Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Cancers (Basel) ; 16(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38893083

ABSTRACT

BACKGROUND: Bromodomain and extra-terminal (BET) domain proteins that bind to acetylated lysine residues of histones serve as the "readers" of DNA acetylation. BRD4 is the most thoroughly studied member of the BET family and regulates the expression of key oncogenes. BRD4 gene amplification has been identified in ovarian cancer (~18-19%) according to The Cancer Genome Atlas (TCGA) analysis. BET inhibitors are novel small molecules that displace BET proteins from acetylated histones and are currently tested in Phase I/II trials. We here aim to explore the prognostic role of the BRD4 gene and protein expression in the ascitic fluid of patients with advanced FIGO III/IV high-grade serous ovarian carcinoma (HGSC). METHODS: Ascitic fluid was obtained from 28 patients with advanced stage (FIGO III/IV) HGSC through diagnostic/therapeutic paracentesis or laparoscopy before the initiation of chemotherapy. An amount of ~200 mL of ascitic fluid was collected from each patient and peripheral blood mononuclear cells (PBMCs) were isolated. Each sample was evaluated for BRD4 and GAPDH gene expression through RT-qPCR and BRD4 protein levels through enzyme-linked immunosorbent assay (ELISA). The study protocol was approved by the Institutional Review Board of Alexandra University Hospital and the Committee on Ethics and Good Practice (CEGP) of the National and Kapodistrian University of Athens (NKUA). RESULTS: Low BRD4 gene expression was associated with worse prognosis at 12 months compared to intermediate/high expression (95% CI; 1.75-30.49; p = 0.008). The same association was observed at 24 months although this association was not statistically significant (95% CI; 0.96-9.2; p = 0.065). Progression-free survival was shorter in patients with low BRD4 gene expression at 12 months (5.6 months; 95% CI; 2.6-8.6) compared to intermediate/high expression (9.8 months; 95% CI; 8.3-11.3) (95% CI; 1.2-16.5; p = 0.03). The same association was confirmed at 24 months (6.9 months vs. 13.1 months) (95% CI; 1.1-8.6; p = 0.048). There was a trend for worse prognosis in patients with high BRD4 protein levels versus intermediate/low BRD4 protein expression both at 12 months (9.8 months vs. 7.6 months; p = 0.3) and at 24 months (14.2 months vs. 16.6 months; p = 0.56) although not statistically significant. Again, there was a trend for shorter PFS in patients with high BRD4 protein expression although not statistically significant both at 12 months (p = 0.29) and at 24 months (p = 0.47). CONCLUSIONS: There are contradictory data in the literature over the prognostic role of BRD4 gene expression in solid tumors. In our study, intermediate/high BRD4 gene expression was associated with a favorable prognosis in terms of overall survival and progression-free survival compared to low BRD4 gene expression.

2.
Antioxidants (Basel) ; 12(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38136175

ABSTRACT

Peritoneal dialysis (PD) is a current replacement therapy for end-stage kidney diseases (ESKDs). However, long-term exposure to PD fluids may lead to damage of the peritoneal membrane (PM) through mechanisms involving the activation of the inflammatory response and mesothelial-to-mesenchymal transition (MMT), leading to filtration failure. Peritoneal damage depends on a complex interaction among external stimuli, intrinsic properties of the PM, and subsequent activities of the local innate-adaptive immune system. Epigenetic drugs targeting bromodomain and extra-terminal domain (BET) proteins have shown beneficial effects on different experimental preclinical diseases, mainly by inhibiting proliferative and inflammatory responses. However the effect of BET inhibition on peritoneal damage has not been studied. To this aim, we have evaluated the effects of treatment with the BET inhibitor JQ1 in a mouse model of peritoneal damage induced by chlorhexidine gluconate (CHX). We found that JQ1 ameliorated the CHX-induced PM thickness and inflammatory cell infiltration. Moreover, JQ1 decreased gene overexpression of proinflammatory and profibrotic markers, together with an inhibition of the nuclear factor-κB (NF-κB) pathway. Additionally, JQ1 blocked the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and restored changes in the mRNA expression levels of NADPH oxidases (NOX1 and NOX4) and NRF2/target antioxidant response genes. To corroborate the in vivo findings, we evaluated the effects of the BET inhibitor JQ1 on PD patients' effluent-derived primary mesothelial cells and on the MeT-5A cell line. JQ1 inhibited tumor necrosis factor-α (TNF-α)-induced proinflammatory gene upregulation and restored MMT phenotype changes, together with the downmodulation of oxidative stress. Taken together, these results suggest that BET inhibitors may be a potential therapeutic option to ameliorate peritoneal damage.

3.
Int J Mol Sci ; 24(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38003535

ABSTRACT

Sarcomas are heterogeneous bone and soft tissue cancers representing the second most common tumor type in children and adolescents. Histology and genetic profiling discovered more than 100 subtypes, which are characterized by peculiar molecular vulnerabilities. However, limited therapeutic options exist beyond standard therapy and clinical benefits from targeted therapies were observed only in a minority of patients with sarcomas. The rarity of these tumors, paucity of actionable mutations, and limitations in the chemical composition of current targeted therapies hindered the use of these approaches in sarcomas. Targeted protein degradation (TPD) is an innovative pharmacological modality to directly alter protein abundance with promising clinical potential in cancer, even for undruggable proteins. TPD is based on the use of small molecules called degraders or proteolysis-targeting chimeras (PROTACs), which trigger ubiquitin-dependent degradation of protein of interest. In this review, we will discuss major features of PROTAC and PROTAC-derived genetic systems for target validation and cancer treatment and focus on the potential of these approaches to overcome major issues connected to targeted therapies in sarcomas, including drug resistance, target specificity, and undruggable targets. A deeper understanding of these strategies might provide new fuel to drive molecular and personalized medicine to sarcomas.


Subject(s)
Neoplasms, Second Primary , Sarcoma , Soft Tissue Neoplasms , Adolescent , Child , Humans , Proteolysis , Sarcoma/drug therapy , Sarcoma/genetics , Precision Medicine , Genetic Profile , Ubiquitin-Protein Ligases , Proteasome Endopeptidase Complex
4.
Int J Mol Sci ; 24(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003594

ABSTRACT

Epigenetic changes contribute to the profound alteration in the transcriptional program associated with the onset and progression of muscle wasting in several pathological conditions. Although HDACs and their inhibitors have been extensively studied in the field of muscular dystrophies, the potential of epigenetic inhibitors has only been marginally explored in other disorders associated with muscle atrophy, such as in cancer cachexia and sarcopenia. BET inhibitors represent a novel class of recently developed epigenetic drugs that display beneficial effects in a variety of diseases beyond malignancies. Based on the preliminary in vitro and preclinical data, HDACs and BET proteins contribute to the pathogenesis of cancer cachexia and sarcopenia, modulating processes related to skeletal muscle mass maintenance and/or metabolism. Thus, epigenetic drugs targeting HDACs and BET proteins may emerge as promising strategies to reverse the catabolic phenotype associated with cachexia and sarcopenia. Further preclinical studies are warranted to delve deeper into the molecular mechanisms associated with the functions of HDACs and BET proteins in muscle atrophy and to establish whether their epigenetic inhibitors represent a prospective therapeutic avenue to alleviate muscle wasting.


Subject(s)
Antineoplastic Agents , Neoplasms , Sarcopenia , Humans , Antineoplastic Agents/pharmacology , Cachexia/metabolism , Epigenesis, Genetic , Muscle, Skeletal/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/genetics , Neoplasms/metabolism , Proteins/metabolism , Sarcopenia/metabolism , Histone Deacetylases/metabolism
5.
J Cell Biochem ; 124(10): 1449-1465, 2023 10.
Article in English | MEDLINE | ID: mdl-37796135

ABSTRACT

Identified more than two centuries ago, cholesterol plays a pivotal role in human physiology. Since cholesterol metabolism is a physiologically significant process, it is not surprising that its alterations are associated with several pathologies. The discovery of new molecular targets or compounds able to modulate this sophisticated metabolism has been capturing the attention of research groups worldwide since many years. Endogenous and exogenous compounds are known to regulate cellular cholesterol synthesis and uptake, or reduce cholesterol absorption at the intestinal level, thereby regulating cholesterol homeostasis. However, there is a great need of new modulators and diverse new pathways have been uncovered. Here, after illustrating cholesterol metabolism and its well-known regulators, some new players of this important physiological process are also described.


Subject(s)
Cholesterol , Lipid Metabolism , Humans , Cholesterol/metabolism , Homeostasis
6.
Int Immunopharmacol ; 124(Pt A): 110942, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716160

ABSTRACT

Peritoneal macrophages (PMs), which resided in peritoneal cavity, are crucial to maintain tissue homeostasis and immunity. Macrophage self-renewal and polarization states are critical for PM population homeostasis and function. However, the underlying molecular mechanism that regulates self-renewal and polarization of PMs is still unclear and needs to be explored. Here, we demonstrated that PMs self-renewal was stimulated by granulocyte macrophage colony-stimulating factor (GM-CSF), but not by macrophage colony-stimulating factor (M-CSF). Pharmacological inhibition of Bromodomain & Extraterminal (BET) Proteins by either JQ1 or ARV-825 significantly reduced GM-CSF-dependent peritoneal macrophage self-renewal by abrogating cell proliferation and decreasing self-renewal-related gene expression, such as MYC and Klf4, at transcriptional and protein levels. In addition, transcriptomic analysis showed that JQ1 blocked alternative PMs polarization by downregulating key transcriptional factor IRF4 expression, but not the activation of AKT or STAT6 in PMs. These findings illustrated that the significance of BET family proteins in GM-CSF-induced PMs self-renewal and IL-4-induced alternative polarization.

8.
Biomedicines ; 11(6)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37371758

ABSTRACT

Epigenetic mechanisms are implicated in transcriptional programs driving chronic kidney disease (CKD). Apabetalone is an orally available inhibitor of bromodomain and extraterminal (BET) proteins, which are epigenetic readers that modulate gene expression. In the phase 3 BETonMACE trial, apabetalone reduced risk of major adverse cardiac events (MACE) by 50% in the CKD subpopulation, indicating favorable effects along the kidney-heart axis. Activation of human renal mesangial cells (HRMCs) to a contractile phenotype that overproduces extracellular matrix (ECM) and inflammatory cytokines, and promotes calcification, frequently accompanies CKD to drive pathology. Here, we show apabetalone downregulated HRMC activation with TGF-ß1 stimulation by suppressing TGF-ß1-induced α-smooth muscle actin (α-SMA) expression, α-SMA assembly into stress fibers, enhanced contraction, collagen overproduction, and expression of key drivers of fibrosis, inflammation, or calcification including thrombospondin, fibronectin, periostin, SPARC, interleukin 6, and alkaline phosphatase. Lipopolysaccharide-stimulated expression of inflammatory genes IL6, IL1B, and PTGS2 was also suppressed. Transcriptomics confirmed apabetalone affected gene sets of ECM remodeling and integrins. Clinical translation of in vitro results was indicated in CKD patients where a single dose of apabetalone reduced plasma levels of key pro-fibrotic and inflammatory markers, and indicated inhibition of TGF-ß1 signaling. While plasma proteins cannot be traced to the kidney alone, anti-fibrotic and anti-inflammatory effects of apabetalone identified in this study are consistent with the observed decrease in cardiovascular risk in CKD patients.

9.
Cells ; 12(11)2023 05 27.
Article in English | MEDLINE | ID: mdl-37296612

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is characterized by the presence of dense stroma that is enriched in hyaluronan (HA), with increased HA levels associated with more aggressive disease. Increased levels of the HA-degrading enzymes hyaluronidases (HYALs) are also associated with tumor progression. In this study, we evaluate the regulation of HYALs in PDAC. METHODS: Using siRNA and small molecule inhibitors, we evaluated the regulation of HYALs using quantitative real-time PCR (qRT-PCR), Western blot analysis, and ELISA. The binding of BRD2 protein on the HYAL1 promoter was evaluated by chromatin immunoprecipitation (ChIP) assay. Proliferation was evaluated by WST-1 assay. Mice with xenograft tumors were treated with BET inhibitors. The expression of HYALs in tumors was analyzed by immunohistochemistry and by qRT-PCR. RESULTS: We show that HYAL1, HYAL2, and HYAL3 are expressed in PDAC tumors and in PDAC and pancreatic stellate cell lines. We demonstrate that inhibitors targeting bromodomain and extra-terminal domain (BET) proteins, which are readers of histone acetylation marks, primarily decrease HYAL1 expression. We show that the BET family protein BRD2 regulates HYAL1 expression by binding to its promoter region and that HYAL1 downregulation decreases proliferation and enhances apoptosis of PDAC and stellate cell lines. Notably, BET inhibitors decrease the levels of HYAL1 expression in vivo without affecting the levels of HYAL2 or HYAL3. CONCLUSIONS: Our results demonstrate the pro-tumorigenic role of HYAL1 and identify the role of BRD2 in the regulation of HYAL1 in PDAC. Overall, these data enhance our understanding of the role and regulation of HYAL1 and provide the rationale for targeting HYAL1 in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Animals , Mice , Hyaluronoglucosaminidase/genetics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/metabolism , Proteins , Hyaluronic Acid/metabolism
10.
Mol Ther Nucleic Acids ; 32: 637-649, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37207130

ABSTRACT

Targeting aberrant epigenetic programs that drive tumorigenesis is a promising approach to cancer therapy. DNA-encoded library (DEL) screening is a core platform technology increasingly used to identify drugs that bind to protein targets. Here, we use DEL screening against bromodomain and extra-terminal motif (BET) proteins to identify inhibitors with new chemotypes, and successfully identified BBC1115 as a selective BET inhibitor. While BBC1115 does not structurally resemble OTX-015, a clinically active pan-BET inhibitor, our intensive biological characterization revealed that BBC1115 binds to BET proteins, including BRD4, and suppresses aberrant cell fate programs. Phenotypically, BBC1115-mediated BET inhibition impaired proliferation in acute myeloid leukemia, pancreatic, colorectal, and ovarian cancer cells in vitro. Moreover, intravenous administration of BBC1115 inhibited subcutaneous tumor xenograft growth with minimal toxicity and favorable pharmacokinetic properties in vivo. Since epigenetic regulations are ubiquitously distributed across normal and malignant cells, it will be critical to evaluate if BBC1115 affects normal cell function. Nonetheless, our study shows integrating DEL-based small-molecule compound screening and multi-step biological validation represents a reliable strategy to discover new chemotypes with selectivity, efficacy, and safety profiles for targeting proteins involved in epigenetic regulation in human malignancies.

11.
Curr Opin Chem Biol ; 75: 102323, 2023 08.
Article in English | MEDLINE | ID: mdl-37207401

ABSTRACT

The bromodomain acts to recognize acetylated lysine in histones and transcription proteins and plays a fundamental role in chromatin-based cellular processes including gene transcription and chromatin remodeling. Many bromodomain proteins, particularly the bromodomain and extra terminal domain (BET) protein BRD4 have been implicated in cancers and inflammatory disorders and recognized as attractive drug targets. Although clinical studies of many BET bromodomain inhibitors have made substantial progress toward harnessing the therapeutic potential of targeting the bromodomain proteins, the development of this new class of epigenetic drugs is met with challenges, especially on-target dose-limiting toxicity. In this review, we highlight the current development of new-generation small molecule inhibitors for the BET and non-BET bromodomain proteins and discuss the research strategies used to target different bromodomain proteins for a wide array of human diseases including cancers and inflammatory disorders.


Subject(s)
Neoplasms , Nuclear Proteins , Humans , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Histones/metabolism , Neoplasms/metabolism , Chromatin , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/therapeutic use
12.
Antioxidants (Basel) ; 12(5)2023 May 20.
Article in English | MEDLINE | ID: mdl-37237996

ABSTRACT

Among the mechanisms involved in the progression of kidney disease, mitochondrial dysfunction has special relevance. Epigenetic drugs such as inhibitors of extra-terminal domain proteins (iBET) have shown beneficial effects in experimental kidney disease, mainly by inhibiting proliferative and inflammatory responses. The impact of iBET on mitochondrial damage was explored in in vitro studies in renal cells stimulated with TGF-ß1 and in vivo in murine unilateral ureteral obstruction (UUO) model of progressive kidney damage. In vitro, JQ1 pretreatment prevented the TGF-ß1-induced downregulation of components of the oxidative phosphorylation chain (OXPHOS), such as cytochrome C and CV-ATP5a in human proximal tubular cells. In addition, JQ1 also prevented the altered mitochondrial dynamics by avoiding the increase in the DRP-1 fission factor. In UUO model, renal gene expression levels of cytochrome C and CV-ATP5a as well as protein levels of cytochrome C were reduced These changes were prevented by JQ1 administration. In addition, JQ1 decreased protein levels of the DRP1 fission protein and increased the OPA-1 fusion protein, restoring mitochondrial dynamics. Mitochondria also participate in the maintenance of redox balance. JQ1 restored the gene expression of antioxidant proteins, such as Catalase and Heme oxygenase 1 in TGF-ß1-stimulated human proximal tubular cells and in murine obstructed kidneys. Indeed, in tubular cells, JQ1 decreased ROS production induced by stimulation with TGF-ß1, as evaluated by MitoSOXTM. iBETs, such as JQ1, improve mitochondrial dynamics, functionality, and oxidative stress in kidney disease.

13.
Gastroenterology ; 165(1): 228-243.e2, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37059338

ABSTRACT

BACKGROUND & AIMS: We reported that cholangiocyte senescence, regulated by the transcription factor ETS proto-oncogene 1 (ETS1), is a pathogenic feature of primary sclerosing cholangitis (PSC). Furthermore, histone 3 lysine 27 is acetylated at senescence-associated loci. The epigenetic readers, bromodomain and extra-terminal domain (BET) proteins, bind acetylated histones, recruit transcription factors, and drive gene expression. Thus, we tested the hypothesis that BET proteins interact with ETS1 to drive gene expression and cholangiocyte senescence. METHODS: We performed immunofluorescence for BET proteins (BRD2 and 4) in liver tissue from liver tissue from PSC patients and a mouse PSC model. Using normal human cholangiocytes (NHCs), NHCs experimentally induced to senescence (NHCsen), and PSC patient-derived cholangiocytes (PSCDCs), we assessed senescence, fibroinflammatory secretome, and apoptosis after BET inhibition or RNA interference depletion. We assessed BET interaction with ETS1 in NHCsen and tissues from PSC patient, and the effects of BET inhibitors on liver fibrosis, senescence, and inflammatory gene expression in mouse models. RESULTS: Tissue from patients with PSC and a mouse PSC model exhibited increased cholangiocyte BRD2 and 4 protein (∼5×) compared with controls without disease. NHCsen exhibited increased BRD2 and 4 (∼2×), whereas PSCDCs exhibited increased BRD2 protein (∼2×) relative to NHC. BET inhibition in NHCsen and PSCDCs reduced senescence markers and inhibited the fibroinflammatory secretome. ETS1 interacted with BRD2 in NHCsen, and BRD2 depletion diminished NHCsen p21 expression. BET inhibitors reduced senescence, fibroinflammatory gene expression, and fibrosis in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine-fed and Mdr2-/- mouse models. CONCLUSION: Our data suggest that BRD2 is an essential mediator of the senescent cholangiocyte phenotype and is a potential therapeutic target for patients with PSC.


Subject(s)
Cholangitis, Sclerosing , Animals , Mice , Humans , Cholangitis, Sclerosing/pathology , Liver/pathology , Gene Expression Regulation , Histones/metabolism , Proto-Oncogenes , Epigenesis, Genetic
14.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36982740

ABSTRACT

BET proteins are a family of multifunctional epigenetic readers, mainly involved in transcriptional regulation through chromatin modelling. Transcriptome handling ability of BET proteins suggests a key role in the modulation of cell plasticity, both in fate decision and in lineage commitment during embryonic development and in pathogenic conditions, including cancerogenesis. Glioblastoma is the most aggressive form of glioma, characterized by a very poor prognosis despite the application of a multimodal therapy. Recently, new insights are emerging about the glioblastoma cellular origin, leading to the hypothesis that several putative mechanisms occur during gliomagenesis. Interestingly, epigenome dysregulation associated with loss of cellular identity and functions are emerging as crucial features of glioblastoma pathogenesis. Therefore, the emerging roles of BET protein in glioblastoma onco-biology and the compelling demand for more effective therapeutic strategies suggest that BET family members could be promising targets for translational breakthroughs in glioblastoma treatment. Primarily, "Reprogramming Therapy", which is aimed at reverting the malignant phenotype, is now considered a promising strategy for GBM therapy.


Subject(s)
Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/therapy , Glioblastoma/metabolism , Transcription Factors/metabolism , Cell Plasticity , Protein Domains , Cell Cycle Proteins/metabolism
15.
Wiley Interdiscip Rev RNA ; 14(1): e1734, 2023 01.
Article in English | MEDLINE | ID: mdl-35491403

ABSTRACT

Transcription by RNA polymerase II (Pol II) gives rise to all nuclear protein-coding and a large set of non-coding RNAs, and is strictly regulated and coordinated with RNA processing. Bromodomain and extraterminal (BET) family proteins including BRD2, BRD3, and BRD4 have been implicated in the regulation of Pol II transcription in mammalian cells. However, only recent technological advances have allowed the analysis of direct functions of individual BET proteins with high precision in cells. These studies shed new light on the molecular mechanisms of transcription control by BET proteins challenging previous longstanding views. The most studied BET protein, BRD4, emerges as a master regulator of transcription elongation with roles also in coupling nascent transcription with RNA processing. In contrast, BRD2 is globally required for the formation of transcriptional boundaries to restrict enhancer activity to nearby genes. Although these recent findings suggest non-redundant functions of BRD4 and BRD2 in Pol II transcription, more research is needed for further clarification. Little is known about the roles of BRD3. Here, we illuminate experimental work that has initially linked BET proteins to Pol II transcription in mammalian cells, outline main methodological breakthroughs that have strongly advanced the understanding of BET protein functions, and discuss emerging roles of individual BET proteins in transcription and transcription-coupled RNA processing. Finally, we propose an updated model for the function of BRD4 in transcription and co-transcriptional RNA maturation. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.


Subject(s)
Nuclear Proteins , Transcription Factors , Animals , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Protein Domains , RNA/metabolism , RNA Processing, Post-Transcriptional , Mammals/genetics , Mammals/metabolism
16.
J Exp Clin Cancer Res ; 41(1): 321, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36357906

ABSTRACT

BACKGROUND: Medulloblastoma (MB) patients with MYC oncogene amplification or overexpression exhibit extremely poor clinical outcomes and respond poorly to current therapies. Epigenetic deregulation is very common in MYC-driven MB. The bromodomain extra-terminal (BET) proteins and histone deacetylases (HDACs) are epigenetic regulators of MYC transcription and its associated tumorigenic programs. This study aimed to investigate the therapeutic potential of inhibiting the BET proteins and HDACs together in MB. METHODS: Using clinically relevant BET inhibitors (JQ1 or OTX015) and a pan-HDAC inhibitor (panobinostat), we evaluated the effects of combined inhibition on cell growth/survival in MYC-amplified MB cell lines and xenografts and examined underlying molecular mechanism(s). RESULTS: Co-treatment of JQ1 or OTX015 with panobinostat synergistically suppressed growth/survival of MYC-amplified MB cells by inducing G2 cell cycle arrest and apoptosis. Mechanistic investigation using RNA-seq revealed that co-treatment of JQ1 with panobinostat synergistically modulated global gene expression including MYC/HDAC targets. SYK and MSI1 oncogenes were among the top 50 genes synergistically downregulated by JQ1 and panobinostat. RT-PCR and western blot analyses confirmed that JQ1 and panobinostat synergistically inhibited the mRNA and protein expression of MSI1/SYK along with MYC expression. Reduced SYK/MSI expression after BET (specifically, BRD4) gene-knockdown further confirmed the epigenetic regulation of SYK and MSI1 genes. In addition, the combination of OTX015 and panobinostat significantly inhibited tumor growth in MYC-amplified MB xenografted mice by downregulating expression of MYC, compared to single-agent therapy. CONCLUSIONS: Together, our findings demonstrated that dual-inhibition of BET and HDAC proteins of the epigenetic pathway can be a novel therapeutic approach against MYC-driven MB.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Mice , Animals , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Histone Deacetylases/metabolism , Nuclear Proteins/metabolism , Panobinostat/pharmacology , Panobinostat/therapeutic use , Azepines/pharmacology , Epigenesis, Genetic , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Transcription Factors/metabolism , Triazoles/pharmacology , Apoptosis , Cell Proliferation , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
17.
Viruses ; 14(10)2022 10 17.
Article in English | MEDLINE | ID: mdl-36298829

ABSTRACT

Proteins of the bromodomain and exterminal domain (BET) family mediate critical host functions such as cell proliferation, transcriptional regulation, and the innate immune response, which makes them preferred targets for viruses. These multidomain proteins are best known as transcriptional effectors able to read acetylated histone and non-histone proteins through their tandem bromodomains. They also contain other short motif-binding domains such as the extraterminal domain, which recognizes transcriptional regulatory proteins. Here, we describe how different viruses have evolved to hijack or disrupt host BET protein function through direct interactions with BET family members to support their own propagation. The network of virus-BET interactions emerges as highly intricate, which may complicate the use of small-molecule BET inhibitors-currently in clinical development for the treatment of cancer and cardiovascular diseases-to treat viral infections.


Subject(s)
Histones , Transcription Factors , Protein Domains , Transcription Factors/metabolism , Histones/metabolism , Gene Expression Regulation , Cell Proliferation , Cell Cycle Proteins/metabolism
18.
Cancers (Basel) ; 14(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36139513

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer defined by lack of the estrogen, progesterone and human epidermal growth factor receptor 2. Although TNBC tumors contain a wide variety of oncogenic mutations and copy number alterations, the direct targeting of these alterations has failed to substantially improve therapeutic efficacy. This efficacy is strongly limited by interpatient and intratumor heterogeneity, and thereby a lack in uniformity of targetable drivers. Most of these genetic abnormalities eventually drive specific transcriptional programs, which may be a general underlying vulnerability. Currently, there are multiple selective inhibitors, which target the transcriptional machinery through transcriptional cyclin-dependent kinases (CDKs) 7, 8, 9, 12 and 13 and bromodomain extra-terminal motif (BET) proteins, including BRD4. In this review, we discuss how inhibitors of the transcriptional machinery can effectively target genetic abnormalities in TNBC, and how these abnormalities can influence sensitivity to these inhibitors. These inhibitors target the genomic landscape in TNBC by specifically suppressing MYC-driven transcription, inducing further DNA damage, improving anti-cancer immunity, and preventing drug resistance against MAPK and PI3K-targeted therapies. Because the transcriptional machinery enables transcription and propagation of multiple cancer drivers, it may be a promising target for (combination) treatment, especially of heterogeneous malignancies, including TNBC.

19.
Transcription ; 13(1-3): 70-81, 2022.
Article in English | MEDLINE | ID: mdl-36047906

ABSTRACT

Transcription elongation by RNA polymerase II (Pol II) has emerged as a regulatory hub in gene expression. A key control point occurs during early transcription elongation when Pol II pauses in the promoter-proximal region at the majority of genes in mammalian cells and at a large set of genes in Drosophila. An increasing number of trans-acting factors have been linked to promoter-proximal pausing. Some factors help to establish the pause, whereas others are required for the release of Pol II into productive elongation. A dysfunction of this elongation control point leads to aberrant gene expression and can contribute to disease development. The BET bromodomain protein BRD4 has been implicated in elongation control. However, only recently direct BRD4-specific functions in Pol II transcription elongation have been uncovered. This mainly became possible with technological advances that allow selective and rapid ablation of BRD4 in cells along with the availability of approaches that capture the immediate consequences on nascent transcription. This review sheds light on the experimental breakthroughs that led to the emerging view of BRD4 as a general regulator of transcription elongation.


Subject(s)
Nuclear Proteins , Transcription Factors , Animals , Drosophila/genetics , Mammals/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL