Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 222(Pt A): 1211-1220, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36155785

ABSTRACT

Currently, hydrogel sensors for health monitoring require external tapes, bandages or adhesives to immobilize them on the surface of human skin. However, these external fixation methods easily lead to skin allergic reactions and the decline of monitoring accuracy. A simple strategy to solve this problem is to endow hydrogel sensors with good adhesion. Inspired by the starch paste adhesion mechanism, a biomass-based hydrogel with good conductivity and high repetitive adhesion strength was prepared by introducing modified starch into polyacrylic acid hydrogel system. The properties of biomass-based hydrogels could be controlled by changing the proportion of amylose and amylopectin. The biomass-based hydrogel exhibited a variety of excellent properties, including good stretchability (1290 %), high adhesion strength (pig skin: 46.51 kPa) and conductivity (2.3 S/m). Noticeably, the repeated adhesive strength of biomass-based hydrogel did not decrease with the increase of adhesion times. The strain sensor based on the biomass-based hydrogel could accurately monitor the large-scale and small movements of the human body, and had broad application prospects in the field of flexible wearable devices.


Subject(s)
Hydrogels , Starch , Humans , Animals , Swine , Biomass , Electric Conductivity , Adhesives
2.
Carbohydr Polym ; 259: 117753, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33674007

ABSTRACT

A new type of nanocellulose/poly(vinyl alcohol)/carbon dot (NPC) multifunctional hydrogel was successfully fabricated by an one-step in-situ hydrothermal method. The one-pot strategy led to the formation of a complex hydrogen bonding/dynamic boric acid ester/nitrogen-doped carbon dots network, and endowed the hydrogel with multifunctionality. The hydrogel underwent self-healing at room temperature (25 °C) and exhibited double-emission fluorescence and high mechanical strength (tensile strength of up to 2.98 MPa). An NPC hydrogel-based capacitive sensor exhibited remarkable linear capacitance responsiveness toward pressure, strain, and glucose concentration, and enabled real-time synchronous quantitative pressure/glucose sensing with multiple linear correlations, which was a key performance criteria for biomechanical sensors. The versatility and multiple advantages of the as-prepared hydrogel demonstrate the potential of biological-mechanical sensing materials using natural cellulosic biomass.


Subject(s)
Biosensing Techniques/methods , Cellulose/chemistry , Hydrogels/chemistry , Polyvinyl Alcohol/chemistry , Quantum Dots/chemistry , Biocompatible Materials/chemistry , Carbon/chemistry , Glucose/analysis , Hydrogen Bonding , Temperature , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL