Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.822
Filter
1.
J Adv Res ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39154803

ABSTRACT

INTRODUCTION: Improving the rhizospheric HCO3- utilization of plant-soil ecosystem could increase the carbon sink effect of terrestrial ecosystem. However, to avoid its physiological stress on the crop growth, the dosage of HCO3- allowed to add into the rhizosphere soil was always low (i.e., <5-20 mol/m3). OBJECTIVES: To facilitate the utilization of relatively high concentrations of HCO3- by plants in the pursuit of achieving terrestrial carbon sink enhancement. METHODS: In this study, the feasibility of directly supplementing a high concentration HCO3- carried by the biogas slurry to the plant rhizosphere was investigated using the tomato as a model plant. RESULTS: The CO2-rich biogas slurry was verified as a potential CO2 carrier to increase the rhizospheric HCO3- concentration to 36 mol/m3 without causing a physiological stress. About 88.3 % of HCO3- carried by biogas slurry was successfully fixed by tomato-soil ecosystem, in which 43.8 % of HCO3- was assimilated by tomato roots for the metabolism, 0.5 ‰ of HCO3- was used by microorganisms for substances synthesis of cell structure through dark fixation, and 44.4 % of HCO3- was retained in the soil. The rest of HCO3- (∼11.7 %) might escape into the atmosphere through the reaction with H+. Correspondingly, the carbon fixation of tomato-soil ecosystem increased by 150.1 g-CO2/m2-soil during a tomato growth cycle. As for the global countries that would adopt the strategy proposed in this study to cultivate the tomato, an extra carbon sink of soil with about 1031.1 kt-C per year (i.e., an additional 0.21 tons of carbon per hectare soil) could be obtained. CONCLUSION: This would be consistent with the goal of soil carbon sink enhancement launched at COP21. Furthermore, the regions with low GDP per capita may easily achieve a high reduction potential of CO2 emissions from the agricultural land after adopting the irrigation of CO2-rich biogas slurry.

2.
Am J Med ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39107215

ABSTRACT

BACKGROUND: High fruit and vegetable diets are associated with reduced chronic kidney disease and cardiovascular disease but are infrequently used in hypertension treatment. Low acid diets are also associated with reduced chronic kidney disease and cardiovascular disease, and fruits and vegetables or oral sodium bicarbonate (NaHCO3) lowers dietary acid. METHODS: We randomized 153 hypertensive macroalbuminuric patients receiving pharmacologic chronic kidney disease and cardiovascular disease protection to get fruits and vegetables, oral NaHCO3, or Usual Care. We assessed the course of kidney disease progression and cardiovascular disease risk indices over five years. RESULTS: Chronic kidney disease progression was slower in participants receiving fruits and vegetables or oral NaHCO3 than Usual Care [mean (SE)] [-1.08 (0.06) and -1.17 (0.07) vs. -1.94 (0.11) mL/min/1.73m2/ year, respectively, P's< .001). Yet, systolic blood pressure was lower, and cardiovascular disease risk indices improved more in participants receiving fruits and vegetables than in those receiving NaHCO3 or Usual Care. These cardiovascular benefits of fruits and vegetables were achieved despite lower doses of pharmacologic chronic kidney disease and cardiovascular disease protection. CONCLUSION: The trial supports fruits and vegetables as foundational hypertension treatment to reduce chronic kidney disease progression and cardiovascular disease risk.

3.
Sci Total Environ ; 950: 175359, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39122042

ABSTRACT

Groundwater recharge is a viable solution to groundwater overexploitation. However, the injection of recharge water may break the dissolution balance and induce the release of trace elements especially arsenic (As), which has been identified in river deltas. Only a few studies have been conducted in inland basins with high As concentration, high pH, and low Eh. Aiming to analyze As release with groundwater recharge in inland high-As regions and determine the effects of coexisting ions in recharge water, this study established PHase Equilibria Calculation (PHREEQC) models using rainwater and groundwater data from three inland sedimentary basins with slow groundwater flow in semi-arid regions. The simulations fitted with the batch experiments, achieving an R-squared (R2) of 0.98. The coexisting ions in the recharge water significantly affected As release during recharge. Ca2+ inhibited the release of total arsenic (Total-As) by increasing the surface charge of iron oxides. NO3- inhibited Total-As release by promoting the conversion of trivalent As into pentavalent As. Conversely, HCO3- facilitated As release by competing with arsenate for adsorption sites. On the basis of the modeling and batch experiment results, Total-As release with groundwater recharge was predicted. The results indicated that the high Ca2+ concentration in the recharge water inhibited the As release by 83.5 %, which can be used as a strategy to control As release during groundwater recharge in high-As inland basins.

4.
Chempluschem ; : e202400405, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39104329

ABSTRACT

Carbon dioxide (CO2) is one of the most abundant greenhouse gases in Earth's atmosphere and responsible for global warming. Therefore, aerial CO2 capture and sequestration has become a major task for human community. Though several adsorbents for CO2 including activated carbon, zeolites, metal-organic frameworks (MOFs), and other surface-modified porous materials are well developed, the supramolecular approaches using synthetic hydrogen-bonding receptors are less explored. This review article highlights the synthetic development of various artificial receptors and their properties toward fixation of aerial CO2 as carbonate (CO32-), bicarbonate (HCO3-), or carbamate (-NHCOO-/>NCOO-) ions, induced by excess fluoride (F-) or hydroxide (OH-) ions as their tetrabutylammonium salts. The utilization of encapsulated carbonate/bicarbonate/carbamate complexes in anion exchange metathesis for separation of oxyanions from aqueous solutions are also discussed. In addition, the release of CO2 and regeneration of receptor molecules are described in a number of occasions. Most importantly, the formation of anion complexes as crystalline materials in solid-state is described in terms of supramolecular chemistry and correlated with their solution-state properties. Finally, the types of receptors containing various functional groups are scrutinized in CO2 uptake, storage, and release processes and hints of endeavours for future research are delineated.

5.
Photosynth Res ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133367

ABSTRACT

Aquatic plants are a crucial component of the aquatic ecosystem in the Tibetan Plateau region. Researching the adaptability of plateau aquatic plants in photosynthesis to the plateau environment can enhance understanding of the operational mechanisms of plateau ecosystems, thereby providing a scientific basis for the protection and management of plateau aquatic ecosystems. This study presents an investigation of photosynthetic inorganic carbon utilization strategies and photosynthetic efficiency of 17 aquatic plants under natural growing conditions in Niyang River basin on the Tibetan Plateau. In pH-drift experiments, 10 of 17 species were able to utilize HCO3-, and environmental factors like water pH were shown to have a significant effect on the ability of the tested species to utilize HCO3-. Titratable acidity in the leaves of Stuckenia filiformis, Zannichellia palustris, Batrachium bungei, and Myriophyllum spicatum showed significant diurnal fluctuations at certain sampling sites, indicating the presence of CAM. In B. bungei, water pH positively correlated with CAM activity, while CO2 concentration negatively correlated with CAM activity. The chlorophyll fluorescence analysis revealed that aquatic plants inhabiting the Tibetan Plateau exhibited photosynthetic adaptations. In conclusion, the aquatic plants on the Tibetan Plateau employ diverse strategies for utilizing inorganic carbon during photosynthesis, exhibiting their flexible adaptability to the native high-altitude habitats of the Tibetan Plateau.

6.
Int J Artif Organs ; : 3913988241268026, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39149923

ABSTRACT

INTRODUCTION: The hydrogen ion (H+) mobilization model has been previously shown to provide a quantitative description of intradialytic changes in blood bicarbonate (HCO3) concentration during hemodialysis (HD). The current study evaluated the accuracy of different methods for estimating the H+ mobilization parameter (Hm) from this model. METHODS: The study compared estimates of the H+ mobilization parameter using predialysis, hourly during the HD treatment, and postdialysis blood HCO3 concentrations (Hm-full2) with those determined using only predialysis and postdialysis blood HCO3 concentrations assuming steady state conditions (Hm-SS2) during the midweek treatment in 24 chronic HD patients treated thrice weekly. RESULTS: Estimated Hm-full2 values (0.163 ± 0.079 L/min [mean ± standard deviation]) were higher than, but not statistically different (p = 0.067) from, those of Hm-SS2 (0.152 ± 0.065 L/min); the values of Hm-full2 and Hm-SS2 were highly correlated with a correlation coefficient of 0.948 and a mean difference that was small (0.011 L/min). Further, the H+ mobilization parameter values calculated using only predialysis and postdialysis blood HCO3 concentrations during the first and third HD treatments of the week were not different from those calculated during the midweek treatment. CONCLUSIONS: The H+ mobilization model can be used to provide estimates of the H+ mobilization parameter without the need to measure hourly intradialytic blood HCO3 concentrations.

7.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3340-3347, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041097

ABSTRACT

This study aims to explore the protective effect of Albizia chinensis saponin on ethanol-induced acute gastric ulcer in rats and elucidate its mechanisms. SD rats were deprived of water for 24 hours before the experiment. The control group and model group were administered water by gavage, and the positive drug group received rabeprazole sodium solution(40 mg·kg~(-1)) by gavage. The experimental groups were given different doses of Albizia chinensis saponin solution(3, 10, and 30 mg·kg~(-1)). After 30 minutes, the control group received 1.5 mL of water by gavage, while the other groups were administered an equal volume of 95% ethanol for modeling. After six hours, the rats were killed by cervical dislocation, and the stomachs were collected. The ulcer area was measured, and the ulcer index was calculated. Hematoxylin-eosin(HE) staining was performed to assess histopathological changes in gastric tissue. Periodic acid-Schiff(PAS) staining was used to evaluate the distribution of gastric mucosal surface mucus. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of phospholipids and aminohexose in the gastric mucosa. Western blot was performed to determine the expression levels of the bicarbonate transporter, matrix metalloproteinase, and tight junction-associated proteins in gastric tissue. Immunohistochemistry(IHC) staining was conducted to quantify the number of positive cells for secreted mucin and tight junction-associated proteins. The results showed that the gastric tissue surface of rats in the control group was smooth without ulceration, and the gastric ulcer index of rats in the model group was 35±11. Albizia chinensis saponin at doses of 3, 10, and 30 mg·kg~(-1) resulted in inhibition rates of gastric ulcer of 46%(P<0.01), 85%(P<0.001), and 100%(P<0.001), respectively. Severe disruption of gastric mucosal structure and absence of the mucus layer were observed in the model group. Compared with the model group, the Albizia chinensis saponin group showed intact gastric mucosal surface mucus layer, significantly increased levels of phospholipids and aminohexose in the mucus, increased number of MUC5AC positive cells, and upregulated expression levels of the bicarbonate transporter SLC26A3 and CFTR. It also showed decreased phosphorylation of JNK and c-Jun, reduced expression levels of MMP-8, elevated expression of TIMP-1, and increased expression levels of Occludin and ZO-1. In conclusion, Albizia chinensis saponin enhances the function of the mucus-bicarbonate barrier by upregulating the content of MUC5AC, phospholipids, and aminohexose and increasing the expression levels of the bicarbonate transporter SLC26A3 and CFTR. Moreover, Albizia chinensis saponin exerts its protective effects on gastric ulcers by inhibiting the JNK signaling pathway to prevent excessive activation of MMP-8, thereby reducing the degradation of Occludin and ZO-1 and enhancing the mucosal barrier function. In summary, Albizia chinensis saponin exerts its anti-gastric ulcer effects by simultaneously enhancing the mucus barrier and the mucosal barrier.


Subject(s)
Albizzia , Drugs, Chinese Herbal , Ethanol , Gastric Mucosa , Mucus , Rats, Sprague-Dawley , Saponins , Stomach Ulcer , Animals , Saponins/pharmacology , Rats , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Ethanol/adverse effects , Male , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Stomach Ulcer/prevention & control , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Albizzia/chemistry , Mucus/metabolism , Protective Agents/pharmacology , Protective Agents/administration & dosage , Humans
8.
J Anat ; 245(3): 501-509, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39010676

ABSTRACT

Postmortem human subject (PMHS) studies are essential to brain injury research in motor vehicle safety. However, postmortem deterioration reduces the similarity between postmortem test results and in vivo response in material testing of brain tissue and in biomechanical testing of the whole head. This pilot study explores the effect of potential preservatives on brain tissue breakdown to identify promising preservatives that warrant further investigation. To identify preservatives with potential to slow postmortem degradation, samples from an initial PMHS were refrigerated at 10°C to qualitatively compare tissue breakdown from 58 to 152 h postmortem after storage in candidate solutions. On brain tissue samples from a second PMHS, compressive stiffness was measured on six samples immediately after harvest for comparison to the stiffness of 23 samples that were stored at 10°C in candidate solutions for 24 h after harvest. The candidate solutions were artificial cerebrospinal fluid (ACSF) without preservatives; ACSF with a combination of antibiotics and antifungal agents; ACSF with added sodium bicarbonate; and ACSF with both the antibiotic/antifungal combination and sodium bicarbonate. Results were analyzed using multiple linear regression of specimen stiffness on harvest lobe and storage solution to investigate potential differences in tissue stiffness. Qualitative evaluation suggested that samples stored in a solution that contained both the antibiotic/antifungal combination and sodium bicarbonate exhibited less evidence of tissue breakdown than the samples stored without preservatives or with only one of those preservatives. In compression testing, samples tested immediately after harvest were significantly stiffer than samples tested after 24 h of storage at 10°C in ACSF (difference: -0.27 N/mm, 95% confidence interval (CI): -0.50, -0.05) or ACSF with antibiotics/antifungal agents (difference: -0.32 N/mm, 95% CI: -0.59, -0.04), controlling for harvest lobe. In contrast, the stiffness of samples tested after storage in either solution containing sodium bicarbonate was not significantly different from the stiffness of samples tested at harvest. There was no significant overall difference in the mean tissue stiffness between samples from the frontal and parietal lobes, controlling for storage solution. Given the importance of PMHS studies to brain injury research, any strategy that shows promise for helping to maintain in vivo brain material properties has the potential to improve understanding of brain injury mechanisms and tolerance to head injury and warrants further investigation. These pilot study results suggest that sodium bicarbonate has the potential to reduce the deterioration of brain tissue in biomechanical testing. The results motivate further evaluation of sodium bicarbonate as a preservative for biomechanical testing using additional test subjects, more comprehensive material testing, and evaluation under a broader set of test conditions including in whole-head testing. The effect of antibiotics and antifungal agents on brain tissue stiffness was minimal but may have been limited by the cold storage conditions in this study. Further exploration of the potential for microbial agents to preserve tissue postmortem would benefit from evaluation of the effects of storage temperature.


Subject(s)
Brain , Pilot Projects , Humans , Biomechanical Phenomena , Brain/drug effects , Postmortem Changes , Sodium Bicarbonate/pharmacology , Male , Aged
9.
Photosynth Res ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037690

ABSTRACT

Photosystem II (PSII) uses light energy to oxidize water and to reduce plastoquinone in the photosynthetic electron transport chain. O2 is produced as a byproduct. While most members of the PSII research community agree that O2 originates from water molecules, alternative hypotheses involving bicarbonate persist in the literature. In this perspective, we provide an overview of the important roles of bicarbonate in regulating PSII activity and assembly. Further, we emphasize that biochemistry, spectroscopy, and structural biology experiments have all failed to detect bicarbonate near the active site of O2 evolution. While thermodynamic arguments for oxygen-centered bicarbonate oxidation are valid, the claim that bicarbonate is a substrate for photosynthetic O2 evolution is challenged.

10.
Acta Physiol (Oxf) ; : e14205, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031444

ABSTRACT

AIM: To identify the physiological role of the acid-base sensing enzyme, soluble adenylyl cyclase (sAC), in red blood cells (RBC) of the model teleost fish, rainbow trout. METHODS: We used: (i) super-resolution microscopy to determine the subcellular location of sAC protein; (ii) live-cell imaging of RBC intracellular pH (pHi) with specific sAC inhibition (KH7 or LRE1) to determine its role in cellular acid-base regulation; (iii) spectrophotometric measurements of haemoglobin-oxygen (Hb-O2) binding in steady-state conditions; and (iv) during simulated arterial-venous transit, to determine the role of sAC in systemic O2 transport. RESULTS: Distinct pools of sAC protein were detected in the RBC cytoplasm, at the plasma membrane and within the nucleus. Inhibition of sAC decreased the setpoint for RBC pHi regulation by ~0.25 pH units compared to controls, and slowed the rates of RBC pHi recovery after an acid-base disturbance. RBC pHi recovery was entirely through the anion exchanger (AE) that was in part regulated by HCO3 --dependent sAC signaling. Inhibition of sAC decreased Hb-O2 affinity during a respiratory acidosis compared to controls and reduced the cooperativity of O2 binding. During in vitro simulations of arterial-venous transit, sAC inhibition decreased the amount of O2 that is unloaded by ~11%. CONCLUSION: sAC represents a novel acid-base sensor in the RBCs of rainbow trout, where it participates in the modulation of RBC pHi and blood O2 transport though the regulation of AE activity. If substantiated in other species, these findings may have broad implications for our understanding of cardiovascular physiology in vertebrates.

11.
Expert Opin Ther Targets ; 28(7): 623-635, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39028535

ABSTRACT

INTRODUCTION: Cholera is a bacterial diarrheal disease caused by pathogen bacteria Vibrio cholerae, which produces the cholera toxin (CT). In addition to improving water sanitation, oral cholera vaccines have been developed to control infection. Besides, rehydration and antibiotic therapy are complementary treatment strategies for cholera. ToxT regulatory protein activates transcription of CT gene, which is enhanced by bicarbonate (HCO3-). AREAS COVERED: This review delves into the genomic blueprint of V. cholerae, which encodes for α-, ß-, and γ- carbonic anhydrases (CAs). We explore how the CAs contribute to the pathogenicity of V. cholerae and discuss the potential of CA inhibitors in mitigating the disease's impact. EXPERT OPINION: CA inhibitors can reduce the virulence of bacteria and control cholera. Here, we reviewed all reported CA inhibitors, noting that α-CA from V. cholerae (VchCAα) was the most effective inhibited enzyme compared to the ß- and γ-CA families (VchCAß and VchCAγ). Among the CA inhibitors, acyl selenobenzenesulfonamidenamides and simple/heteroaromatic sulfonamides were the best VchCA inhibitors in the nM range. It was noted that some antibacterial compounds show good inhibitory effects on all three bacterial CAs. CA inhibitors belonging to other classes may be synthesized and tested on VchCAs to harness cholera.


Subject(s)
Anti-Bacterial Agents , Carbonic Anhydrase Inhibitors , Carbonic Anhydrases , Cholera , Vibrio cholerae , Vibrio cholerae/enzymology , Carbonic Anhydrase Inhibitors/pharmacology , Cholera/drug therapy , Cholera/microbiology , Humans , Anti-Bacterial Agents/pharmacology , Carbonic Anhydrases/metabolism , Animals , Virulence , Cholera Toxin/pharmacology , Cholera Toxin/antagonists & inhibitors , Cholera Vaccines/pharmacology , Drug Development
12.
Sci Rep ; 14(1): 15328, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961237

ABSTRACT

In the present study, the effect of chloride ions on the oxidative degradation of an alcohol ethoxylate (Brij 30) by persulfate (PS)/UV-C was experimentally explored using Brij 30 aqueous solution (BAS) and a domestic wastewater treatment plant effluent spiked with Brij 30. Brij 30 degradation occurred rapidly during the early stages of oxidation without affecting the water/wastewater matrix. Mineralization of intermediates of Brij 30 degradation markedly influenced by presence of chloride ions. Chloride ions at concentrations up to 50 mg/L accelerated the mineralization through reactions involving reactive chlorine species, which reduced the sink of SO4·- by Cl- scavenging at both initial pH of 6.0 and 3.0 in the case of BAS. The fastest mineralization was achieved under acidic conditions. The WWTP effluent matrix significantly influenced mineralization efficacy of the intermediates. Co-existence of HCO 3 - and Cl- anions accelerated the mineralization of degradation products. Organic matter originating from the WWTP effluent itself had an adverse effect on the mineralization rate. The positive effects of organic and inorganic components present in the WWTP effluent were ranked in the following order of increasing influence: (Organic matter originating from the effluent + Cl- + HCO 3 - ) < (Cl-) < (Cl- + HCO 3 - ).

13.
Anal Chim Acta ; 1316: 342811, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969401

ABSTRACT

BACKGROUND: Lipids such as phosphatidic acids (PAs) and cardiolipins (CLs) present strongly tailing peaks in reversed phase liquid chromatography, which entails low detectability. They are usually analyzed by hydrophilic interaction liquid chromatography (HILIC), which hampers high-throughput lipidomics. Thus, there is a great need for improved analytical methods in order to obtain a broader coverage of the lipidome in a single chromatographic method. We investigated the effect of ammonium bicarbonate (ABC) on peak asymmetry and detectability, in comparison with ammonium formate (AFO) on both a conventional BEH C18 column and an HST-CSH C18 column. RESULTS: The combination of 2.5 mM ABC buffer pH 8 with an HST-CSH C18 column produced significantly improved results, reducing the asymmetry factor at 10 % peak height of PA 16:0/18:1 from 8.4 to 1.6. Furthermore, on average, there was up to a 54-fold enhancement in the peak height of its [M - H]- ion compared to AFO and the BEH C18 column. We confirmed this beneficial effect on other strongly tailing lipids, with accessible phosphate moieties e.g., cardiolipins, phosphatidylinositol phosphate, phosphatidylinositol bisphosphate, phosphorylated ceramide and phosphorylated sphingosine. Furthermore, we found an increased detectability of phospho- and sphingolipids up to 28 times in negative mode when using an HST-CSH C18 column. The method was successfully applied to mouse liver samples, where previously undetected endogenous phospholipids could be analyzed with improved chromatographic separation. SIGNIFICANCE: In conclusion, the use of 2.5 mM ABC substantially improved the peak shape of PAs and enhanced the detectability of the lipidome in negative mode on an RPLC-ESI-Q-TOF-MS system on both BEH C18 and HST-CSH C18 columns. This method provides a wider coverage of the lipidome with one single injection for future lipidomic applications in negative mode.


Subject(s)
Bicarbonates , Animals , Mice , Buffers , Bicarbonates/chemistry , Lipids/chemistry , Chromatography, Reverse-Phase/methods , Surface Properties , Lipidomics/methods , Mice, Inbred C57BL , Hydrophobic and Hydrophilic Interactions , Phosphatidic Acids/chemistry , Liver/chemistry
14.
ESC Heart Fail ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970235

ABSTRACT

AIMS: The bicarbonate (HCO3 -) buffer system is crucial for maintaining acid-base homeostasis and blood pH. Recent studies showed that elevated serum HCO3 - levels serve as an indicator of the beneficial effects of acetazolamide in improving decongestion in acute heart failure. In this study, we sought to clarify the clinical relevance and prognostic impact of HCO3 - in chronic heart failure (CHF). METHODS: This cohort study enrolled 694 hospitalized patients with CHF (mean age 68.6 ± 14.6, 62% male) who underwent arterial blood sampling and exhibited neutral pH ranging from 7.35 to 7.45. We characterized the patients based on HCO3 - levels and followed them to register cardiac events. RESULTS: Among the patients, 17.3% (120 patients) had HCO3 - levels exceeding 26 mmol/L. Patients presenting HCO3 - > 26 mmol/L were more likely to use loop diuretics and had higher serum sodium and lower potassium levels, but left ventricular ejection fraction did not differ compared with those with HCO3 - between 22 and 26 (379 patients) or those with HCO3 - < 22 mmol/L (195 patients). During a median follow-up period of 1950 days, Kaplan-Meier analysis revealed that patients with HCO3 - > 26 mmol/L had the lowest event-free survival rate from either cardiac deaths or heart failure-related rehospitalization (P < 0.01 and 0.03, respectively). In the multivariable Cox model, the presence of HCO3 - > 26 mmol/L independently predicted increased risks of each cardiac event with a hazard ratio of 2.31 and 1.69 (P < 0.01 and 0.02, respectively), while HCO3 - < 22 mmol/L was not associated with these events (hazard ratios, 0.99 and 1.19; P = 0.98 and 0.43, respectively). CONCLUSIONS: Elevated blood HCO3 - levels may signify enhanced proximal nephron activation and loop diuretic resistance, leading to long-term adverse outcomes in patients with CHF, even within a normal pH range.

15.
Trends Biotechnol ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39048412

ABSTRACT

Using sewage (wastewater) for ocean alkalinity enhancement (OAE) has been considered as one promising ocean negative carbon emissions (ONCE) approach due to its high carbon sequestration efficiency and low environmental risk. To make this process more profitable and sustainable, this perspective proposes to integrate bicarbonate-based microalgal production and sewage alkalinity enhancement for ONCE. In this concept, the spent aqueous alkaline bicarbonate-based microalgal medium is cheap or even free for OAE, while the produced microalgae with high value-added compositions make this process more profitable. To make the proposed idea more efficient and sustainable, the prospects for its future development are also discussed in this opinion article. This perspective provides a novel and practical idea for achieving efficient carbon neutralization and high economic value simultaneously.

17.
Nutrients ; 16(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999735

ABSTRACT

This study aimed to investigate the ability of highly trained athletes to consistently perform at their highest level during a simulated three-day 400 m race and to examine the impact of an alkaline diet associated with chronic consumption of bicarbonate-rich water or placebo on their blood metabolic responses before and after the three races. Twenty-two highly trained athletes, divided into two groups-one with an alkalizing diet and placebo water (PLA) and the other with an alkalizing diet and bicarbonate-rich water (BIC)-performed a 400 m race for three consecutive days. Performance metrics, urine and blood samples assessing acid-base balance, and indirect markers of neuro-muscular fatigue were measured before and after each 400 m race. The evolution of the Potential Renal Acid Load (PRAL) index and urinary pH highlights the combination of an alkalizing diet and bicarbonate-rich hydration, modifying the acid-base state (p < 0.05). Athletes in the PLA group replicated the same level of performance during three consecutive daily races without an increase in fatigue-associated markers. Athletes experienced similar levels of metabolic perturbations during the three 400 m races, with improved lactate clearance 20 min after the third race compared to the first two (p < 0.05). This optimization of the buffering capacity through ecological alkaline nutrition and hydration allowed athletes in the BIC group to improve their performance during the third 400 m race (p < 0.01). This study highlights athletes' ability to replicate high-level performances over three consecutive days with the same extreme level of metabolic disturbances, and an alkaline diet combined with bicarbonate-rich water consumption appears to enhance performance in a 400 m race.


Subject(s)
Acid-Base Equilibrium , Athletic Performance , Bicarbonates , Humans , Athletic Performance/physiology , Male , Adult , Bicarbonates/blood , Athletes , Young Adult , Hydrogen-Ion Concentration , Diet/methods , Lactic Acid/blood , Female , Muscle Fatigue/physiology , Running/physiology , Physical Endurance/physiology , Biomarkers/blood , Biomarkers/urine
18.
Environ Sci Pollut Res Int ; 31(35): 48450-48459, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031318

ABSTRACT

The bicarbonate-activated hydrogen peroxide (BAP) system is widely studied for organic pollutant degradation in wastewater treatment. Ca2Co2O5, a heterogeneous catalyst containing multivalent cobalt including Co(II) and Co(III), was herein investigated as a BAP activator, and Acid Orange 7 (AO7) was used as a model pollutant. Ca2Co2O5 exhibited good activation performance. The degradation rate and the initial rate constant of the Ca2Co2O5-activated BAP system were 5.4 and 11.2 times as high as the BAP system, respectively. The removal rate of AO7 reached 90.9% in 30 min under optimal conditions (AO7 20 mg/L, Ca2Co2O5 0.2 g/L, H2O2 1 mM, NaHCO3 5 mM, pH 8.5, 25℃). The Ca2Co2O5 catalyst exhibited good stability and recyclability, retaining 85% of AO7 removal rate in the fifth run. Compared to the BAP system, a lower dosage of H2O2 was required and a higher initial concentration of pollutants allowed for effective degradation in the Ca2Co2O5-BAP system. X-ray photoelectron spectroscopy was used to analyze the catalytic mechanism. The analysis showed that the good catalytic performance of Ca2Co2O5 attributes to its high proportion of oxygen vacancies and Co(III) species, and the presence of Ca. The active species O2•-, •OH, and 1O2 are responsible for the degradation, as indicated by the quenching experiments. The degradation mechanism of AO7 was speculated based on UV-Vis spectral analysis and the identification of degradation intermediates. The azo form, naphthalene and benzoic rings in the AO7 structure are destroyed in the decomposition. This research provides a feasible approach to designing effective and reusable BAP activators for pollutant degradation in wastewater treatment.


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/chemistry , Cobalt/chemistry , Bicarbonates/chemistry , Catalysis , Wastewater/chemistry , Azo Compounds , Benzenesulfonates
19.
Angew Chem Int Ed Engl ; : e202406543, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923335

ABSTRACT

For the anodic H2O2 generation, it has been shown that the electrolyte composition can steer the reaction pathway toward increased H2O2 generation. Previous efforts made on composition optimization found that the impact of the molar fraction of carbonate species varies for different anodes, and therefore, controversies remain concerning the reaction pathways as well as the species involved in H2O2 formation. Considering that water oxidation results in the liberation of protons within the anode microenvironment, the corresponding acidification would cause an equilibrium shift between carbonate species, which in turn may modulate the reaction pathway. We determined the changes in the fraction of carbonate species in the vicinity of an anode by performing local pH measurements using a Au nanoelectrode positioned in close proximity to an operating anode by shear-force scanning electrochemical microscopy (SECM). It could be confirmed that the main anionic species at the interface is HCO3 -, at potentials where H2O2 is preferentially formed, regardless of the pH value in the bulk. The simultaneous use of a Au-Pt double barrel microelectrode in generator-collector SECM measurements demonstrates that the local HCO3 - concentration is collectively determined by the oxidation current, buffer capacity, and bulk pH of the electrolyte.

20.
Antimicrob Agents Chemother ; 68(7): e0021824, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38837393

ABSTRACT

NaHCO3 responsiveness is a novel phenotype where some methicillin-resistant Staphylococcus aureus (MRSA) isolates exhibit significantly lower minimal inhibitory concentrations (MIC) to oxacillin and/or cefazolin in the presence of NaHCO3. NaHCO3 responsiveness correlated with treatment response to ß-lactams in an endocarditis animal model. We investigated whether treatment of NaHCO3-responsive strains with ß-lactams was associated with faster clearance of bacteremia. The CAMERA2 trial (Combination Antibiotics for Methicillin-Resistant Staphylococcus aureus) randomly assigned participants with MRSA bloodstream infections to standard therapy, or to standard therapy plus an anti-staphylococcal ß-lactam (combination therapy). For 117 CAMERA2 MRSA isolates, we determined by broth microdilution the MIC of cefazolin and oxacillin, with and without 44 mM of NaHCO3. Isolates exhibiting ≥4-fold decrease in the MIC to cefazolin or oxacillin in the presence of NaHCO3 were considered "NaHCO3-responsive" to that agent. We compared the rate of persistent bacteremia among participants who had infections caused by NaHCO3-responsive and non-responsive strains, and that were assigned to combination treatment with a ß-lactam. Thirty-one percent (36/117) and 25% (21/85) of MRSA isolates were NaHCO3-responsive to cefazolin and oxacillin, respectively. The NaHCO3-responsive phenotype was significantly associated with sequence type 93, SCCmec type IVa, and mecA alleles with substitutions in positions -7 and -38 in the regulatory region. Among participants treated with a ß-lactam, there was no association between the NaHCO3-responsive phenotype and persistent bacteremia (cefazolin, P = 0.82; oxacillin, P = 0.81). In patients from a randomized clinical trial with MRSA bloodstream infection, isolates with an in vitro ß-lactam-NaHCO3-responsive phenotype were associated with distinctive genetic signatures, but not with a shorter duration of bacteremia among those treated with a ß-lactam.


Subject(s)
Anti-Bacterial Agents , Cefazolin , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Oxacillin , Staphylococcal Infections , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cefazolin/pharmacology , Cefazolin/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Oxacillin/pharmacology , Bacteremia/drug therapy , Bacteremia/microbiology , Phenotype , beta-Lactams/pharmacology , beta-Lactams/therapeutic use , Male , Sodium Bicarbonate/pharmacology , Female , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL