Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Eur J Pharm Biopharm ; : 114446, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39122052

ABSTRACT

Efficient tumour treatment is hampered by the poor selectivity of anticancer drugs, resulting in scarce tumour accumulation and undesired off-target effects. Nano-sized drug-delivery systems in the form of nanoparticles (NPs) have been proposed to improve drug distribution to solid tumours, by virtue of their ability of passive and active tumour targeting. Despite these advantages, literature studies indicated that less than 1% of the administered NPs can successfully reach the tumour mass, highlighting the necessity for more efficient drug transporters in cancer treatment. Living cells, such as blood cells, circulating immune cells, platelets, and stem cells, are often found as an infiltrating component in most solid tumours, because of their ability to naturally circumvent immune recognition, bypass biological barriers, and reach inaccessible tissues through innate tropism and active motility. Therefore, the tumour-homing ability of these cells can be harnessed to design living cell carriers able to improve the transport of drugs and NPs to tumours. Albeit promising, this approach is still in its beginnings and suffers from difficult scalability, high cost, and poor reproducibility. In this review, we present an overview of the most common cell transporters of drugs and NPs, and we discuss how different cell types interact with biological barriers to deliver cargoes of various natures to tumours. Finally, we analyse the different techniques used to load drugs or NPs in living cells and discuss their advantages and disadvantages.

2.
J Biochem Mol Toxicol ; 38(8): e23782, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39115384

ABSTRACT

Nanomedicine has been developed to reduce or eliminate the side effects and toxicity upon systemic therapy of chemotherapeutic agents and to improve their therapeutic efficacy. However, the translation of non-sized or nano-encapsulated drugs is hampered by the low penetration and accumulation of engineered nanoparticles (NPs) in sites of tumors as well as their poor pharmacokinetics. This may be due to the synthetic structure of NPs and also complicated and unknown characteristics of the solid tumor microenvironment (TME). As a result, the TME is being better identified, and the interactions between NPs and the TME or human body are being discovered or predicted. These findings have led to the development of more biocompatible, intelligent, and controllable bio-based nanoformulations that could overcome current barriers and provide sufficient drug delivery to the TME, as discussed in this paper. These formulations are designed to (i) modify the surface of NPs to improve blood circulation while reducing their off-target accumulation and side effects in vivo, (ii) pass through the tumor vasculature by modulating or targeting angiogenesis, (iii) promote NPs distribution in solid tumor regions by applying biological/physical stimuli or extracellular matrix remodeling, and (iv) overcome the cell membrane barrier and other compartments of the cell by specific cell targeting to release the payload drug into the cytoplasm or nucleoplasm.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/drug effects , Neoplasms/drug therapy , Animals , Nanoparticles/chemistry , Drug Delivery Systems , Nanoparticle Drug Delivery System/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics
3.
Phytomedicine ; 132: 155848, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964157

ABSTRACT

BACKGROUND: Borneol, a highly lipid-soluble bicyclic terpene mainly extracted from plants, is representative of monoterpenoids. Modern medicine has established that borneol exhibits a range of pharmacological activities and used in the treatment of many diseases, particularly Cardio-cerebrovascular diseases (CVDs). The crucial role in enhancing drug delivery and improving bioavailability has attracted much attention. In addition, borneol is also widely utilized in food, daily chemicals, fragrances, and flavors industries. PURPOSE: This review systematically summarized the sources, pharmacological activities and mechanisms, clinical trial, pharmacokinetics, toxicity, and application of borneol. In addition, this review describes the pharmacological effects of borneol ester and the combination of borneol with nanomaterial. This review will provide a valuable resource for those pursuing researches on borneol inspiring the pharmacological applications in the medicine, food and daily chemical products, and developing of new drugs containing borneol or its derivatives. METHODS: This review searched the keywords ("borneol" or "bornyl esters") and ("pharmacology" or "Traditional Chinese medicine" or "Cardio-cerebrovascular diseases" or "blood-brain barrier" or "ischemic stroke" or "nanomaterials" or "neurodegenerative diseases" or "diabetes" or "toxicity") in Web of Science, PubMed, Google Scholar and China National Knowledge Infrastructure (CNKI) from January 1990 to May 2024. The search was limited to articles published in English and Chinese. RESULTS: Borneol exhibits extensive pharmacological activities including anti-inflammatory effects, analgesia, antioxidation, and has the property of crossing biological barriers and treating CVDs. The intrinsic molecular mechanisms are involved in multiple components, such as regulation of various key factors (including Tumor necrosis factor-α, Nuclear factor kappa-B, Interleukin-1ß, Malondialdehyde), inhibiting transporter protein function, regulating biochemical levels, and altering physical structural changes. In addition, this review describes the pharmacological effects of borneol ester and the combination of borneol with nanomaterial. CONCLUSION: The pharmacological properties and applications of borneol are promising, including anti-inflammatory, analgesic, antimicrobial, and antioxidant properties, as well as enhancing drug delivery and treating CVDs. However, its clinical application is hindered by the limited research on safety, efficacy, and pharmacokinetics. Therefore, this review systemically summarized the advances on pharmacological activities and mechanisms of the borneol. Standardized clinical trials and exploration of synergistic effects with other drugs were also are outlined.


Subject(s)
Camphanes , Camphanes/pharmacology , Humans , Animals , Anti-Inflammatory Agents/pharmacology
4.
Mol Pharm ; 21(8): 3732-3742, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38996198

ABSTRACT

Controlled drug delivery technology has matured for more than 70 years, starting from a twice-a-day oral formulation to 6 month long-acting injectable formulations. Further technological advances require superior formulations to treat various diseases more efficiently. Developing future formulations with practical innovations for treating existing and new diseases necessitates our continued efforts to overcome at least three main hurdles. They include (i) drug delivery with reduced side effects, (ii) long-term treatment of chronic diseases, and (iii) the overcoming of biological barriers. Such efforts start with the improved ability to accurately test drug delivery efficacy using proper controls. Future development can be aided by artificial intelligence if used properly. The next revolution of drug delivery systems will be augmented if implementation is given equal weight as discovery. Such a process can be accelerated with the systemic revamp of the research funding structure and cultivating a new generation of scientists who can think differently.


Subject(s)
Drug Delivery Systems , Drug Delivery Systems/methods , Humans , Delayed-Action Preparations , Artificial Intelligence
5.
ACS Nano ; 18(26): 16701-16714, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38885185

ABSTRACT

Biological barriers present a significant obstacle to treatment, especially when drugs are administered locally to increase their concentrations at the target site while minimizing unintended off-target effects. Among these barriers, mucus presents a challenge, as it serves as a protective layer in the respiratory, urogenital, and gastrointestinal tracts. Its role is to shield the underlying epithelial cells from pathogens and toxic compounds but also impedes the efficient delivery of drugs. Despite the exploration of mucolytic agents to improve drug delivery, overcoming this protective barrier remains a significant hurdle. In our study, we investigate an alternative approach involving the use of catalase-powered nanobots. We use an in vitro model that simulates intestinal mucus secretion to demonstrate the dual functionality of our nanobots. This includes their ability to disrupt mucus, which we confirmed through in vitro and ex vivo validation, as well as their self-propulsion to overcome the mucus barrier, resulting in a 60-fold increase compared with passive nanoparticles. Therefore, our findings highlight the potential utility of catalase-powered nanobots as carriers for therapeutic agents since they could enhance drug delivery efficiency by penetrating the mucus barrier.


Subject(s)
Catalase , Mucus , Catalase/metabolism , Catalase/chemistry , Mucus/metabolism , Mucus/chemistry , Humans , Animals , Nanoparticles/chemistry , Nanoparticles/metabolism , Drug Delivery Systems , Mice
6.
Adv Funct Mater ; 34(8)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38828467

ABSTRACT

Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.

7.
Tissue Barriers ; : 2347062, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721756

ABSTRACT

Small extracellular vesicles (sEVs) are an important part of intercellular communication. They are phospholipid bilayer particles that carry active biomolecules such as proteins, various nucleic acids, and lipids. In recipient cells, sEVs can alter cellular functions, including cancer development and premetastatic niche formation in distant organs. Moreover, sEVs can carry cancer-specific features, which makes them promising biomarker candidates. However, the interactions of sEVs with biological barriers and consequences thereof, are not clarified yet. The blood-saliva barrier is crucial for preventing the entry of pathogens and (in)organic substances into the bloodstream, as well as molecule filtration from blood to saliva. The effects of brain derived DU145 prostate cancer (PCa) sEVs on a human submandibular salivary gland barrier (SSGB) in vitro were investigated. Small EVs were harvested from normoxic (N, atmospheric O2) or hypoxic (H, 1% O2) conditions, fluorescently labeled with CellTrackerTM Orange and thoroughly characterized. HTB-41 B2 cells were used as SSGB model cultured on 24-well ThinCert® inserts. After model optimization indicating effects of serum and serum-sEVs on barrier properties, PCa sEVs were applied to the basolateral (blood) side in either 10% serum, or serum-free conditions, and barrier integrity was continuously monitored for 40 hours. This study found that H and N PCa sEVs were uptaken by the SSGB in vitro model in similar quantities regardless of the media composition in the basolateral compartment. Permeation of fluorescent PCa sEVs into the apical compartment was not detectable with the applied methods. However, treatment with H and N sEVs under different serum conditions revealed distinct molecular clusters after hierarchical analysis of mRNA data measured by high-throughput qPCR, which were partly reflected at the protein level. For example, serum-reduction dependent decrease of barrier properties was accompanied with the decrease of CDH1 or Claudin-7 expression. Interestingly, the presence of H sEVs significantly increased the number of sEV-sized particles in the apical compartment of the SSGB model compared to basolaterally added N sEVs. This functional effect on the number of particles in the saliva (apical) compartment induced by different sEVs applied in the blood (basolateral) compartment might be a new approach to understand one possible mechanism how differences of salivary EVs might occur which then could be used as biomarker.

8.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791253

ABSTRACT

The application of metal-based nanoparticles (mNPs) in cancer therapy and diagnostics (theranostics) has been a hot research topic since the early days of nanotechnology, becoming even more relevant in recent years. However, the clinical translation of this technology has been notably poor, with one of the main reasons being a lack of understanding of the disease and conceptual errors in the design of mNPs. Strikingly, throughout the reported studies to date on in vivo experiments, the concepts of "tumor targeting" and "tumor cell targeting" are often intertwined, particularly in the context of active targeting. These misconceptions may lead to design flaws, resulting in failed theranostic strategies. In the context of mNPs, tumor targeting can be described as the process by which mNPs reach the tumor mass (as a tissue), while tumor cell targeting refers to the specific interaction of mNPs with tumor cells once they have reached the tumor tissue. In this review, we conduct a critical analysis of key challenges that must be addressed for the successful targeting of either tumor tissue or cancer cells within the tumor tissue. Additionally, we explore essential features necessary for the smart design of theranostic mNPs, where 'smart design' refers to the process involving advanced consideration of the physicochemical features of the mNPs, targeting motifs, and physiological barriers that must be overcome for successful tumor targeting and/or tumor cell targeting.


Subject(s)
Metal Nanoparticles , Neoplasms , Theranostic Nanomedicine , Humans , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/diagnosis , Neoplasms/pathology , Theranostic Nanomedicine/methods , Animals , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Drug Delivery Systems/methods
9.
Pharmaceutics ; 16(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794330

ABSTRACT

Biological nanoparticles (NPs), such as extracellular vesicles (EVs), exosome-mimetic nanovesicles (EMNVs) and nanoghosts (NGs), are perspective non-viral delivery vehicles for all types of therapeutic cargo. Biological NPs are renowned for their exceptional biocompatibility and safety, alongside their ease of functionalization, but a significant challenge arises when attempting to load therapeutic payloads, such as nucleic acids (NAs). One effective strategy involves fusing biological NPs with liposomes loaded with NAs, resulting in hybrid carriers that offer the benefits of both biological NPs and the capacity for high cargo loads. Despite their unique parameters, one of the major issues of virtually any nanoformulation is the ability to escape degradation in the compartment of endosomes and lysosomes which determines the overall efficiency of nanotherapeutics. In this study, we fabricated all major types of biological and hybrid NPs and studied their response to the acidic environment observed in the endolysosomal compartment. In this study, we show that EMNVs display increased protonation and swelling relative to EVs and NGs in an acidic environment. Furthermore, the hybrid NPs exhibit an even greater response compared to EMNVs. Short-term incubation of EMNVs in acidic pH corresponding to late endosomes and lysosomes again induces protonation and swelling, whereas hybrid NPs are ruptured, resulting in the decline in their quantities. Our findings demonstrate that in an acidic environment, there is enhanced rupture and release of vesicular cargo observed in hybrid EMNVs that are fused with liposomes compared to EMNVs alone. This was confirmed through PAGE electrophoresis analysis of mCherry protein loaded into nanoparticles. In vitro analysis of NPs colocalization with lysosomes in HepG2 cells demonstrated that EMNVs mostly avoid the endolysosomal compartment, whereas hybrid NPs escape it over time. To conclude, (1) hybrid biological NPs fused with liposomes appear more efficient in the endolysosomal escape via the mechanism of proton sponge-associated scavenging of protons by NPs, influx of counterions and water, and rupture of endo/lysosomes, but (2) EMNVs are much more efficient than hybrid NPs in actually avoiding the endolysosomal compartment in human cells. These results reveal biochemical differences across four major types of biological and hybrid NPs and indicate that EMNVs are more efficient in escaping or avoiding the endolysosomal compartment.

10.
Acta Pharm Sin B ; 14(5): 2006-2025, 2024 May.
Article in English | MEDLINE | ID: mdl-38799624

ABSTRACT

Diabetes, characterized by hyperglycemia, is a major cause of death and disability worldwide. Peptides, such as insulin and glucagon-like peptide-1 (GLP-1) analogs, have shown promise as treatments for diabetes due to their ability to mimic or enhance insulin's actions in the body. Compared to subcutaneous injection, oral administration of anti-diabetic peptides is a preferred approach. However, biological barriers significantly reduce the efficacy of oral peptide therapeutics. Recent advancements in drug delivery systems and formulation techniques have greatly improved the oral delivery of peptide therapeutics and their efficacy in treating diabetes. This review will highlight (1) the benefits of oral anti-diabetic peptide therapeutics; (2) the biological barriers for oral peptide delivery, including pH and enzyme degradation, intestinal mucosa barrier, and biodistribution barrier; (3) the delivery platforms to overcome these biological barriers. Additionally, the review will discuss the prospects in this field. The information provided in this review will serve as a valuable guide for future developments in oral anti-diabetic peptide therapeutics.

11.
Pharmaceutics ; 16(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675219

ABSTRACT

The ABCG2 transporter plays a key role in pharmacological and toxicological processes, affecting bioavailability, tissue accumulation and milk secretion of its substrates. This protein is expressed in several biological barriers acting as a protective mechanism against xenobiotic exposure by pumping out a broad range of compounds. However, its induced expression during lactation in alveolar cells of mammary gland represents a relevant route for active transport of unwanted chemicals into milk. This work aimed to characterize the involvement of ABCG2 in systemic exposure and milk secretion of the flukicide nitroxynil. Using MDCK-II cells overexpressing the transporter, we showed that nitroxynil is an in vitro substrate of different species variants of ABCG2. Moreover, using wild-type and Abcg2-/- mice, we showed that murine Abcg2 clearly affects plasma levels of nitroxynil. We also reported differences in nitroxynil accumulation in several tissues, with almost 2-fold higher concentration in kidney, small intestine and testis of Abcg2-/- mice. Finally, we proved that nitroxynil secretion into milk was also affected by Abcg2, with a 1.9-fold higher milk concentration in wild-type compared with Abcg2-/- mice. We conclude that ABCG2 significantly impacts nitroxynil biodistribution by regulating its passage across biological barriers.

12.
Drug Deliv Transl Res ; 14(8): 2276-2297, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38587757

ABSTRACT

Over the past decades, research on nanomedicines as innovative tools in combating complex pathologies has increased tenfold, spanning fields from infectiology and ophthalmology to oncology. This process has further accelerated since the introduction of SARS-CoV-2 vaccines. When it comes to human health, nano-objects are designed to protect, transport, and improve the solubility of compounds to allow the delivery of active ingredients on their targets. Nanomedicines can be administered by different routes, such as intravenous, oral, intramuscular, or pulmonary routes. In the latter route, nanomedicines can be aerosolized or nebulized to reach the deep lung. This review summarizes existing nanomedicines proposed for inhalation administration, from their synthesis to their potential clinical use. It also outlines the respiratory organs, their structure, and particularities, with a specific emphasis on how these factors impact the administration of nanomedicines. Furthermore, the review addresses the organs accessible through pulmonary administration, along with various pathologies such as infections, genetic diseases, or cancer that can be addressed through inhaled nanotherapeutics. Finally, it examines the existing devices suitable for the aerosolization of nanomedicines and the range of nanomedicines in clinical development.


Subject(s)
Nanomedicine , Humans , Administration, Inhalation , Nanomedicine/methods , Drug Delivery Systems/methods , Lung/metabolism , Animals , COVID-19/prevention & control , Nanoparticles/administration & dosage , COVID-19 Drug Treatment
13.
Bioeng Transl Med ; 9(2): e10623, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38435823

ABSTRACT

The biological barriers of the body, such as the blood-brain, placental, intestinal, skin, and air-blood, protect against invading viruses and bacteria while providing necessary physical support. However, these barriers also hinder the delivery of drugs to target tissues, reducing their therapeutic efficacy. Extracellular vesicles (EVs), nanostructures with a diameter ranging from 30 nm to 10 µm secreted by cells, offer a potential solution to this challenge. These natural vesicles can effectively pass through various biological barriers, facilitating intercellular communication. As a result, artificially engineered EVs that mimic or are superior to the natural ones have emerged as a promising drug delivery vehicle, capable of delivering drugs to almost any body part to treat various diseases. This review first provides an overview of the formation and cross-species uptake of natural EVs from different organisms, including animals, plants, and bacteria. Later, it explores the current clinical applications, perspectives, and challenges associated with using engineered EVs as a drug delivery platform. Finally, it aims to inspire further research to help bioengineered EVs effectively cross biological barriers to treat diseases.

14.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 446-457, 2024 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-38369832

ABSTRACT

In recent years, microneedles have emerged as a drug delivery technology that holds great research value and application potential due to their minimally invasive, painless, user-friendly, and efficient characteristics. The technology of microneedles has rapidly evolved over the past 20 years, allowing customization of shape, composition, mechanical properties, and unique functions to meet diverse needs. With the ability to minimally invasively traverse various biological barriers, researchers have explored the applications of microneedles in various tissues and organs beyond the skin. This article summarizes the research progress on the use of microneedles for drug delivery in tissues such as eyes, blood vessel, and heart. By presenting these cutting-edge research to readers, we hope to promote the development and application of microneedle technology.


Subject(s)
Needles , Skin , Administration, Cutaneous , Microinjections , Drug Delivery Systems
15.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256238

ABSTRACT

Skin plays crucial roles in the human body: besides protecting the organism from external threats, it acts as a thermal regulator, is responsible for the sense of touch, hosts microbial communities (the skin microbiota) involved in preventing the invasion of foreign pathogens, contains immunocompetent cells that maintain a healthy immunogenic/tolerogenic balance, and is a suitable route for drug administration. In the skin, four defense levels can be identified: besides the physical, chemical, and immune barriers that are inherent to the tissue, the skin microbiota (i.e., the numerous microorganisms living on the skin surface) provides an additional barrier. Studying the skin barrier function or the effects of drugs or cosmetic agents on human skin is a difficult task since snapshot evidence can only be obtained using bioptic samples where dynamic processes cannot properly be followed. To overcome these limitations, many different in vitro models of human skin have been developed that are characterized by diverse levels of complexity in terms of chemical, structural, and cellular composition. The aim of this review is to summarize and discuss the advantages and disadvantages of the different human skin models so far available and to underline how the insertion of a proper microbiota would positively impact an in vitro human skin model in an attempt to better mimic conditions in vivo.


Subject(s)
Microbiota , Skin , Humans , Touch , Health Status , Internationality
16.
Adv Drug Deliv Rev ; 203: 115137, 2023 12.
Article in English | MEDLINE | ID: mdl-37949414

ABSTRACT

The rapid development of nanomedicines is revolutionizing the landscape of cancer treatment, while effectively delivering them into solid tumors remains a formidable challenge. Currently, there is a huge disconnect on therapeutic response between regulatory approved nanomedicines and laboratory reported nanoparticles. The discrepancy is mainly resulted from the failure of using the classic overall pharmacokinetics behaviors of nanomedicines in tumors to predict the antitumor efficacy. Increasing evidence has revealed that the therapeutic efficacy predominantly relies on the intratumoral spatiotemporal distribution of nanomedicines. This review focuses on the spatiotemporal distribution of systemically administered chemotherapeutic nanomedicines in solid tumor. Firstly, the intratumoral biological barriers that regulate the spatiotemporal distribution of nanomedicines are described in detail. Next, the influences on antitumor efficacy caused by the spatial distribution and temporal drug release of nanomedicines are emphatically analyzed. Then, current methodologies for evaluating the spatiotemporal distribution of nanomedicines are summarized. Finally, the advanced strategies to positively modulate the spatiotemporal distribution of nanomedicines for an optimal tumor therapy are comprehensively reviewed.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Nanomedicine/methods , Neoplasms/drug therapy , Drug Delivery Systems/methods
17.
Proc Natl Acad Sci U S A ; 120(47): e2312995120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37956290

ABSTRACT

A model for antibiotic accumulation in bacterial biofilm microcolonies utilizing heterogenous porosity and attachment site profiles replicated the periphery sequestration reported in prior experimental studies on Pseudomonas aeruginosa PAO1 biofilm cell clusters. These P. aeruginosa cell clusters are in vitro models of the chronic P. aeruginosa infections in cystic fibrosis patients which display recalcitrance to antibiotic treatments, leading to exacerbated morbidity and mortality. This resistance has been partially attributed to periphery sequestration, where antibiotics fail to penetrate biofilm cell clusters. The physical phenomena driving this periphery sequestration have not been definitively established. This paper introduces mathematical models to account for two proposed physical phenomena driving periphery sequestration: biofilm matrix attachment and volume-exclusion due to variable biofilm porosity. An antibiotic accumulation model which incorporated these phenomena better fit observed periphery sequestration data compared to previous models.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas aeruginosa , Biofilms , Extracellular Polymeric Substance Matrix , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology
18.
ACS Appl Bio Mater ; 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996391

ABSTRACT

Peptides are ideal biologicals for targeted drug delivery and have also been increasingly employed as theranostic tools in treating various diseases, including cancer, with minimal or no side effects. Owing to their receptor-specificity, peptide-mediated drug delivery aids in targeted drug delivery with better pharmacological biodistribution. Nanostructured self-assembled peptides and peptide-drug conjugates demonstrate enhanced stability and performance and captivating biological effects in comparison with conventional peptides. Moreover, they serve as valuable tools for establishing interfaces between drug carriers and biological systems, enabling the traversal of multiple biological barriers encountered by peptide-drug conjugates on their journeys to their intended targets. Peptide-based drugs play a pivotal role in the field of medicine and hold great promise for addressing a wide range of complex diseases such as cancer and autoimmune disorders. Nanotechnology has revolutionized the fields of medicine, biomedical engineering, biotechnology, and engineering sciences over the past two decades. With the help of nanotechnology, better delivery of peptides to the target site could be achieved by exploiting the small size, increased surface area, and passive targeting ability of the nanocarrier. Furthermore, nanocarriers also ensure safe delivery of the peptide moieties to the target site, protecting them from degradation. Nanobased peptide delivery systems would be of significant importance in the near future for the successful targeted and efficient delivery of peptides. This review focuses on peptide-drug conjugates and nanoparticle-mediated self-assembled peptide delivery systems in cancer therapeutics.

19.
Pharmaceutics ; 15(10)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37896268

ABSTRACT

Nanocarriers have been extensively developed in the biomedical field to enhance the treatment of various diseases. However, to effectively deliver therapeutic agents to desired target tissues and enhance their pharmacological activity, these nanocarriers must overcome biological barriers, such as mucus gel, skin, cornea, and blood-brain barriers. Polysaccharides possess qualities such as excellent biocompatibility, biodegradability, unique biological properties, and good accessibility, making them ideal materials for constructing drug delivery carriers. Nanogels, as a novel drug delivery platform, consist of three-dimensional polymer networks at the nanoscale, offering a promising strategy for encapsulating different pharmaceutical agents, prolonging retention time, and enhancing penetration. These attractive properties offer great potential for the utilization of polysaccharide-based nanogels as drug delivery systems to overcome biological barriers. Hence, this review discusses the properties of various barriers and the associated constraints, followed by summarizing the most recent development of polysaccharide-based nanogels in drug delivery to overcome biological barriers. It is expected to provide inspiration and motivation for better design and development of polysaccharide-based drug delivery systems to enhance bioavailability and efficacy while minimizing side effects.

20.
Expert Opin Drug Deliv ; 20(8): 1085-1095, 2023.
Article in English | MEDLINE | ID: mdl-37715502

ABSTRACT

INTRODUCTION: Monoclonal antibodies (mAbs) should be administered by inhalation rather than parenterally to improve their efficiency in lung diseases. However, the pulmonary administration of mAbs in terms of aerosol technology and the formulation for inhalation is difficult. AREAS COVERED: The feasible or suitable strategies for overcoming the barriers associated with administering mAbs are described. EXPERT OPINION: Providing mAbs via inhalation to individuals with lung disorders is still difficult. However, inhalation is a desirable method for mAb delivery. Inhaled mAb production needs to be well thought out. The illness, the patient group(s), the therapeutic molecule selected, its interaction with the biological barriers in the lungs, the formulation, excipients, and administration systems must all be thoroughly investigated. Therefore, to create inhaled mAbs that are stable and efficacious, it will be essential to thoroughly examine the problems linked to instability and protein aggregation. More excipients will also need to be manufactured, expanding the range of formulation design choices. Another crucial requirement is for novel carriers for topical delivery to the lungs since carriers might significantly enhance proteins' stability and pharmacokinetic profile.


Subject(s)
Antibodies, Monoclonal , Lung Diseases , Humans , Antibodies, Monoclonal/therapeutic use , Excipients , Respiratory Aerosols and Droplets , Lung Diseases/drug therapy , Lung/metabolism , Administration, Inhalation , Drug Delivery Systems
SELECTION OF CITATIONS
SEARCH DETAIL