Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters











Publication year range
1.
Heliyon ; 10(18): e37692, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39315154

ABSTRACT

The increasing global concern over environmental plastic waste has propelled the progress of biodegradable supplies for food packaging. Biopolymer-based packaging is undergoing modifications to enhance its mechanical properties, aligning with the requirements of smart food packaging. Polymer nanocomposites, incorporating reinforcements such as fibers, platelets, and nanoparticles, demonstrate significantly improved mechanical, thermal, optical, and physicochemical characteristics. Fungi, in particular, have garnered significant interest for producing metallic nanoparticles, offering advantages such as easy scaling up, streamlined downstream handling, economic feasibility, and a large surface area. This review provides an overview of nano-additives utilized in biopackaging, followed by an exploration of the recent advancements in using microbial-resistant metal nanoparticles for food packaging. The mycofabrication process, involving fungi in the extracellular or intracellular synthesis of metal nanoparticles, is introduced. Fungal functionalized nanostructures represent a promising avenue for application across various stages of food processing, packaging, and safety. The integration of fungal-derived nanostructures into food packaging materials presents a sustainable and effective approach to combatting microbial contamination." By harnessing fungal biomass, this research contributes to the development of economical and environmentally friendly methods for enhancing food packaging functionality. The findings underscore the promising role of fungal-based nanotechnologies in advancing the field of active food packaging, addressing both safety and sustainability concerns. The study concludes with an investigation into potential fungal isolates for nanoparticle biosynthesis, highlighting their relevance and potential in advancing sustainable and efficient packaging solutions.

2.
Pharmaceutics ; 16(9)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39339261

ABSTRACT

Background: Cellulose derivatives are gaining much attention in medical research due to their excellent properties such as biocompatibility, hydrophilicity, non-toxicity, sustainability, and low cost. Unfortunately, cellulose does not exhibit antimicrobial activity. However, derivatives like hydroxyethyl cellulose represent a proper matrix to incorporate antimicrobial agents with beneficial therapeutic effects. Methods: Combining more antimicrobial agents into a single composite material can induce stronger antibacterial activity by synergism. Results: Therefore, we have obtained a hydroxyethyl-cellulose-based material loaded with zinc oxide nanoparticles and cinnamon essential oil as the antimicrobial agents. The cinnamon essential oil was loaded in mesoporous silica particles to control its release. Conclusions: The composite films demonstrated high antibacterial activity against Staphylococcus aureus and Escherichia coli strains, impairing the bacterial cells' viability and biofilm development. Such antimicrobial films can be used in various biomedical applications such as topical dressings or as packaging for the food industry.

3.
Compr Rev Food Sci Food Saf ; 23(5): e13433, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39217508

ABSTRACT

Food packaging plays a crucial role in the food supply chain by aiding in food preservation and reducing food losses throughout the distribution process. The extensive, unregulated utilization, and waste mismanagement of food packaging materials made up of conventional petroleum-based plastics has led to a significant environmental crisis. Egg components-based food packaging has attracted considerable attention from the global packaging industry as a viable alternative to synthetic polymers due to its biodegradability, sustainability, and health-related benefits. This comprehensive review explores the composition and properties of egg components (eggshell, eggshell membrane, egg white, and egg yolk), and recent advancements in biodegradable packaging films derived from them. Additionally, it introduces the characteristics of these films and their applications in food, highlighting their biodegradability, sustainability, and suitable mechanical, barrier, thermal, optical, antioxidant, and antimicrobial properties as substitutes for traditional synthetic polymers. The utilization of various egg components in the packaging industry is a safe, non-toxic, cost-effective, and economical approach. However, it was found that incorporating active compounds from natural sources into packaging films, as well as composite films composed of egg components combined with other biopolymers, resulted in superior properties, compared to single component films. Moreover, the application of novel technologies in film development has proven to be more effective than conventional methods. These innovative egg components-based packaging films can be optimized and commercialized for use as packaging materials for food products.


Subject(s)
Food Packaging , Food Packaging/methods , Eggs , Animals , Egg Shell/chemistry , Biodegradation, Environmental , Egg Yolk/chemistry , Food Preservation/methods , Egg White/chemistry
4.
Polymers (Basel) ; 16(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39274104

ABSTRACT

Biopolymer-based films are a promising alternative for the food packaging industry, in which petrochemical-based polymers like low-density polyethylene (LDPE) are commanding attention because of their high pollution levels. In this research, a biopolymer-based film made of chitosan (CS), gelatin (GEL), and glycerol (GLY) was designed. A Response Surface Methodology (RSM) analysis was performed to determine the chitosan, gelatin, and glycerol content that improved the mechanical properties selected as response variables (thickness, tensile strength (TS), and elongation at break (EAB). The content of CS (1.1% w/v), GEL (1.1% w/v), and GLY (0.4% w/v) in the film-forming solution guarantees an optimized film (OPT-F) with a 0.046 ± 0.003 mm thickness, 11.48 ± 1.42 mPa TS, and 2.6 ± 0.3% EAB. The OPT-F was characterized in terms of thermal, optical, and biodegradability properties compared to LDPE films. Thermogravimetric analysis (TGA) revealed that the OPT-F was thermally stable at temperatures below 300 °C, which is relevant to thermal processes in the food industry of packaging. The reduced water solubility (WS) (24.34 ± 2.47%) and the improved biodegradability properties (7.1%) compared with LDPE suggests that the biopolymer-based film obtained has potential applications in the food industry as a novel packaging material and can serve as a basis for the design of bioactive packaging.

5.
Food Sci Nutr ; 12(8): 5373-5387, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39139939

ABSTRACT

In recent years, development of biopolymeric nanofibers as an active biodegradable packaging system has attracted specific attention. The objective of this research was to develop zein-based electrospun nanofibers (NFs) incorporated with geraniol-loaded nanoliposomes (G-loaded NLPs). Geraniol was encapsulated into NLPs with an efficiency of 79.23%. The particle size and zeta potential of G-loaded NLPs were 121.50 nm and -38.30 mV, respectively. The successful loading of geraniol in the NLPs was approved by Fourier transform infrared (FT-IR) spectroscopy. The liposomal vesicles showed spherical shapes. G-loaded NLPs were added in the zein-based electrospun NFs at three different concentrations (0.25, 0.5, and 1%w/v). All NFs samples exhibited fibrillar structure. The increase of NLPs concentration enhanced the thermal stability of the NFs. However, the crystalline structure of zein NFs did not change by the addition of G-loaded NLPs. The highest surface hydrophobicity was related to the NFs containing 1% G-loaded NLPs. The mechanical parameters of NFs depend on the concentration of NLPs. The NFs incorporated with G-loaded NLPs showed inhibition activity against four foodborne pathogenic bacteria (Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella typhimurium) with an inhibition zone of 4.5-22 mm. Moreover, the α-diphenyl-ß-picrylhydrazyl (DPPH) scavenging activity of NFs samples was located at the range of 20%-48%. These findings represent the Efficiency of the G-loaded NLPs for use as bioactive compound in the zein-based NFs as an active packaging material.

6.
Sci Rep ; 14(1): 18993, 2024 08 16.
Article in English | MEDLINE | ID: mdl-39152240

ABSTRACT

Plastic, integral to food packaging since the 1950s, has become a global environmental concern due to its contribution to microplastic pollution. Microplastics harm ecosystems, impacting wildlife and human health. Amid increasing focus on sustainability, global initiatives target sustainable production and consumption, but consumers struggle to verify product claims, leading to potential greenwashing, particularly in the food industry. We conducted an experiment focusing on pasta products with varied packaging and labeling attributes. Findings suggest that consumers are willing to pay more for products with both biodegradable packaging and Product Environmental Footprint (PEF) labels, indicating heightened trust and perceived sustainability. Information about microplastics' adverse environmental effects influenced consumer valuation, particularly among females, higher-income individuals, and those with stronger environmental concerns.


Subject(s)
Consumer Behavior , Food Packaging , Microplastics , Food Packaging/methods , Humans , Female , Male , Adult
7.
Foods ; 13(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38998628

ABSTRACT

Packaging plays a crucial role in protecting food by providing excellent mechanical properties as well as effectively blocking water vapor, oxygen, oil, and other contaminants. The low degradation of widely used petroleum-based plastics leads to environmental pollution and poses health risks. This has drawn interest in renewable biopolymers as sustainable alternatives. The seafood industry generates significant waste that is rich in bioactive substances like chitin, chitosan, gelatins, and alginate, which can replace synthetic polymers in food packaging. Although biopolymers offer biodegradability, biocompatibility, and non-toxicity, their films often lack mechanical and barrier properties compared with synthetic polymer films. This comprehensive review discusses the chemical structure, characteristics, and extraction methods of biopolymers derived from seafood waste and their usage in the packaging area as reinforcement or base materials to guide researchers toward successful plastics replacement and commercialization. Our review highlights recent advancements in improving the thermal durability, mechanical strength, and barrier properties of seafood waste-derived packaging, explores the mechanisms behind these improvements, and briefly mentions the antimicrobial activities and mechanisms gained from these biopolymers. In addition, the remaining challenges and future directions for using seafood waste-derived biopolymers for packaging are discussed. This review aims to guide ongoing efforts to develop seafood waste-derived biopolymer films that can ultimately replace traditional plastic packaging.

8.
Polymers (Basel) ; 16(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38891520

ABSTRACT

To obtain more sustainable and active food packaging materials, PHBV films containing 5% wt. of phenolic compounds with different molecular structures (ferulic acid, vanillin, and catechin) and proved antioxidant and antimicrobial properties were obtained by melt blending and compression molding. These were characterized by their structural, mechanical, barrier, and optical properties, as well as the polymer crystallization, thermal stability, and component migration in different food simulants. Phenolic compounds were homogenously integrated within the polymer matrix, affecting the film properties differently. Ferulic acid, and mainly catechin, had an anti-plasticizing effect (increasing the polymer glass transition temperature), decreasing the film extensibility and the resistance to breaking, with slight changes in the elastic modulus. In contrast, vanillin provoked a plasticizing effect, decreasing the elastic modulus without notable changes in the film extensibility while increasing the water vapor permeability. All phenolic compounds, mainly catechin, improved the oxygen barrier capacity of PHBV films and interfered with the polymer crystallization, reducing the melting point and crystallinity degree. The thermal stability of the material was little affected by the incorporation of phenols. The migration of passive components of the different PHBV films was lower than the overall migration limit in every simulant. Phenolic compounds were released to a different extent depending on their thermo-sensitivity, which affected their final content in the film, their bonding forces in the polymer matrix, and the simulant polarity. Their effective release in real foods will determine their active action for food preservation. Catechin was the best preserved, while ferulic acid was the most released.

9.
Int J Biol Macromol ; 272(Pt 1): 132509, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843608

ABSTRACT

Functional packaging represents a new frontier for research on food packaging materials. In this context, adding antioxidant properties to packaging films is of interest. In this study, poly(butylene adipate-co-terephthalate) (PBAT) and olive leaf extract (OLE) have been melt-compounded to obtain novel biomaterials suitable for applications which would benefit from the antioxidant activity. The effect of cellulose nanocrystals (CNC) on the PBAT/OLE system was investigated, considering the interface interactions between PBAT/OLE and OLE/CNC. The biomaterials' physical and antioxidant properties were characterized. Morphological analysis corroborates the full miscibility between OLE and PBAT and that OLE favours CNC dispersion into the polymer matrix. Tensile tests show a stable plasticizer effect of OLE for a month in line with good interface PBAT/OLE interactions. Simulant food tests indicate a delay of OLE release from the 20 wt% OLE-based materials. Antioxidant activity tests prove the antioxidant effect of OLE depending on the released polyphenols, prolonged in the system at 20 wt% of OLE. Fluorescence spectroscopy demonstrates the nature of the non-covalent PBAT/OLE interphase interactions in π-π stacking bonds. The presence of CNC in the biomaterials leads to strong hydrogen bonding interactions between CNC and OLE, accelerating OLE released from the PBAT matrix.


Subject(s)
Antioxidants , Biocompatible Materials , Cellulose , Nanoparticles , Olea , Plant Extracts , Plant Leaves , Polyesters , Cellulose/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Olea/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Nanoparticles/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Polyesters/chemistry , Food Packaging/methods
10.
Foods ; 13(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928785

ABSTRACT

Poly-(Lactic Acid) (PLA) is regarded as one of the most promising bio-based polymers due to its biocompatibility, biodegradability, non-toxicity, and processability. The investigation of the potential of PLA films in preserving the quality of strawberries is fully in line with the current directives on the sustainability of food packaging. The study aims to investigate the effects of PLA films on strawberries' physical and chemical properties, thereby determining whether they can be used as a post-harvest solution to control antioxidant loss, reduce mold growth, and extend the shelf-life of strawberries. Well-designed PLA films with different-sized holes obtained by laser perforation (PLA0, PLA16 and PLA23) were tested against a conventional packaging polypropylene (PP) tray for up to 20 days of storage. Weight loss and mold growth were significantly slower in strawberries packed in PLA films. At the same time, PLA-based films effectively preserved the deterioration of vitamin C content, polyphenols and antioxidant activity compared to the control. Furthermore, among all, the micro-perforated PLA film (PLA23) showed better preservation in the different parameters evaluated. These results could effectively inhibit the deterioration of fruit quality, showing promising expectations as an effective strategy to extend the shelf-life of strawberries.

11.
Int J Biol Macromol ; 273(Pt 1): 132823, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852732

ABSTRACT

Industrial hemp has gained increasing interests for its applications in multifaceted areas, including foods, pharmaceuticals and reinforcing materials. The high protein content of hempseeds, presence of essential fatty acids and balanced ratio of omega 6:3 fatty acids, makes hemp an ideal source of choice amongst nutritionists and food product developers. The use of hemp has also been advocated in lowering the risks of certain medical conditions. The antimicrobial and antioxidant feature of oil expands its potential in innovative packaging solutions in the form of coatings or films for shelf-life extension. Fiber from hemp hulls, herd or stalks encourages it as a reinforcement material with eco-friendly attributes. This review explores the applications of hemp in novel product development, with the highlights of its nutritional benefits and antimicrobial efficacy in food and packaging sectors.


Subject(s)
Cannabis , Food Packaging , Cannabis/chemistry , Food Packaging/methods , Antioxidants/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Macromolecular Substances/chemistry
12.
Int J Biol Macromol ; 274(Pt 2): 133530, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945332

ABSTRACT

To expand the utilization of gelatin and pectin derived from agricultural by-products, the composite films composed of gelatin, citrus pectin, cellulose nanofibers (CNF), and polyhexamethylene biguanide hydrochloride (PHMB) were prepared through the solvent casting method. Fourier infrared spectroscopy analysis verified the successful integration of CNF and PHMB into the gelatin-pectin matrix. The incorporation of CNF as a reinforcing agent substantially enhanced the barrier capabilities of the composite film. Moreover, the addition of PHMB, functioning as an antimicrobial agent, not only granted the film with antibacterial properties but also improved its physical characteristics and biodegradability. A water contact angle experiment revealed the film presented a certain degree of hydrophobicity. The optimal performances were attained with a composition in which CNF and PHMB constituted 8 % and 3 %, respectively, of the total weight of gelatin and pectin. As a packaging film, the composite film demonstrated its effectiveness by reducing the decay index and weight loss rate of sweet cherries during a 12-day storage period. In the soil degradation test, the composite film exhibited notable structural degradation by the 16th day. Consequently, the composite film will be used as an innovative and biodegradable packaging material to provide a sustainable solution for food packaging industries.


Subject(s)
Biguanides , Cellulose , Food Packaging , Gelatin , Nanofibers , Pectins , Gelatin/chemistry , Pectins/chemistry , Nanofibers/chemistry , Food Packaging/methods , Cellulose/chemistry , Biguanides/chemistry , Prunus avium/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
13.
Adv Sci (Weinh) ; 11(23): e2400826, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569510

ABSTRACT

Fully biodegradable packaging materials are demanded to resolve the issue of plastic pollution. However, the fresh food storage performance of biodegradable materials is generally much lower than that of plastics due to their high permeability, microbial friendliness, and limited stretchability and transparency. Here a biodegradable packaging material is reported with high fresh food storage performance based on an oil-infused bacterial cellulose (OBC) porous film. The oil infusion significantly improved cellulose's food-keeping performance by reducing its gas permeability, increasing its stretchability and transparency, and enabling the active release of green vapor-phase preservative molecules, while maintaining its intrinsically high degradability. Strawberries stored in a container with the OBC lid at 23 °C after 5 days exhibited a moldy rate of 0%, in contrast to the 100% moldy rate of those stored by poly(ethylene). Enhanced storage performance is also obtained on tomatoes, pork, and shrimp. The OBC film is naturally degraded after being buried in wet soil at 30 °C for 9 days, identical to the degradation rate of bacterial cellulose. The liquid seal strategy broadly applies to different celluloses, providing a general option for developing cellulose-based biodegradable packaging materials.


Subject(s)
Cellulose , Food Packaging , Food Storage , Food Packaging/methods , Cellulose/metabolism , Cellulose/chemistry , Food Storage/methods , Permeability , Bacteria/metabolism , Biodegradation, Environmental
14.
Polymers (Basel) ; 16(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38611216

ABSTRACT

Due to the extensive application of petroleum-based plastics as packaging materials and problems related to their degradation/recycling, developing new solutions in the field of novel biopolymer-based materials has become imperative. Natural substitutes for synthetic polymers (starch, cellulose, chitosan) require modifications that enable their processing and provide them with additional properties (i.e., mechanical strength, controlled biodeterioration, antimicrobial and antioxidative activity). The antioxidant activity of natural packaging materials still requires further investigation. In this research paper, novel materials used for packaging perishable food susceptible to oxidizing agents were designed from potato starch (NS) reinforced with antioxidants such as dialdehyde starch (DS) and caffeic acid (CA)/quinic acid (QA). The use of spectroscopic techniques (ATR-FTIR, Raman) and X-ray diffraction allowed the examination of the chemical structure and arrangement of the blend and confirmed the component interactions. The film surface was examined by AFM. DS, functioning as a cross-linker, enhanced the film barrier as well as the mechanical and thermal properties, and it promoted starch amorphization when blended with other antioxidants. The antioxidant activity of caffeic acid was greater than that of quinic acid. Dialdehyde starch improves elasticity, whereas acids (particularly caffeic acid) influence film stiffness. A high susceptibility to biodegradation is valuable for potential eco-friendly packaging applications.

15.
Carbohydr Polym ; 336: 122119, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670751

ABSTRACT

This study aimed to investigate the effects of polydimethylsiloxane (PDMS) with a low surface energy on the structure and physicochemical properties of starch/poly (butylene adipate-co-terephthalate) (PBAT) blown films. The film's appearance was not significantly changed after the addition of PDMS. Compared with the films without PDMS, the films with PDMS displayed a smoother surface. A 2% w/w PDMS addition resulted in the maximum mechanical properties (8.10 MPa of strength, 211.00% of modulus) and surface hydrophobicity (87°) of the films. By contrast, the film with 3% w/w PDMS showed the lowest light transmittance, water vapor (2.73 × 10-11 g·cm·cm2·s-1·Pa-1) and oxygen permeability (9.73 × 10-13·cm3·cm·cm-2·s-1·Pa-1), owing to the improved tightness of the matrix, which increased the zigzag path for molecules to pass through. Films with higher PDMS contents effectively extended the shelf life of packaged bananas and shiitake mushrooms, benefiting from the outstanding and appropriate barrier properties, according to principal component analysis results. Findings supported that high-content starch/PBAT films containing PDMS had potential in the preservation of fresh agricultural products.

16.
Foods ; 13(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38540962

ABSTRACT

Poly-lactic acid/polyhydroxybutyrate (PLA/PHB) bio-based films suppose an environmentally friendly alternative to petroleum-derived packaging. In addition, rice bran extracts (RBEs) are an interesting source of bioactive compounds. In the present study, active films were formulated with 0.3% (w/v) or 0.5% (w/v) RBE (low-RBE and high-RBE) and compared to PLA/PHB films with no RBE. The migrations of active compounds as well as the antimicrobial and the antioxidant activities were analyzed in the three film formulations. The effects of active PLA/PHB films on fresh pork meat were evaluated by measuring the instrumental color, lipid and protein oxidations, and microbiological status of meat refrigerated for 1, 5, or 9 days. The developed films presented antioxidant activity in vitro, but they did not have an antimicrobial effect against bacterial development (E. coli nor L. innocua). The PLA/PHB film with no extract prevented changes in the instrumental color of meat during storage. However, the antioxidant effect of the PLA/PHB films on fresh pork was negligible, and the inclusion of high doses of extract favored microbial development in the pork during storage. Despite the lack of activity of active PLA/PHB films on meat, their use could be a sustainable alternative to the petroleum-based films.

17.
Polymers (Basel) ; 16(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38475392

ABSTRACT

This study focuses on developing a biodegradable film using a novel hybrid citrus peel pectin. A bilayer approach with PLA was proposed and optimized using Response Surface Methodology (RSM) to complement pectin films' mechanical and barrier property limitations. The optimized film composition (2.90 g PLA and 1.96 g pectin) showed enhanced mechanical strength with a tensile strength (TS) of 7.04 MPa and an elongation at break (EAB) of 462.63%. In addition, it demonstrated lower water vapor (1.45 × 10-10 g/msPa), oxygen (2.79 × 10-7 g/ms) permeability, and solubility (23.53%). Compared to single-layer pectin films, the optimized bilayer film had a 25% increased thickness, significantly improved water barrier (3806 times lower) and oxygen barrier (3.68 times lower) properties, and 22.38 times higher stretchability, attributed to hydrogen bond formation, as confirmed by FTIR analysis. The bilayer film, effectively protected against UV and visible light, could be a barrier against light-induced lipid oxidation. Moreover, it demonstrated superior seal efficiency, ensuring secure sealing in practical applications. The bilayer pouch containing mustard dressing exhibited stable sealing with no leakage after immersion in hot water and ethanol, making it suitable for secure food pouch packaging.

18.
Int J Biol Macromol ; 262(Pt 2): 130095, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346621

ABSTRACT

In this study, Cordyceps militaris matrix was employed for the first time to fabricate a biodegradable food packaging. Carmine and Ag@CuBTC were introduced to cross-link with mycelium and were uniformly dispersed within the matrix to enhance the water resistance, antimicrobial, and antioxidant properties of the bio-films. The bio-film displayed high biodegradability, with nearly 100 % degradation achieved after three weeks. The bio-film exhibited exceptional resistance to oxidation (49.30 % DPPH and 93.94 % ABTS•+), as well as effective inhibitory capabilities against E. coli and S. aureus, respectively. The composite film maintained a high CO2/O2 selective permeability, which was advantageous for mitigating fruit metabolism and extending shelf life. Simultaneously, food preservation experiments confirmed that these bio-films can decelerate the spoilage of fruits and effectively prolong the shelf-life of food. The experimental findings indicated that the prepared Bio-R-Ag@Cu film held promise as an environmentally friendly biodegradable material for food packaging.


Subject(s)
Cordyceps , Metal-Organic Frameworks , Fruit , Escherichia coli , Staphylococcus aureus , Food Packaging , Anti-Bacterial Agents
19.
Int J Biol Macromol ; 262(Pt 2): 130148, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354929

ABSTRACT

Two biobased composite films have been prepared with poly (lactic acid-trimethylene carbonate), polylactic acid and Laponite by solvent evaporation method. The 1H NMR and FTIR spectrums illustrate that P (LA-TMC) polymer is successfully synthesized and designed composite films are produced. Morphometric analyses demonstrate that the roughnesses of the film's surface and cross-section are on the increase with higher PLA and Laponite content. Mechanical performances reveal that the rise in tensile strength and modulus while maintaining excellent elongation at break is mainly due to the increase in the content of polylactic acid and Laponite. By utilizing the nano effect of Laponite, the maximum tensile strength of the composite film reaches 34.59 MPa. Thermal property results illustrate that the Tg and initial decomposition temperature are on the growth with the increase of PLA content. However, it is not significant on the effect of Laponite on the initial decomposition temperature. The water vapor permeability measurements prove that the barrier property of P(LA-TMC)/PLA/Laponite composite film is on the ascent with the Laponite addition. Hydrolytic degradation tests indicate that PLA and Laponite play avital part in accelerating the degradation rate of composite films and alkaline media is superior acidic and neutral conditions.


Subject(s)
Dioxanes , Lactic Acid , Polymers , Silicates , Lactic Acid/chemistry , Polymers/chemistry , Polyesters/chemistry
20.
Int J Biol Macromol ; 261(Pt 2): 129871, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309396

ABSTRACT

The packaging industry demands improved eco-friendly materials with new and enhanced properties. In this context, bio-nanocomposite films with antimicrobial and UV-shielding properties based on modified cellulose nanocrystals/polycaprolactone (MCNC/PCL) were fabricated via solution casting method, and then food packaging simulation was carried out. CNCs were obtained by acid hydrolysis followed by successful functionalization with Quaternary ammonium surfactant, confirmed by FTIR, XPS, XRD, TEM, and DLS analyses. Furthermore, the morphological, physical, antibacterial, and food packaging properties of all prepared films were investigated. Results showed that the mechanical, UV blocking, barrier properties, and antibacterial activity of all composite films were remarkably improved. Particularly, the addition of 3 wt% MCNC increased the tensile strength and elongation at break by 27.5 % and 20.0 %, respectively. Moreover, the permeability of O2, CO2, and water vapor dramatically reduced by 97.6 %, 96.7 %, and 49.8% compared to the Neat PCL. Further, the UV-blocking properties of the composite films were significantly improved. The antimicrobial properties of MCNC/PCL films showed good antimicrobial properties against S. aureus. Finally, cherry packaged with 1 and 3 wt% MCNC films exhibited satisfactory freshness after 22 days of preservation. Overall, the fabricated PCL nanocomposite films can be utilized in the food packaging industry.


Subject(s)
Anti-Infective Agents , Nanocomposites , Nanoparticles , Polyesters , Food Packaging , Staphylococcus aureus , Cellulose/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Nanocomposites/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL