Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JTCVS Open ; 9: 59-69, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36003435

ABSTRACT

Background: This study assessed the long-term hemodynamic functional performance of the new Inspiris Resilia aortic valve after accelerated wear testing (AWT). Methods: Three 21-mm and 23-mm Inspiris valves were used for the AWT procedure. After 1 billion cycles (equivalent to 25 years), the valves' hemodynamic performance was compared with that of the corresponding zero-cycled condition. Next, 1 AWT cycled valve of each valve size was selected at random for particle image velocimetry (PIV) and leaflet kinematic tests, and the data were compared with data for an uncycled Inspiris Resilia aortic valve of the same size. PIV was used to quantitatively evaluate flow fields downstream of the valve. Valves were tested according to International Standards Organization 5840-2:2015 protocols. Results: The 21-mm and 23-mm valves met the International Organization for Standardization (ISO) durability performance requirements to 1 billion cycles. The mean effective orifice areas for the 21-mm and 23-mm zero-cycled and 1 billion-cycled valves were 1.89 ± 0.02 cm2 and 1.94 ± 0.01 cm2, respectively (P < .05) and 2.3 ± 0.13 cm2 and 2.40 ± 0.11 cm2, respectively (P < .05). Flow characterization of the control valves and the study valves demonstrated similar flow characteristics. The velocity and shear stress fields were also similar in the control and study valves. Conclusions: The Inspiris Resilia aortic valve demonstrated very good durability and hemodynamic performance after an equivalent of 25 years of simulated in vitro accelerated wear. The study valves exceeded 1 billion cycles of simulated wear, 5 times longer than the standard requirement for a tissue valve as stipulated in ISO 5840-2:2015.

2.
JTCVS Open ; 6: 85-96, 2021 Jun.
Article in English | MEDLINE | ID: mdl-36003560

ABSTRACT

Objective: Transcatheter aortic valve implantation (TAVI) is rapidly replacing cardiac surgery due to its minimal invasiveness and practicality. Midterm immunological studies on the biocompatibility of galactose-alpha-1,3-galactose (α-Gal)-carrying bioprosthetic heart valves for TAVI are not available. In this study we investigated whether bioprosthetic heart valves employed for TAVI augment an α-Gal-specific antibody-dependent and antibody-independent immune response 3 months after TAVI implantation. Methods: This prospective observational study included 27 patients with severe aortic valve stenosis undergoing TAVI and 10 patients with severe mitral valve regurgitation treated with a transcatheter MitraClip (Abbott Laboratories, Abbott Park, Ill) procedure. Blood samples were drawn before and 90 days after treatment at a routine checkup. Serum samples were analyzed using enzyme-linked immunosorbent assay. Serum concentrations of α-Gal-specific immunoglobulin (Ig) G, IgG subclasses and IgE, complement factor 3a, NETosis-specific citrullinated H3, and the systemic inflammation markers soluble suppression of tumorigenicity and interleukin 33 were evaluated. Results: Three months after TAVI, we found significantly increased serum concentrations of α-Gal-specific IgG3, complement factor complement factor 3a, citrullinated H3 levels, and soluble suppression of tumorigenicity (P = .002, P = .001, P = .025, and P = .039, respectively). Sensitization of α-Gal-specific IgE antibodies occurred in 55% of all patients after TAVI. Conclusions: Our results indicate that TAVI elicits a midterm, specific humoral immune response against α-Gal and causes an unspecific humoral inflammation compared with patients undergoing MitraClip implantation. This observation will lead to a better understanding of postintervention morbidity and the long-term durability of bioprostheses and indicates that caution is appropriate when designing implantation strategies for younger patients.

3.
JACC Basic Transl Sci ; 5(8): 755-766, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32875167

ABSTRACT

Valvular heart diseases are associated with significant cardiovascular morbidity and mortality, and often require surgical and/or percutaneous repair or replacement. Valve replacement is limited to mechanical and biological prostheses, the latter of which circumvent the need for lifelong anticoagulation but are subject to structural valve degeneration (SVD) and failure. Although calcification is heavily studied, noncalcific SVD, which represent roughly 30% of BHV failures, is relatively underinvestigated. This original work establishes 2 novel and interacting mechanisms-glycation and serum albumin incorporation-that occur in clinical valves and are sufficient to induce hallmarks of structural degeneration as well as functional deterioration.

SELECTION OF CITATIONS
SEARCH DETAIL