Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Int J Biol Macromol ; 267(Pt 1): 131372, 2024 May.
Article in English | MEDLINE | ID: mdl-38580024

ABSTRACT

Clinically, open wounds caused by accidental trauma and surgical lesion resection are easily infected by external bacteria, hindering wound healing. Antibacterial photodynamic therapy has become a promising treatment strategy for wound infection. In this study, a novel antibacterial nanocomposite material (QMC NPs) was synthesized by curcumin, quaternized chitosan and mesoporous polydopamine nanoparticles. The results showed that 150 µg/mL QMC NPs had good biocompatibility and exerted excellent antibacterial activity against Staphylococcus aureus and Escherichia coli after blue laser irradiation (450 nm, 1 W/cm2). In vivo, QMC NPs effectively treated bacterial infection and accelerated the healing of infected wounds in mice.


Subject(s)
Anti-Bacterial Agents , Chitosan , Curcumin , Escherichia coli , Indoles , Nanoparticles , Polymers , Staphylococcus aureus , Chitosan/chemistry , Chitosan/pharmacology , Indoles/chemistry , Indoles/pharmacology , Curcumin/pharmacology , Curcumin/chemistry , Polymers/chemistry , Polymers/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Animals , Mice , Staphylococcus aureus/drug effects , Porosity , Escherichia coli/drug effects , Microbial Sensitivity Tests , Wound Healing/drug effects , Bacterial Infections/drug therapy
2.
ACS Appl Mater Interfaces ; 16(13): 15931-15945, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38503698

ABSTRACT

Accurate pesticide delivery is a key factor in improving pesticide utilization, which can effectively reduce the use of pesticides and environmental risks. In this study, we developed a nanocarrier preparation method which can be controlled by pH/near-infrared response. Mesoporous molybdenum selenide (MoSe2) with a high loading rate was used as the core, poly(acrylic acid) (PAA) with acid response was used as the shell, and prochloraz (Pro) was loaded to form a pH-/near-infrared-responsive core-shell nanosystem (Pro@MoSe2@PAA NPs, abbreviated as PMP). Sclerotinia sclerotiorum infection secretes oxalic acid, forming an acidic microenvironment. In an acidic environment, PMP could quickly release Pro, and the cumulative release amount of Pro at pH = 5.0 was 3.1 times higher than that at pH = 7.4, and the efficiency of releasing Pro in the acidic environment was significantly enhanced. In addition, the release rate of PMP under near-infrared light irradiation was also significantly improved, and the cumulative release of Pro under simulated sunlight was 2.35 times higher than that under no light. The contact angles of PMP droplets on rapeseeds were reduced by 31.2 and 13.9% compared to Pro and MoSe2, respectively, which proved that the nanosystems had good wettability. In addition, PMP shows excellent adhesion and resistance to simulated rain washout. In the plate antibacterial experiment, the inhibitory effect of 0.5 µg/mL PMP on S. sclerotiorum was as high as 75.2% after 6 days, which showed a higher bactericidal activity than Pro. More importantly, PMP shows excellent biocompatibility and safety to plants, microorganisms, and cells. In a word, PMP is a green nanopesticide with a dual response of pH/near-infrared light, which provides a new strategy for the sustainable development of agriculture.


Subject(s)
Imidazoles , Morpholines , Nanoparticles , Organoselenium Compounds , Pesticides , Molybdenum/pharmacology , Molybdenum/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Hydrogen-Ion Concentration
3.
Vopr Pitan ; 93(1): 6-21, 2024.
Article in Russian | MEDLINE | ID: mdl-38555606

ABSTRACT

This article presents an analysis of some of the results of the work of the Federal Research Center for Nutrition and Biotechnology (Center) in recent years, highlighting the most important, promising areas of Nutrition Science and Food Hygiene that need further development. The priority area of Center functioning is scientific support for the implementation of the Doctrine of Food Security of the Russian Federation (Decree of the President of the Russian Federation dated January 21, 2020 No. 20), Decree of the President of the Russian Federation dated July 21, 2020 No. 474 «On the national development goals of the Russian Federation for the period until 2030 «in terms of ensuring an increase in life expectancy and improving the life quality of the population, the Strategy for Improving the Quality of Food Products in the Russian Federation until 2030 (Order of the Government of the Russian Federation dated June 29, 2016 No. 1364-r). The Center coordinates all research on medical nutrition problems in the Russian Federation within the framework of the work of the Problem Commission on Nutrition Hygiene of the Scientific Council of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare, the Scientific Council of the Russian Academy of Sciences on Medical Nutrition Problems, the Scientific and Technical Committee of the Comprehensive Scientific Program «Priority Research in the Field of Nutrition of the Population¼, Profile Commission on Dietetics of the Expert Council in the Field of Health of the Ministry of Healthcare of Russian Federation, ensuring the implementation of their results with the participation of members of the Consortium "Healthcare, Nutrition, Demography". The most important area of the Center's work is scientific and expert support in the field of international and national technical regulation of the production and turnover of foods and raw materials, in particular, the work of the Russian national contact point of the Codex Alimentarius Commission (established by FAO and WHO), as well as the work of the Russian side in the Eurasian Economic Commission regarding the preparation of proposals for technical regulations of the Customs Union in the field of food safety, evaluation of draft technical regulations and amendments and additions to them.


Subject(s)
Food , Nutritional Status , Humans , Food Safety/methods , Russia , Eating
4.
J Biomed Mater Res B Appl Biomater ; 112(2): e35386, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38334720

ABSTRACT

In vivo skin sensitization tests are required to evaluate the biological safety of medical devices in contact with living organisms to provide safe medical care to patients. Negative and positive reference materials have been developed for biological tests of cytotoxicity, implantation, hemolysis, and in vitro skin irritation. However, skin sensitization tests are lacking. In this study, polyurethane sheets containing 1 wt/wt % 2,4-dinitrochlorobenzene (DNCB-PU) were developed and evaluated as a positive reference material for skin sensitization tests. DNCB-PU sheet extracts prepared with sesame oil elicited positive sensitization responses for in vivo sensitization potential in the guinea pig maximization test and the local lymph node assay. Furthermore, DNCB-PU sheet extracts prepared with water and acetonitrile, 10% fetal bovine serum-containing medium, or sesame oil elicited positive sensitization responses as alternatives to animal testing based on the amino acid derivative reactivity assay, human cell line activation test, and epidermal sensitization assay, respectively. These data suggest that the DNCB-PU sheet is an effective extractable positive reference material for in vivo and in vitro skin sensitization testing in medical devices. The formulation of this reference material will lead to the development of safer medical devices that contribute to patient safety.


Subject(s)
Dinitrochlorobenzene , Sesame Oil , Humans , Animals , Guinea Pigs , Proof of Concept Study , Skin , Epidermis
5.
Transfus Apher Sci ; 63(2): 103869, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38278704

ABSTRACT

Hepatitis A virus (HAV) is the most frequent cause of viral hepatitis worldwide and is transmitted through the fecal-oral route. However, HAV can also be transmitted by blood-derived products. This is due to the fact that viremia occurs during the asymptomatic phase of HAV infection, enabling infected blood or plasma donations to occur. Viral inactivation/removal steps are included during manufacturing of plasmaderived products. However, HAV is a small non-enveloped virus very difficult to remove with traditional viral inactivation procedures. To accomplish European guidelines for pooled human plasma (treated for virus inactivation), plasma manufacturers have been implementing HAV nucleic acid test (NAT) screening on plasma pools. In this study, we validate an in-house multiplex reverse-transcription real-time PCR (RT-PCR) assay targeting HAV RNA and an internal control with hydrolysis probes for amplicon detection. The HAV RNA test was validated by assessing limit of detection, robustness, sensitivity and specificity according to European Pharmacopoeia (Ph. Eur.) guidelines. Our assay is able to detect 100 IU/mL of all human HAV genotypes that have been described so far. The multiplex assay shows remarkable sensitivity with a 95% lower limit of detection of 5.2 IU/mL. Also, our HAV test shows good robustness, precision, and specificity. We conclude that our assay broadly meets the requirements for its purpose. The implementation of this test in the production process of plasma-derived products will increase their safety.


Subject(s)
Hepatitis A virus , Hepatitis A , Humans , Hepatitis A virus/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , RNA, Viral/genetics , Sensitivity and Specificity
6.
ACS Biomater Sci Eng ; 9(12): 6745-6758, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37956306

ABSTRACT

AuCu-Cu2S nanocomposites are unique materials with exceptional properties that have recently received a lot of interest. However, little is known about their potential toxicity in terrestrial organisms and their subsequent effects on the environment. Therefore, it is essential to develop effective methodologies for evaluating AuCu-Cu2S nanocomposites in biological systems. This study reports the biological evaluation of the AuCu-Cu2S nanocomposite from animal and cell entity levels. The Bombyx mori silkworm was used as a model organism to study the effects of different concentrations of AuCu-Cu2S on silkworm development. Transcriptome analysis was also carried out to examine the genetic modulation exerted by the treatment. Moreover, biocompatibility and cytotoxicity of AuCu-Cu2S were evaluated in human bronchial epithelial cells 16HBE, human lung adenocarcinoma, and the insect Spodoptera frugiperda cell sf9 cell lines. The results showed that although AuCu-Cu2S at ≤400 ppm can prolong the eating habit of silkworms and promote the weight of the cocoon layer, there was an increase in silkworm mortality and a decrease in moth formation at a concentration of ≥800 ppm. The genetic regulation by AuCu-Cu2S treatment showed varying effects in the silkworm, primarily related to functions such as transport and catabolism, metabolism of cofactors and vitamins, xenobiotic biodegradation, amino acid, and carbohydrate. 16HBE, PC-9, and sf9 treated with 300 ppm of AuCu-Cu2S showed viability percentages of 60, 20, and 90%, respectively. Thus, AuCu-Cu2S at low concentrations serves as a safe and biocompatible material for the sf9 cell lines but is lethal to 16HBE and PC-9. This research could aid in understanding the biological effects and biocompatibility of AuCu-Cu2S nanocomposites, particularly in the field of biochemistry; however, the mechanisms involved need further exploration.


Subject(s)
Bombyx , Animals , Humans , Bombyx/genetics , Cell Line , Gene Expression Regulation
7.
Int J One Health ; 9(1): 10-14, 2023.
Article in English | MEDLINE | ID: mdl-37899959

ABSTRACT

Background and Aim: One of the key components of the One Health approach to epidemic preparedness is raising awareness and increasing the knowledge of emerging infectious diseases, prevention, and risk reduction. However, related research can involve significant risks to biosafety and biosecurity. For this purpose, we organized a multidisciplinary biosafety hands-on workshop to inform and increase the knowledge of infectious diseases and risk mitigation. This study aimed to describe the process and outcome of a hands-on biosafety training program using a One Health approach across a multidisciplinary and multi-specialty group in Nigeria. Materials and Methods: A face-to-face hands-on training for 48 participants was organized by the West African Center for Emerging Infectious Diseases (WAC-EID) at the Jos University Teaching Hospital, serving as a lead institution for the Nigeria project site. Topics covered included (1) an overview of the WAC-EID research; (2) overview of infection prevention and control; (3) safety in animal handling and restraint, sample collection, and processing; (4) safety in field studies including rodent, bird and bat handling; (5) safety practices in the collection of mosquito and other arthropod vectors; (6) personal protective equipment training (disinfection, donning and doffing); and (7) safety in sample collection, labeling, and transportation. The program was executed using a mixed method of slide presentations, practical hands-on sessions, and video demonstrations. Pre- and post-course evaluation assessments and evaluation measures were used to assess training. Results: A total of 48 trainees participated in this training, with 12 (25%), 16 (33.3%), 14 (29.2%), 6 (12.5%) categorized as ornithology, entomology, mammalogy, and clinical interest groups, respectively. The pass rate for the pre-test was 29.4%, while for the post-test, it was 57.1%, or a 28% improvement. 88.6% of the trainees rated the training as relevant to them. Conclusion: Didactic and hands-on biosafety training is relevant in this era of zoonotic epidemics and pandemic preparedness. During this training program, there was a clear demonstration of knowledge transfer that can change the current practices of participants and improve the safety of infectious diseases research.

8.
Toxics ; 11(6)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37368614

ABSTRACT

Soil pollution is a global environmental problem. Nanoscale zero-valent iron (nZVI) as a kind of emerging remedial material is used for contaminated soil, which can quickly and effectively degrade and remove pollutants such as organic halides, nitrates and heavy metals in soil, respectively. However, nZVI and its composites can enter the soil environment in the application process, affect the physical and chemical properties of the soil, be absorbed by microorganisms and affect the growth and metabolism of microorganisms, thus affecting the ecological environment of the entire soil. Because of the potential risks of nZVI to the environment and ecosystems, this paper summarizes the current application of nZVI in the remediation of contaminated soil environments, summarizes the various factors affecting the toxic effects of nZVI particles and comprehensively analyzes the toxic effects of nZVI on microorganisms, toxic mechanisms and cell defense behaviors to provide a theoretical reference for subsequent biosafety research on nZVI.

9.
Biol Pharm Bull ; 46(2): 343-347, 2023.
Article in English | MEDLINE | ID: mdl-36724963

ABSTRACT

Owing to their unique physicochemical properties and diverse biological effects, ultrafine bubbles (UFBs) have recently been expected to be utilized for industrial and biological purposes. Thus, this study investigated the biological safety of UFBs in water for living beings in drinking the water with a view to future use in health sciences. In this study, we used H2-filled UFBs (NanoGAS®) that can hold hydrogen in the aqueous phase for a long time. Mice were randomly assigned to one of three groups: those receiving NanoGAS® water, reverse osmosis water, or natural mineral water, and they ingested it ad libitum for one month or three months. As a result, subchronic drinking of NanoGAS® water does not affect either the common blood biochemical parameters or the health of the organs and mucosal membranes. Our results, for the first time, scientifically demonstrated the biological safety of H2-filled UFBs water for subchronic oral consumption.


Subject(s)
Drinking , Hydrogen , Water , Animals , Mice , Water/chemistry , Hydrogen/administration & dosage , Gases
10.
Chemistry ; 29(21): e202203458, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-36700555

ABSTRACT

The management of persistent postoperative pain still remains a clinical challenge currently. Although ropivacaine (RVC) is widely used for postoperative analgesia as a local anesthetic, the short half-life makes it difficult to achieve the desired duration of analgesia. Herein, a RVC sustained-release microspheres encapsulated by zeolite imidazole framework-8 (RVC@ZIF-8) was synthesized for the first time, which prolonged the sustained-release of RVC and decreased the resulting drug toxicity. RVC can continuously release in vitro for at least 96 h with high drug loading of 30.6 % and RVC@ZIF-8 had excellent biocompatibility and low cytotoxicity. In sciatic nerve block model, the sensory block time of RVC@ZIF-8 was significantly prolonged compared with RVC, achieving more than 72 h post injection and no inflammation or lesion were found. Based on high drug loading, ideal sustained-release and superior biological safety, RVC@ZIF-8 will be a novel delivery material for local anesthetic with potential application.


Subject(s)
Anesthetics, Local , Zeolites , Ropivacaine , Amides , Delayed-Action Preparations , Microspheres , Imidazoles
11.
Rev. iberoam. fertil. reprod. hum ; 39(3)sept-oct-nov-dic 2022.
Article in Spanish | IBECS | ID: ibc-215463

ABSTRACT

Las cabinas de flujo laminar (CFL) y de seguridad biológica (CSB) son un elemento fundamental en los laboratorios de biología en general y suponen un equipamiento básico en los laboratorios de reproduc-ción humana asistida.Para entender su funcionamiento, debemos conocer algunos conceptos básicos como la clasificación de los agentes biológicos, los niveles de bioseguridad y los filtros HEPA.Esto nos permitirá diferenciar entre los distintos tipos disponibles y el uso al que se destinan cada una de ellas. (AU)


Laminar flow cabinets (LFC) and biological safety cabinets (BSC) are fundamental elements in biology laboratories in general and are basic equipment in assisted human reproduction laboratories.To understand its operation, we must know some basic concepts such as the classification of biological agents, biosafety levels, and HEPA filters.This will allow us to differentiate between the different types available and the use to which each of them is intended (AU)


Subject(s)
Humans , Biological Factors , Containment of Biohazards , Biology , Laboratories
12.
Int Marit Health ; 73(3): 105-111, 2022.
Article in English | MEDLINE | ID: mdl-36217977

ABSTRACT

BACKGROUND: The epidemiological and environmental security of states is the most important component for the functioning of the International Transport Corridors (ITC). The growing capacity of passenger and cargo flows increases the risk of the spread of dangerous infectious diseases in the territories of the countries on the route of the ITC. Preventing the introduction of dangerous infections by various vehicles and the activation of local natural foci are the priority in the anti-epidemic provision of the population of Ukraine. MATERIALS AND METHODS: The study of the features of the functioning of border checkpoints (BCPs) for various types of transport in different regions of Ukraine made it possible to create their classification, taking into account the nature of the goods and the intensity of passenger traffic. RESULTS: The functioning of 204 checkpoints in 20 different localities, employing more than 29,000 specialists, was studied. When conducting a retrospective epidemiological analysis of documentation for maritime, aviation, road and rail transport for 2000-2013, non-compliance with sanitary-hygienic and anti-epidemic requirements to prevent the introduction and spread of dangerous infections and their carriers were revealed. The authors scientifically substantiated recommendations on sanitary-hygienic and anti-epidemic support of the BСP. Based on the results of a survey of 112 BCPs (54.9 ± 1.2%), taking into account the degree of epidemiological danger in the areas of their operation, indicators of the presence of rodents, blood-sucking insects and the nature of the goods transported, five epidemic zones were identified. CONCLUSIONS: Inadequate operation of the BCP was expressed in non-compliance with sanitary and anti- -epidemic requirements. Control of the personal property of passengers and luggage was less than 30%. The analysis of the functioning of the BCPs made it possible to unify their work and identify priority areas for improvement.


Subject(s)
Hygiene , Retrospective Studies , Ukraine/epidemiology
13.
Colloids Surf B Biointerfaces ; 219: 112796, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36063717

ABSTRACT

Encapsulation of active ingredients into intelligent response controlled release carriers has been recognized as a promising approach to enhance the utilization efficiency and reduce the environmental risks of pesticides. In this work, an intelligent redox and pectinase dual stimuli-responsive pesticide delivery system was constructed by bonding pectin with metal-organic frameworks (FeMOF nanoparticles) which were loaded with pyraclostrobin (PYR@FeMOF-pectin nanoparticles). The successful fabrication of PYR@FeMOF-pectin nanoparticles was proved by a series of physicochemical characterizations. The results indicated that the loading capacity of PYR@FeMOF-pectin nanoparticles for pyraclostrobin was approximately 20.6%. The pectin covered on the surface of PYR@FeMOF nanoparticles could protect pyraclostrobin from photolysis and improve their spreadability on rice blades effectively. Different biological stimuli associated with Magnaporthe oryzae could trigger the release of pyraclostrobin from the pesticide-loaded core-shell nanoparticles, resulting in the death of pathogens. The bioactivity survey determined that PYR@FeMOF-pectin nanoparticles had a superior fungicidal activity and a longer duration against Magnaporthe oryzae than pyraclostrobin suspension concentrate. In addition, the FeMOF-pectin nanocarriers showed no obvious phytotoxicity and could enhance the shoot length and root length of rice plants. More importantly, PYR@FeMOF-pectin nanoparticles had an 8-fold reduction in acute toxicity to zebrafish than that of pyraclostrobin suspension concentrate. Therefore, the dual-responsive FeMOF-pectin nanocarriers have great potential for realizing site-specific pesticide delivery and promoting plant growth.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Pesticides , Animals , Pesticides/pharmacology , Pesticides/chemistry , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/chemistry , Pectins/chemistry , Zebrafish , Nanoparticles/chemistry
14.
Klin Lab Diagn ; 67(7): 414-422, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35924772

ABSTRACT

One of the most important requirements for the personnel of microbiological laboratories working with pathogenic and infectious agents is the observance of precautionary measures and the implementation of a set of preventive measures, collectively interpreted as biological safety (biosafety). To a large extent, biosafety problems are also relevant for all clinical laboratories working with biosubstrates, with the potential threat of containing pathogens of bloodborne infections in them. On December 30, 2020, the President of the Russian Federation signed Federal Law № 492 «On the Biological Safety of the Russian Federation¼ (№ 492-FZ), which regulates the basic legal norms and regulation of biosafety issues, as well as a list of measures to prevent the risks of the spread of infections due to accidents, bioterrorist acts and sabotage. The current pandemic of the coronavirus infection COVID-19 has demonstrated, on the one hand, the epidemiological vulnerability of the single world space, and on the other hand, the decisive influence of biological emergencies on the emergence of negative political and economic processes in the world community. In this regard, the issues of ensuring biosafety in the work of microbiological laboratories in the context of protecting personnel and the environment from accidental or unintentional spread of infections are relevant. Working with pathogenic biological agents in microbiological laboratories is constantly associated with the risk of accidents and possible laboratory infection (laboratory-acquired infections) of employees, environmental pollution if the requirements of regulatory documents on biological safety are not met. In accordance with the requirements of № 492-FZ, in order to prevent biological threats, it is necessary to create a system for monitoring biological risks in microbiological laboratories when working with any infected material.


Subject(s)
COVID-19 , Laboratory Infection , COVID-19/epidemiology , COVID-19/prevention & control , Containment of Biohazards , Humans , Laboratories , Laboratory Infection/epidemiology , Laboratory Infection/prevention & control , Pandemics
15.
Pest Manag Sci ; 78(6): 2332-2341, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35246931

ABSTRACT

BACKGROUND: A controlled-release formulation based on mesoporous silica nanoparticles (MSNs) provides an effective way for reducing pesticide use and protecting the ecological environment. In this study, MSNs loaded with pyraclostrobin (PYR@MSNs) were prepared using a one-pot method. RESULTS: The characteristics of PYR@MSNs were systematically investigated, including morphology, loading content, ultraviolet (UV) resistance, release behavior, control effects against pathogens, and safety to nontarget organisms. The results show that the prepared PYR@MSNs presented characteristics of regular spherical shapes, uniform particle size (200 nm), high drug loading (38.9%), and enhanced UV resistance. Compared with traditional formulation, PYR@MSNs exhibited improved control effects against Fusarium graminearum, an extended control period, and lower toxicity to zebrafish, earthworms and BEAS-2B cells. CONCLUSIONS: This research will facilitate the development of efficient and safe pesticide delivery systems. The PYR@MSNs has showed its potential as a new controlled-release formulation with increased efficacy and is expected to benefit the sustainable development of agriculture. © 2022 Society of Chemical Industry.


Subject(s)
Nanoparticles , Pesticides , Animals , Antifungal Agents/pharmacology , Containment of Biohazards , Delayed-Action Preparations , Drug Carriers/chemistry , Nanoparticles/chemistry , Porosity , Silicon Dioxide/chemistry , Strobilurins , Zebrafish
16.
ACS Biomater Sci Eng ; 8(3): 1226-1238, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35166518

ABSTRACT

Silk fibroin (SF) is a natural biocompatible protein polymer extracted from cocoons of silkworm Bombyx mori. SF can be processed into a variety of different forms and shapes that can be used as scaffolds to support bone regeneration. Three-dimensional (3D) SF scaffolds have shown promise in bone-void-filling applications. In in vitro studies, it has been demonstrated that a microparticle-based SF (M-RSF) scaffold promotes the differentiation of stem cells into an osteoblastic lineage. The expression of differentiation markers was also significantly higher for M-RSF scaffolds as compared to other SF scaffolds and commercial ceramic scaffolds. In this work, we have evaluated the in vitro and in vivo biocompatibility of M-RSF scaffolds as per the ISO 10993 guidelines in a Good Laboratory Practice (GLP)-certified facility. The cytotoxicity, immunogenicity, genotoxicity, systemic toxicity, and implantation studies confirmed that the M-RSF scaffold is biocompatible. Further, the performance of the M-RSF scaffold to support bone formation was evaluated in in vivo bone implantation studies in a rabbit model. Calcium sulfate (CaSO4) scaffolds were chosen as reference material for this study as they are one of the preferred materials for bone-void-filling applications. M-RSF scaffold implantation sites showed a higher number of osteoblast and osteoclast cells as compared to CaSO4 implantation sites indicating active bone remodeling. The number density of osteocytes was double for M-RSF scaffold implantation sites, and these M-RSF scaffold implantation sites were characterized by enhanced collagen deposition, pointing toward a finer quality of the new bone formed. Moreover, the M-RSF scaffold implantation sites had a negligible incidence of secondary fractures as compared to the CaSO4 implantation sites (∼50% sites with secondary fracture), implying a reduction in postsurgical complications. Thus, the study demonstrates that the M-RSF scaffold is nontoxic for bone-void-filling applications and facilitates superior healing of fracture defects as compared to commercial calcium-based bone void fillers.


Subject(s)
Fibroins , Animals , Bone Regeneration , Cell Differentiation , Fibroins/pharmacology , Osteogenesis , Rabbits , Tissue Scaffolds
17.
Biomed Mater ; 17(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-35073528

ABSTRACT

Lithium disilicate (Li2Si2O5) glass-ceramic is a commonly used dental ceramic material. In this study, Li2Si2O5whiskers were prepared by the hydrothermal method, mixed with Li2Si2O5glass powders, and Li2Si2O5whisker-reinforced glass-ceramics were prepared by reaction sintering. The biosafety of the new Li2Si2O5glass-ceramics were evaluated byin vitrocytotoxicity, hemolysis, oral mucosal irritation, acute systemic toxicity, and subacute systemic toxicity (oral route) tests according to ISO 7405/ISO 10993 standards. The cytotoxicity test results showed that the cell growth of the experimental group was good, and the cell number and morphology were not significantly different from those of the blank group (P> 0.05). The toxicity grading for both experimental and blank control groups were 0. The hemolysis rate of the material was 1.25%, which indicated that it did not cause hemolytic reaction. The material was non-irritating to the oral mucosa. In acute systemic toxicity test, animals in the experimental group showed increased body weight, moved freely, with no signs of poisoning. The food utilization rate and relative growth rate (change of the weight) of rats in the subacute systemic toxicity test were not statistically different from those of the control group (P> 0.05). Preliminary evaluation of the biosafety of the Li2Si2O5whisker-reinforced glass-ceramics showed that it met the existing regulatory standards, and further biosafety experiments can be conducted, following which the material may be expected to be applied in clinical practice.


Subject(s)
Containment of Biohazards , Vibrissae , Animals , Ceramics/toxicity , Dental Porcelain , Materials Testing , Rats , Surface Properties
18.
J Oncol Pharm Pract ; 28(7): 1487-1498, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34162245

ABSTRACT

OBJECTIVES: The aims of the study were to evaluate the external contamination of hazardous drug vials used in Chinese hospitals and to compare environmental contamination generated by a robotic intelligent dispensing system (WEINAS) and a manual compounding procedure using a biological safety cabinet (BSC). METHODS: Cyclophosphamide, fluorouracil, and gemcitabine were selected as the representative hazardous drugs to monitor surface contamination of vials. In the comparative analysis of environmental contamination from manual and robotic compounding, wipe samples were taken from infusion bags, gloves, and the different locations of the BSC and the WEINAS robotic system. In this study, high-performance liquid chromatography coupled with double mass spectrometer (HPLC-MS/MS) was employed for sample analysis. RESULTS: (1) External contamination was measured on vials of all three hazardous drugs. The contamination detected on fluorouracil vials was the highest with an average amount up to 904.33 ng/vial, followed by cyclophosphamide (43.51 ng/vial), and gemcitabine (unprotected vials of 5.92 ng/vial, protected vials of 0.66 ng/vial); (2) overall, the environmental contamination induced by WEINAS robotic compounding was significantly reduced compared to that by manual compounding inside the BSC. Particularly, compared with manual compounding, the surface contamination on the infusion bags during robotic compounding was nearly nine times lower for cyclophosphamide (10.62 ng/cm2 vs 90.43 ng/cm2), two times lower for fluorouracil (3.47 vs 7.52 ng/cm2), and more than 23 times lower for gemcitabine (2.61 ng/cm2 vs 62.28 ng/cm2). CONCLUSIONS: The external contamination occurred extensively on some hazardous drug vials that commonly used in Chinese hospitals. Comparison analysis for both compounding procedures revealed that robotic compounding can remarkably reduce environmental contamination.


Subject(s)
Antineoplastic Agents , Occupational Exposure , Robotic Surgical Procedures , Robotics , Antineoplastic Agents/analysis , China , Cyclophosphamide/analysis , Drug Compounding , Environmental Monitoring/methods , Equipment Contamination/prevention & control , Fluorouracil/analysis , Hospitals , Humans , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Robotics/methods , Tandem Mass Spectrometry
19.
GMS Hyg Infect Control ; 16: Doc26, 2021.
Article in English | MEDLINE | ID: mdl-34549019

ABSTRACT

Background: Technical protection measures for laboratory activities involving biological agents include biological safety cabinets (BSC) that may be contaminated. In the case of diagnostic activities with SARS-CoV-2, this may also affect BSC that are operated at protection level 2; therefore, decontamination of all contaminated surfaces of the BSC may be required. In addition to fumigation with hydrogen peroxide (H2O2), dry fogging of H2O2-stabilized peroxyacetic acid (PAA) represents another alternative to fumigation with formalin. However, to prove their efficacy, these alternatives need to be validated for each model of BSC. Methods: The validation study was performed on 4 different BSCs of Class II A2 using the "Mini Dry Fog" system. Results: An aerosol concentration of 0.03% PAA and 0.15% H2O2 during a 30 min exposure was sufficient to inactivate SARS-CoV-2. Effective concentrations of 1.0% PAA and 5% H2O2 were required to decontaminate the custom-prepared biological indicators loaded with spores of G. stearothermophilus and deployed at 9 different positions in the BSC. Commercial spore carriers were easier to inactivate by a factor of 4, which corresponded to a reduction of 106 in all localizations. Conclusions: Dry fogging with PAA is an inexpensive, robust, and highly effective decontamination method for BSCs for enveloped viruses such as SARS-CoV-2. The good material compatibility, lack of a requirement for neutralization, low pH - which increases the range of efficacy compared to H2O2 fumigation - the significantly shorter processing time, and the lower costs argue in favor of this method.

20.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 35(7): 847-854, 2021 Jul 15.
Article in Chinese | MEDLINE | ID: mdl-34308592

ABSTRACT

OBJECTIVE: To evaluate the in vivo biological safety of porous zinc oxide (ZnO)/hydroxyapatite (HA) composite materials. METHODS: The porous ZnO/HA composite materials and porous HA materials were prepared by the spark plasma sintering technology. First, the materials were characterized, including scanning electron microscopy to observe the material structure, in vitro degradation experiments to detect the degradation rate of the materials, and inductively coupled plasma emission spectrometer to detect the concentration of Zn 2+ dissolved out of the composite material degradation. Then the two kinds of material extracts were prepared for acute systemic toxicity test. Fifteen male Kunming mice were randomly divided into groups A, B, and C ( n=5) and injected intraperitoneally with normal saline, HA extracts, and ZnO/HA extracts, respectively. The body mass of the mice was recorded before injection and at 24, 48, and 72 hours after injection. The liver and kidney tissues were taken at 72 hours for HE staining to evaluate the safety of the composite material. Finally, the biological safety of the material in vivo was evaluated by implantation experiment. The eighteen male New Zealand white rabbits were randomly divided into HA group and ZnO/HA group ( n=9); a bilateral radius defect model (1 cm) was established, and the right forelimbs of the two groups were implanted with porous HA materials and porous ZnO/HA composite materials, respectively; the left untreated as a blank control. The general condition of the animals were observed after operation. The rabbit blood was collected at 1 day before operation and at 1 day, 1 week, 4 weeks, and 8 weeks after operation for routine blood test (inflammation-related indicators) and blood biochemistry (liver and kidney function-related indicators). X-ray films were taken at 4, 8, and 12 weeks after operation to observe the repair of bone defects. RESULTS: Material characterization showed that porous ZnO/HA composite materials had interconnected large and small pore structures with a pore size between 50 and 500 µm, which degraded faster than porous HA materials, and continuously and slowly dissolved Zn 2+. The acute systemic toxicity test showed that the mice in each group had no abnormal performance after injection, and the body mass increased ( P<0.05). HE staining showed that the cells shape and structure of liver and kidney tissue were normal. Animal implantation experiments showed that all rabbits survived until the experiment was completed; routine blood tests showed inflammation in each group (neutrophils, monocytes, and lymphocytes increased) at 1 day after operation, and all returned to normal at 8 weeks ( P>0.05); compared with 1 day before operation, the content of inflammatory cells in the HA group increased at 1 day, 1 week, and 4 weeks after operation ( P<0.05), and the ZnO/HA group increased at 1 day after operation ( P<0.05); blood biochemistry showed that the liver and kidney function indexes were in the normal range; X-ray films showed that the ZnO/HA group had better osseointegration than the HA group at 4 weeks after operation. CONCLUSION: The porous ZnO/HA composite material has good in vivo biological safety and good bone repair ability, which is a potential bone repair material.


Subject(s)
Durapatite , Zinc Oxide , Animals , Bone and Bones , Male , Mice , Porosity , Rabbits , Radius , Zinc Oxide/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...