Middle Aged , Antibodies, Monoclonal, Humanized/therapeutic use , Aged , COVID-19/mortality , COVID-19/epidemiology , Hospitalization/statistics & numerical data , SARS-CoV-2 , Disease Progression , Adult , Cohort Studies , Treatment Outcome , Severity of Illness Index , Antibodies, Neutralizing
7.
J Infect Dis ; 230(1): e4-e16, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052718

ABSTRACT

BACKGROUND: Mutations present in emerging SARS-CoV-2 variants permit evasion of neutralization with prototype vaccines. A novel Omicron BA.1 subvariant-specific vaccine (NVX-CoV2515) was tested alone or as a bivalent preparation with the prototype vaccine (NVX-CoV2373) to assess antibody responses to SARS-CoV-2. METHODS: Participants aged 18 to 64 years immunized with 3 doses of prototype mRNA vaccines were randomized 1:1:1 to receive a single dose of NVX-CoV2515, NVX-CoV2373, or the bivalent mixture in a phase 3 study investigating heterologous boosting with SARS-CoV-2 recombinant spike protein vaccines. Immunogenicity was measured 14 and 28 days after vaccination for the SARS-CoV-2 Omicron BA.1 sublineage and ancestral strain. Safety profiles of vaccines were assessed. RESULTS: Of participants who received trial vaccine (N = 829), those administered NVX-CoV2515 (n = 286) demonstrated a superior neutralizing antibody response to BA.1 vs NVX-CoV2373 (n = 274) at day 14 (geometric mean titer ratio, 1.6; 95% CI, 1.33-2.03). Seroresponse rates were 73.4% (91/124; 95% CI, 64.7-80.9) for NVX-CoV2515 vs 50.9% (59/116; 95% CI, 41.4-60.3) for NVX-CoV2373. All formulations were similarly well tolerated. CONCLUSIONS: NVX-CoV2515 elicited a superior neutralizing antibody response against the Omicron BA.1 subvariant as compared with NVX-CoV2373 when administered as a fourth dose. Safety data were consistent with the established safety profile of NVX-CoV2373. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov (NCT05372588).


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunogenicity, Vaccine , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , Adult , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Male , Female , COVID-19/prevention & control , COVID-19/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Young Adult , Middle Aged , Adolescent , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects
8.
J Virol ; 98(7): e0067824, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38953380

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) differentially trigger neutralizing and antibody-dependent cellular cytotoxic (ADCC) antibodies with variable cross-reactivity. Omicron BA.4/5 was approved for inclusion in bivalent vaccination boosters, and therefore the antigenic profile of antibodies elicited by this variant is critical to understand. Here, we investigate the ability of BA.4/5-elicited antibodies following the first documented (primary) infection (n = 13) or breakthrough infection after vaccination (n = 9) to mediate neutralization and FcγRIIIa signaling across multiple SARS-CoV-2 variants including XBB.1.5 and BQ.1. Using a pseudovirus neutralization assay and a FcγRIIIa crosslinking assay to measure ADCC potential, we show that unlike SARS-CoV-2 Omicron BA.1, BA.4/5 infection triggers highly cross-reactive functional antibodies. Cross-reactivity was observed both in the absence of prior vaccination and in breakthrough infections following vaccination. However, BQ.1 and XBB.1.5 neutralization and FcγRIIIa signaling were significantly compromised compared to other VOCs, regardless of prior vaccination status. BA.4/5 triggered FcγRIIIa signaling was significantly more resilient against VOCs (<10-fold decrease in magnitude) compared to neutralization (10- to 100-fold decrease). Overall, this study shows that BA.4/5 triggered antibodies are highly cross-reactive compared to those triggered by other variants. Although this is consistent with enhanced neutralization and FcγRIIIa signaling breadth of BA.4/5 vaccine boosters, the reduced activity against XBB.1.5 supports the need to update vaccines with XBB sublineage immunogens to provide adequate coverage of these highly antibody evasive variants. IMPORTANCE: The continued evolution of SARS-CoV-2 has resulted in a number of variants of concern. Of these, the Omicron sublineage is the most immune evasive. Within Omicron, the BA.4/5 sublineage drove the fifth wave of infection in South Africa prior to becoming the dominant variant globally. As a result this spike sequence was approved as part of a bivalent vaccine booster, and rolled out worldwide. We aimed to understand the cross-reactivity of neutralizing and Fc mediated cytotoxic functions elicited by BA.4/5 infection following infection or breakthrough infection. We find that, in contrast to BA.1 which triggered fairly strain-specific antibodies, BA.4/5 triggered antibodies that are highly cross-reactive for neutralization and antibody-dependent cellular cytotoxicity potential. Despite this cross-reactivity, these antibodies are compromised against highly resistant variants such as XBB.1.5 and BQ.1. This suggests that next-generation vaccines will require XBB sublineage immunogens in order to protect against these evasive variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Antibody-Dependent Cell Cytotoxicity , COVID-19 , Cross Reactions , Receptors, IgG , SARS-CoV-2 , Signal Transduction , Receptors, IgG/immunology , Humans , Antibodies, Neutralizing/immunology , Cross Reactions/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Antibody-Dependent Cell Cytotoxicity/immunology , Signal Transduction/immunology , Neutralization Tests , COVID-19 Vaccines/immunology , Spike Glycoprotein, Coronavirus/immunology
9.
Euro Surveill ; 29(26)2024 Jun.
Article in English | MEDLINE | ID: mdl-38940003

ABSTRACT

BackgroundSince its emergence in December 2019, over 700 million people worldwide have been infected with SARS-CoV-2 up to May 2024. While early rollout of mRNA vaccines against COVID-19 has saved many lives, there was increasing immune escape of new virus variants. Longitudinal monitoring of population-wide SARS-CoV-2 antibody responses from regular sample collection irrespective of symptoms provides representative data on infection and seroconversion/seroreversion rates.AimTo examine adaptive and cellular immune responses of a German SARS-CoV-2 outbreak cohort through several waves of infection with different virus variants.MethodsUtilising a 31-month longitudinal seroepidemiological study (n = 1,446; mean age: 50 years, range: 2-103) initiated during the first SARS-CoV-2 superspreading event (February 2020) in Heinsberg, Germany, we analysed acute infection, seroconversion and virus neutralisation at five follow-up visits between October 2020 and November 2022; cellular and cross-protective immunity against SARS-CoV-2 Omicron variants were also examined.ResultsSARS-CoV-2 spike (S)-specific IgAs decreased shortly after infection, while IgGs remained stable. Both increased significantly after vaccination. We predict an 18-month half-life of S IgGs upon infection. Nucleocapsid (N)-specific responses declined over 12 months post-infection but increased (p < 0.0001) during Omicron. Frequencies of SARS-CoV-2-specific TNF-alpha+/IFN-gamma+ CD4+ T-cells declined over 12 months after infection (p < 0.01). SARS-CoV-2 S antibodies and neutralisation titres were highest in triple-vaccinated participants infected between April 2021 and November 2022 compared with infections between April 2020 and January 2021. Cross neutralisation against Omicron BQ.1.18 and XBB.1.5 was very low in all groups.ConclusionInfection and/or vaccination did not provide the population with cross-protection against Omicron variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Reinfection , SARS-CoV-2 , Seroconversion , Humans , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , Longitudinal Studies , Germany/epidemiology , Antibodies, Viral/blood , Middle Aged , Adult , Male , Antibodies, Neutralizing/blood , Female , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Aged , Reinfection/immunology , Reinfection/virology , Reinfection/prevention & control , Seroepidemiologic Studies , Adolescent , Young Adult , Child , Child, Preschool , Aged, 80 and over , Vaccination
10.
Animal Model Exp Med ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760905

ABSTRACT

BACKGROUND: SARS-CoV-2, first identified in late 2019, has given rise to numerous variants of concern (VOCs), posing a significant threat to human health. The emergence of Omicron BA.1.1 towards the end of 2021 led to a pandemic in early 2022. At present, the lethal mouse model for the study of SARS-CoV-2 needs supplementation, and the alterations in neutrophils and monocytes caused by different strains remain to be elucidated. METHODS: Human ACE2 transgenic mice were inoculated with the SARS-CoV-2 prototype and Omicron BA.1, respectively. The pathogenicity of the two strains was evaluated by observing clinical symptoms, viral load and pathology. Complete blood count, immunohistochemistry and flow cytometry were performed to detect the alterations of neutrophils and monocytes caused by the two strains. RESULTS: Our findings revealed that Omicron BA.1 exhibited significantly lower virulence compared to the SARS-CoV-2 prototype in the mouse model. Additionally, we observed a significant increase in the proportion of neutrophils late in infection with the SARS-CoV-2 prototype and Omicron BA.1. We found that the proportion of monocytes increased at first and then decreased. The trends in the changes in the proportions of neutrophils and monocytes induced by the two strains were similar. CONCLUSION: Our study provides valuable insights into the utility of mouse models for simulating the severe disease of SARS-CoV-2 prototype infection and the milder manifestation associated with Omicron BA.1. SARS-CoV-2 prototype and Omicron BA.1 resulted in similar trends in the changes in neutrophils and monocytes.

11.
Microbiol Spectr ; 12(6): e0416823, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38666774

ABSTRACT

COVID-19 caused by Omicron BA.1 has resulted in a global humanitarian crisis. In this COVID-19 pandemic era, hypertension has been receiving increased attention. Omicron BA.1 infection combined with hypertension created a serious public health problem and complicated the treatment and prognosis of COVID-19. The aim of our study was to assess the implications of hypertension for the clinical manifestations of adult patients (APs) infected with Omicron BA.1. This single-center retrospective cohort study enrolled consecutive COVID-19 APs, who were admitted to Tianjin First Central Hospital from 01 August 2022 to 30 November 2022. All included APs were divided into two groups: hypertension and non-hypertension group. The APs' baseline demographic, laboratory, clinical, and radiological characteristics were collected and analyzed. Of 512 APs admitted with PCR proven COVID-19, 161 (31.45%) APs had comorbid hypertension. Hypertension APs have older age, higher body mass index, lower Ct-values of the viral target genes at admission, and longer hospital stay than non-hypertension APs. Furthermore, hypertension aggravates the clinical classification, impairs liver, kidney, and myocardium function, and abnormalizes the coagulation system in Omicron BA.1- infected APs. Moreover, hypertension elevates inflammation levels and lung lesion involvement while weakened virus-specific IgM level in APs with Omicron BA.1 infection. Hypertension APs tend to have worse clinical conditions at baseline than those non-hypertension APs. This study indicates that hypertension is a contributor to the poor clinical manifestations of Omicron BA.1-infected APs and supports that steps to control blood pressure should be a vital consideration for reducing the burden of Omicron BA.1 infection in hypertension individuals. IMPORTANCE: This study provided inclusive insight regarding the relationship between hypertension and Omicron BA.1 infection and supported that hypertension was an adverse factor for COVID-19 APs. In conclusion, this study showed that hypertension was considered to be associated with severe conditions, and a contributor to poor clinical manifestations. Proper medical management of hypertension patients is an imperative step in mitigating the severity of Omicron BA.1 variant infection.


Subject(s)
COVID-19 , Hypertension , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/virology , Hypertension/complications , Male , Female , Middle Aged , SARS-CoV-2/genetics , Retrospective Studies , Adult , Aged
12.
Viruses ; 16(4)2024 04 19.
Article in English | MEDLINE | ID: mdl-38675974

ABSTRACT

The Omicron variant of SARS-CoV-2, characterized by multiple subvariants including BA.1, XBB.1.5, EG.5, and JN.1, became the predominant strain in early 2022. Studies indicate that Omicron replicates less efficiently in lung tissue compared to the ancestral strain. However, the infectivity of Omicron in the gastrointestinal tract is not fully defined, despite the fact that 70% of COVID-19 patients experience digestive disease symptoms. Here, using primary human colonoids, we found that, regardless of individual variability, Omicron infects colon cells similarly or less effectively than the ancestral strain or the Delta variant. The variant induced limited type III interferon expression and showed no significant impact on epithelial integrity. Further experiments revealed inefficient cell-to-cell spread and spike protein cleavage in the Omicron spike protein, possibly contributing to its lower infectious particle levels. The findings highlight the variant-specific replication differences in human colonoids, providing insights into the enteric tropism of Omicron and its relevance to long COVID symptoms.


Subject(s)
COVID-19 , Colon , Epithelial Cells , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/genetics , SARS-CoV-2/physiology , SARS-CoV-2/pathogenicity , Colon/virology , COVID-19/virology , Epithelial Cells/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Virus Replication , Interferon Lambda
13.
Article in English | MEDLINE | ID: mdl-38655785

ABSTRACT

Ca-substituted Ba1-xCaxMg2Al6Si9O30 ceramics were prepared to explore the relationships among their crystal structural parameters, phase compositions, dielectric properties, and coefficients of thermal expansion and applications in C-band antenna. The maximum solubility of Ba1-xCaxMg2Al6Si9O30 was located at x = 0.25, and Ba1-xCaxMg2Al6Si9O30 ceramics (0 ≤ x ≤ 0.25) crystallized in the space group P6/mcc. In Ba1-xCaxMg2Al6Si9O30 single-phase ceramics, εr was dominated by ionic polarizability and "rattling effects" of Ba2+ and Al(2)3+; Q × f was controlled by the roundness of [Si4Al2O18] inner rings and total lattice energy; and τf was affected by the bond valence of Si/Al(1)-O(1). Notably, the low average coefficients of thermal expansion (2.668 ppm/°C) at -150 °C ≤ T ≤ 850 °C and near-zero coefficients of thermal expansion (1.254 ppm/°C) at -150 °C ≤ T ≤ 260 °C were achieved for the Ba1-xCaxMg2Al6Si9O30 (x = 0.1) ceramic. Optimum microwave and terahertz dielectric properties were obtained for the Ba1-xCaxMg2Al6Si9O30 (x = 0.1) ceramic with εr = 5.80, Q × f = 31,174 at 13.99 GHz, τf = -7.10 ppm/°C, and εr = 5.71-5.85 at 0.2 THz ≤ f ≤ 1.0 THz. Also, the Ba1-xCaxMg2Al6Si9O30 (x = 0.1) ceramic substrate had been designed as a C-band patch antenna with a high simulated radiation efficiency (87.76%) and gain (6.30 dBi) at 7.70 GHz (|S11| = -38.41 dB).

14.
Micromachines (Basel) ; 15(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38675281

ABSTRACT

Multilayer ceramic capacitors (MLCCs) prepared using Ba1-xSrxTiO3 (BST) ceramics exhibit high dielectric constants (~1000), low dielectric loss (<0.01), and high breakdown voltage, with particularly significant tunability in dielectric properties (>50%) and with poor temperature stability. Doping-dominated temperature stability improvements often result in unintended loss of dielectric properties. A non-doping method has been proposed to enhance the temperature stability of BST capacitors. The composite gradient multilayer (CGML) ceramic capacitors with BaxSr1-xTiO3, where 0.5 < x < 0.8, as the dielectric, were prepared using a tape-casting method and sintered at 1250 °C. There exists a dense microstructure and continuous interface between the BaxSr1-xTiO3 thick film and the Pt electrodes. CGML ceramic capacitors feature a high dielectric constant at 1270, a low dielectric loss of less than 0.007, and excellent frequency and temperature stability. The capacitor showcases remarkable dielectric properties with a substantial tunability of 68% at 100 kV/cm, along with a notably consistent tunability ranging from 20% to 28% at 15 kV/cm across temperatures spanning from 30 to 100 °C, outperforming single-component BST-MLCCs in dielectric performance.

15.
Viruses ; 16(3)2024 03 15.
Article in English | MEDLINE | ID: mdl-38543819

ABSTRACT

The Omicron variants BA.1, BA.2, and BA.5 caused several waves of SARS-CoV-2 in Germany in 2022. In this comparative study, public health data on SARS-CoV-2 infections from Mecklenburg-Western Pomerania, Germany, between January and October 2022 were examined retrospectively using Pearson's chi-squared tests and Fisher's exact tests for testing for statistical significance. Compared to BA.5 infections, BA.1 and BA.2 infections affected younger individuals aged up to 19 years significantly more often, whereas BA.5 infections occurred significantly more frequently in patients between 40 and 59 years of age when compared to BA.1 and BA.2. Infections with all three variants predominantly caused flu-like symptoms; nevertheless, there were significant differences between the reported symptoms of BA.1, BA.2, and BA.5 infections. Especially, the symptoms of 'fever', 'severe feeling of sickness', 'loss of taste', and 'loss of smell' were significantly more often present in patients with BA.5 infections compared to BA.1 and BA.2 cases. Additionally, BA.2 and BA.5 cases reported significantly more often the symptoms of 'runny nose' and 'cough' than BA.1-infected cases. Our findings indicate remarkable differences in the clinical presentations among the sub-lineages, especially in BA.5 infections. Furthermore, the study demonstrates a powerful tool to link epidemiological data with genetic data in order to investigate their potential impact on public health.


Subject(s)
COVID-19 , Public Health , Humans , Aged , Follow-Up Studies , Retrospective Studies , Germany/epidemiology , COVID-19/epidemiology
16.
Front Public Health ; 12: 1294261, 2024.
Article in English | MEDLINE | ID: mdl-38450129

ABSTRACT

Background: Despite decreasing COVID-19 disease severity during the Omicron waves, a proportion of patients still require hospitalization and intensive care. Objective: To compare demographic characteristics, comorbidities, vaccination status, and previous infections in patients hospitalized for community-associated COVID-19 (CAC) in predominantly Delta, Omicron BA.1 and BA.4/5 SARS-CoV-2 waves. Methods: Data were extracted from three national databases-the National COVID-19 Database, National Vaccination Registry and National Registry of Hospitalizations. Results: Among the hospitalized CAC patients analyzed in this study, 5,512 were infected with Delta, 1,120 with Omicron BA.1, and 1,143 with the Omicron BA.4/5 variant. The age and sex structure changed from Delta to BA.4/5, with the proportion of women (9.5% increase), children and adolescents (10.4% increase), and octa- and nonagenarians increasing significantly (24.5% increase). Significantly more patients had comorbidities (measured by the Charlson Comorbidity Index), 30.3% in Delta and 43% in BA.4/5 period. The need for non-invasive ventilatory support (NiVS), ICU admission, mechanical ventilation (MV), and in-hospital mortality (IHM) decreased from Delta to Omicron BA.4/5 period for 12.6, 13.5, 11.5, and 6.3%, respectively. Multivariate analysis revealed significantly lower odds for ICU admission (OR 0.68, CI 0.54-0.84, p < 0.001) and IHM (OR 0.74, CI 0.58-0.93, p = 0.011) during the Delta period in patients who had been fully vaccinated or boosted with a COVID-19 vaccine within the previous 6 months. In the BA.1 variant period, patients who had less than 6 months elapsed between the last vaccine dose and SARS-CoV-2 positivity had lower odds for MV (OR 0.38, CI 0.18-0.72, p = 0.005) and IHM (OR 0.56, CI 0.37- 0.83, p = 0.005), but not for NIVS or ICU admission. Conclusion: The likelihood of developing severe CAC in hospitalized patients was higher in those with the Delta and Omicron BA.1 variant compared to BA.4/5.


Subject(s)
COVID-19 , Adolescent , Child , Aged, 80 and over , Humans , Female , COVID-19/epidemiology , COVID-19 Vaccines , SARS-CoV-2 , Critical Care , Databases, Factual
17.
BMC Infect Dis ; 24(1): 294, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448822

ABSTRACT

BACKGROUND: The latent and incubation periods characterize the transmission of infectious viruses and are the basis for the development of outbreak prevention and control strategies. However, systematic studies on the latent period and associated factors with the incubation period for SAS-CoV-2 variants are still lacking. We inferred the two durations of Delta, BA.1, and BA.2 cases and analyzed the associated factors. METHODS: The Delta, BA.1, and BA.2 (and its lineages BA.2.2 and BA.2.76) cases with clear transmission chains and infectors from 10 local SAS-CoV-2 epidemics in China were enrolled. The latent and incubation periods were fitted by the Gamma distribution, and associated factors were analyzed using the accelerated failure time model. RESULTS: The mean latent period for 672 Delta, 208 BA.1, and 677 BA.2 cases was 4.40 (95%CI: 4.24 ~ 4.63), 2.50 (95%CI: 2.27 ~ 2.76), and 2.58 (95%CI: 2.48 ~ 2.69) days, respectively, with 85.65% (95%CI: 83.40 ~ 87.77%), 97.80% (95%CI: 96.35 ~ 98.89%), and 98.87% (95%CI: 98.40 ~ 99.27%) of them starting to shed viruses within 7 days after exposure. In 405 Delta, 75 BA.1, and 345 BA.2 symptomatic cases, the mean latent period was 0.76, 1.07, and 0.79 days shorter than the mean incubation period [5.04 (95%CI: 4.83 ~ 5.33), 3.42 (95%CI: 3.00 ~ 3.89), and 3.39 (95%CI: 3.24 ~ 3.55) days], respectively. No significant difference was observed in the two durations between BA.1 and BA.2 cases. After controlling for the sex, clinical severity, vaccination history, number of infectors, the length of exposure window and shedding window, the latent period [Delta: exp(ß) = 0.81, 95%CI: 0.66 ~ 0.98, p = 0.034; Omicron: exp(ß) = 0.82, 95%CI: 0.71 ~ 0.94, p = 0.004] and incubation period [Delta: exp(ß) = 0.69, 95%CI: 0.55 ~ 0.86, p < 0.001; Omicron: exp(ß) = 0.83, 95%CI: 0.72 ~ 0.96, p = 0.013] were significantly shorter in 18 ~ 49 years but did not change significantly in ≥ 50 years compared with 0 ~ 17 years. CONCLUSION: Pre-symptomatic transmission can occur in Delta, BA.1, and BA.2 cases. The latent and incubation periods between BA.1 and BA.2 were similar but shorter compared with Delta. Age may be associated with the latent and incubation periods of SARS-CoV-2.


Subject(s)
Epidemics , Infectious Disease Incubation Period , Humans , Cross-Sectional Studies , China/epidemiology , Disease Outbreaks
18.
Euro Surveill ; 29(13)2024 Mar.
Article in English | MEDLINE | ID: mdl-38551095

ABSTRACT

BackgroundScarce European data in early 2021 suggested lower vaccine effectiveness (VE) against SARS-CoV-2 Omicron lineages than previous variants.AimWe aimed to estimate primary series (PS) and first booster VE against symptomatic BA.1/BA.2 infection and investigate potential biases.MethodsThis European test-negative multicentre study tested primary care patients with acute respiratory symptoms for SARS-CoV-2 in the BA.1/BA.2-dominant period. We estimated PS and booster VE among adults and adolescents (PS only) for all products combined and for Comirnaty alone, by time since vaccination, age and chronic condition. We investigated potential bias due to correlation between COVID-19 and influenza vaccination and explored effect modification and confounding by prior SARS-CoV-2 infection.ResultsAmong adults, PS VE was 37% (95% CI: 24-47%) overall and 60% (95% CI: 44-72%), 43% (95% CI: 26-55%) and 29% (95% CI: 13-43%) < 90, 90-179 and ≥ 180 days post vaccination, respectively. Booster VE was 42% (95% CI: 32-51%) overall and 56% (95% CI: 47-64%), 22% (95% CI: 2-38%) and 3% (95% CI: -78% to 48%), respectively. Primary series VE was similar among adolescents. Restricting analyses to Comirnaty had little impact. Vaccine effectiveness was higher among older adults. There was no signal of bias due to correlation between COVID-19 and influenza vaccination. Confounding by previous infection was low, but sample size precluded definite assessment of effect modification.ConclusionPrimary series and booster VE against symptomatic infection with BA.1/BA.2 ranged from 37% to 42%, with similar waning post vaccination. Comprehensive data on previous SARS-CoV-2 infection would help disentangle vaccine- and infection-induced immunity.


Subject(s)
COVID-19 , Influenza, Human , Humans , Adolescent , Aged , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , BNT162 Vaccine , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Vaccine Efficacy , Europe/epidemiology , Primary Health Care
19.
Open Forum Infect Dis ; 11(3): ofae065, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38516384

ABSTRACT

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has spread globally. However, the contribution of community versus household transmission to the overall risk of infection remains unclear. Methods: Between November 2021 and March 2022, we conducted an active case-finding study in an urban informal settlement with biweekly visits across 1174 households with 3364 residents. Individuals displaying coronavirus disease 2019 (COVID-19)-related symptoms were identified, interviewed along with household contacts, and defined as index and secondary cases based on reverse-transcription polymerase chain reaction (RT-PCR) and symptom onset. Results: In 61 households, we detected a total of 94 RT-PCR-positive cases. Of 69 sequenced samples, 67 cases (97.1%) were attributed to the Omicron BA.1* variant. Among 35 of their households, the secondary attack rate was 50.0% (95% confidence interval [CI], 37.0%-63.0%). Women (relative risk [RR], 1.6 [95% CI, .9-2.7]), older individuals (median difference, 15 [95% CI, 2-21] years), and those reporting symptoms (RR, 1.73 [95% CI, 1.0-3.0]) had a significantly increased risk for SARS-CoV-2 secondary infection. Genomic analysis revealed substantial acquisition of viruses from the community even among households with other SARS-CoV-2 infections. After excluding community acquisition, we estimated a household secondary attack rate of 24.2% (95% CI, 11.9%-40.9%). Conclusions: These findings underscore the ongoing risk of community acquisition of SARS-CoV-2 among households with current infections. The observed high attack rate necessitates swift booster vaccination, rapid testing availability, and therapeutic options to mitigate the severe outcomes of COVID-19.

20.
J Virol ; 98(3): e0190223, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38421180

ABSTRACT

The role of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.1 Spike (S) on disease pathogenesis was investigated. For this, we generated recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 S gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 strain genome. The recombinant viruses were characterized in vitro and in vivo. Viral entry, cell-cell fusion, plaque size, and the replication kinetics of the rWA1-Omi-S virus were markedly impaired when compared to the rWA1-D614G virus, demonstrating a lower fusogenicity and ability to spread cell-to-cell of rWA1-Omi-S. To assess the contribution of the Omicron BA.1 S protein to SARS-CoV-2 pathogenesis, the pathogenicity of rWA1-D614G and rWA1-Omi-S viruses was compared in a feline model. While the rWA1-D614G-inoculated cats were lethargic and showed increased body temperatures on days 2 and 3 post-infection (pi), rWA1-Omi-S-inoculated cats remained subclinical and gained weight throughout the 14-day experimental period. Animals inoculated with rWA1-D614G presented higher infectious virus shedding in nasal secretions, when compared to rWA1-Omi-S-inoculated animals. In addition, tissue replication of the rWA1-Omi-S was markedly reduced compared to the rWA1-D614G, as evidenced by lower viral load in tissues on days 3 and 5 pi. Histologic examination of the nasal turbinate and lungs revealed intense inflammatory infiltration in rWA1-D614G-inoculated animals, whereas rWA1-Omi-S-inoculated cats presented only mild to modest inflammation. Together, these results demonstrate that the S protein is a major virulence determinant for SARS-CoV-2 playing a major role for the attenuated phenotype of the Omicron virus. IMPORTANCE: We have demonstrated that the Omicron BA.1.1 variant presents lower pathogenicity when compared to D614G (B.1) lineage in a feline model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are over 50 mutations across the Omicron genome, of which more than two-thirds are present in the Spike (S) protein. To assess the role of the Omicron BA.1 S on virus pathogenesis, recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 Spike gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 were generated. While the Omicron BA.1 S promoted early entry into cells, it led to impaired fusogenic activity and cell-cell spread. Infection studies with the recombinant viruses in a relevant naturally susceptible feline model of SARS-CoV-2 infection here revealed an attenuated phenotype of rWA1-Omi-S, demonstrating that the Omi-S is a major determinant of the attenuated disease phenotype of Omicron strains.


Subject(s)
COVID-19 , Orthopoxvirus , SARS-CoV-2 , Animals , Cats , COVID-19/virology , Phenotype , SARS-CoV-2/classification , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virulence , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL