Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.820
Filter
1.
J Biomed Mater Res A ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39359103

ABSTRACT

Neuroblastoma (NB) is the most common pediatric extracranial solid tumor. High-risk NB is a subset of the disease that has poor prognosis and requires multimodal treatment regimens, with a 50% rate of recurrence despite intervention. There is a need for improved treatment strategies to reduce high-risk patient mortality. Dinutuximab is an anti-GD2 antibody ideal for targeting GD2 expressing NB cells, but binding of the antibody to peripheral nerve fibers leads to severe pain during systemic administration. Intratumoral delivery of the anti-GD2 antibody would allow for increased local antibody concentration, without increasing systemic toxicity. Chondroitin Sulfate (CS) is a biocompatible glycosaminoglycan that can be methacrylated to form CSMA, a photocrosslinkable hydrogel that can be loaded with therapeutic agents. The methacrylation reaction time can be varied to achieve different degrees of substitution, resulting in different release and degradation profiles. In this work, 4 and 24 h reacted CSMA was used to create hydrogels at 10% and 20% CSMA. Sustained in vitro release of dinutuximab from these formulations was observed over a 24-day period, and 4 h reacted 10% CSMA hydrogels had the highest overall dinutuximab release over time. An orthotropic mouse model was used to evaluate in vivo response to dinutuximab loaded 4 h methacrylated 10% CSMA hydrogels as compared to bolus tail vein injections. Tumor growth was monitored, and there was a statistically significant increase in the days to reach specific tumor size for tumors treated with intratumoral dinutuximab-loaded hydrogel compared to those treated with dinutuximab solution through tail vein injection. This supports the concept that locally delivering dinutuximab within the hydrogel formulation slowed tumor growth. The CSMA hydrogel-only treatment slowed tumor growth as well, an interesting effect that may indicate interactions between the CSMA and cell adhesion molecules in the tumor microenvironment. These findings demonstrate a potential avenue for local sustained delivery of dinutuximab for improved anti-tumoral response in high-risk NB.

2.
Int J Biol Macromol ; : 136381, 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39378927

ABSTRACT

Chitosan, recognized for its excellent biodegradability, biocompatibility, and antibacterial properties, has several potential applications, particularly in the biomedical field. However, its widespread use is hindered by inherent limitations such as low mechanical strength and safety concerns arising from a low degree of deacetylation and the presence of impurities. This study aimed to introduce an innovative purification method for chitosan via liquefied dimethyl ether (DME) extraction. The proposed technique effectively addresses the challenges associated with chitosan by facilitating deacetylation and impurity removal. Liquefied DME is emerging as the extraction solvent of choice owing to its advantages, such as low boiling point, safety, and environmental sustainability. The degree of deacetylation of chitosan was extensively evaluated using thermogravimetric-differential thermal analysis, Fourier transform infrared spectroscopy, X-ray diffraction, intrinsic viscosity measurements, solid-state nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy, and elemental analysis. The solubility of chitosan in liquefied DME was investigated using Hansen solubility parameters. This study contributes to the improvement of the safety profile of chitosan, thereby expanding its potential applications in various fields. The use of liquefied DME as an extraction solvent proved to be efficient in addressing the existing challenges and is consistent with the principles of safety and environmental sustainability.

3.
Int J Food Sci ; 2024: 1249553, 2024.
Article in English | MEDLINE | ID: mdl-39363888

ABSTRACT

Centella asiatica is a medicinal herb, well known for its phytochemical activities because of the presence of terpenoids and polyphenols, which contribute to the bioactivity of herb extract that can be effectively utilized in the packaging industry. Biopolymers infused with C. asiatica extract could be a promising solution in the food sector. The antibacterial and antioxidant qualities of C. asiatica can help preserve the quality and lengthen the freshness of food products, thereby preventing food loss. Selection of a suitable extraction method is essential to retain the yield and properties of the bioactive compounds of C. asiatica extract. Many research has been conducted on the separation of C. asiatica by using conventional and novel extraction techniques and its execution in packaging as a functional component. This review provides an overview of the extraction of phytochemicals from C. asiatica and its utilization in biopolymer film as an active component to modify the packaging film characteristics.

4.
Int J Biol Macromol ; 281(Pt 1): 136151, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362424

ABSTRACT

Cellulose possesses numerous advantageous properties and is a precursor to compounds and derivatives. The objective of this study was to isolate and characterize cellulose from Butia fruits and simultaneously produce cellulose nanofibers and cellulose acetate from the isolated cellulose. Cellulose extraction was performed using a combination of alkaline and bleaching treatments, while the production of cellulose nanofibers and cellulose acetate was achieved through acid hydrolysis and acetylation, respectively. The materials were characterized by their chemical composition, size distribution, zeta potential, morphology, relative crystallinity (XRD), functional groups (FTIR), molecular structure (NMR), and thermal stability (TGA). The Butia crude fibers presented 49.4 % cellulose, 4.5 % hemicellulose, 25.4 % lignin, and 1.3 % ash. The cellulose nanofibers presented an average diameter ranging from 13.7 to 93.1 nm and exhibited a high degree of crystallinity (63.3 %). FTIR, XRD, 13C, and 1H NMR analyses confirmed that the isolation processes effectively removed amorphous regions from the cellulose nanofibers and confirmed the cellulose acetylation process. As demonstrated, cellulosic materials derived from Butia fruit exhibit promise for various applications, including their potential use as reinforcing agents in polymer matrices, due to their high extraction yield, thermal properties, and crystallinity.

5.
Int J Biol Macromol ; 281(Pt 1): 136284, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39368589

ABSTRACT

Natural substances and bioactive agents possess great potential in wound care based on their ability to promote healing and prevent infection. This study focused on the fabrication of antibacterial wound dressings by combining gelatin (G), tragacanth gum (TG), and galbanum essential oil (GEO) as a loaded drug. TG addition resulted in more elastic and flexible films besides enabling encapsulation of the hydrophobic GEO into the biopolymeric matrix. GEO was utilized as an antibacterial and a wound-healing enhancer for open wounds such as incisions. Field emission scanning electron microscopy (FE-SEM) analysis revealed a porous film structure after GEO incorporation. Higher GEO concentration caused reduced swelling and slower degradation. Water vapor transfer rate varied from 596 to 894 g/m2.day, making the films suitable for wound dressings. GEO release exhibited a two-phase profile with prolonged diffusion-controlled release for a higher content of GEO. The films demonstrated dose-dependent antimicrobial activity against S. aureus and E. coli strains. Effectiveness and noteworthy application of this research were approved by scratch assay on human dermal fibroblast cells, and films with 3 % GEO showed 79.42 % wound closure, which is significantly higher than the control sample (55.15 %), indicating promoted cell migration and promising wound healing properties.

6.
Chemosphere ; : 143482, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39369743

ABSTRACT

The aggregation of rough, raspberry-type polystyrene nanoparticles (PS-NPs) was investigated in the presence of six hydrophobic and hydrophilic dissolved organic matter (DOM) isolates and biopolymers (effluent OM) in NaCl and CaCl2 solutions using time-resolved dynamic light scattering. Results showed that the stability of PS-NPs mainly depends on OM characteristics and ionic composition. Due to cation bridging, the aggregation rate of PS-NPs in Ca2+-containing solutions was significantly higher than at similar Na+-ionic strength. Biopolymers rich in protein and carbohydrate moieties showed higher affinity to the surface of PS-NPs than the other DOM isolates in the absence of both Ca2+ and Na+. Overall, the stability of PS-NPs followed the order of biopolymers > hydrophobic isolates > hydrophilic isolates in the presence of Na+ and biopolymers > hydrophilic isolates > hydrophobic isolates in Ca2+-containing solutions. In the presence of high MW structures (biopolymers), PS-NPs aggregation in both NaCl and CaCl2 solutions was attributed to steric repulsive forces. The impact of hydrophilic and hydrophobic isolates on PS-NPs aggregation highly relied on the ionic composition. Coagulation was an effective pretreatment for PS-NPs removal. Using inductively coupled plasma-mass spectrometry, higher removals were recorded with Al2(SO4)3 in the absence of DOM, while PACl more efficiently coagulated PS-NPs in the presence of DOM isolates.

7.
N Biotechnol ; 84: 53-63, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326786

ABSTRACT

Treating saline streams presents considerable challenges due to their adverse effects on conventional biological processes, thereby leading to increased expenses in managing those side streams. With this in consideration, this study explores into the potential for valorizing fermented cheese whey (CW), a by-product of the dairy industry, into polyhydroxyalkanoates (PHA) using mixed microbial cultures (MMC) under conditions of near-seawater salinity (30 gNaCl/L). The selection of a PHA-accumulating MMC was successfully achieved using a sequential batch reactor operated under a feast and famine regime, with a hydraulic retention time of 14.5 h, a variable solids retention time of 3 and 4.5 days, and an organic loading rate (OLR) of 60 Cmmol/(L d). The selected culture demonstrated efficient PHA production rates and yields, maintaining robust performance even under high salinity conditions. During PHA accumulation, a maximum PHA content in biomass of 56.4 % wt. was achieved for a copolymer P(3HB-co-3HHx) with a 3HHx content of 7 %. Additionally, to asses the capacity of the culture to produce polymers with different compositions, valeric acid was supplemented to the real fermented feedstock which resulted in the production of terpolymers P(3HB-co-3HV-co-3HHx) with varied monomeric content and a higher maximum PHA content of 62 % wt. Additionally, this study highlights the potential utilization of seawater as alternative to freshwater for PHA production, thereby enhancing circular economy principles and promoting environmental sustainability.

8.
MethodsX ; 13: 102892, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39221014

ABSTRACT

Waste from the fishing industry is disposed of in soils and oceans, causing environmental damage. However, it is also a source of valuable compounds such as chitin. Although chitin is the second most abundant polymer in nature, its use in industry is limited due to the lack of standardized and scalable extraction methods and its poor solubility. The deacetylation process increases its potential applications by enabling the recovery of chitosan, which is soluble in dilute acidic solutions. Chitosan is a polymer of great importance due to its biocompatible and bioactive properties, which include antimicrobial and antioxidant capabilities. Chitin extraction and its deacetylation to obtain chitosan are typically performed using chemical processes that involve large amounts of strongly acidic and alkaline solutions. To reduce the environmental impact of this process, extraction methods based on biotechnological tools, such as fermentation and chitin deacetylase, as well as emerging technologies, have been proposed. These extraction methods have demonstrated the potential to reduce or even avoid using strong solvents and shorten extraction time, thereby reducing costs. Nevertheless, it is important to address existing gaps in this area, such as the requirements for large-scale implementation and the determination of the stoichiometric ratios for each process. This review highlights the use of biotechnological tools and emerging technologies for chitin extraction and chitosan production. These approaches truly minimize environmental impact, reduce the use of strong solvents, and shorten extraction time. They are a reliable alternative to fishery waste valorization, lowering costs; however, addressing the critical gaps for their large-scale implementation remains challenging.

9.
Int J Biol Macromol ; 279(Pt 3): 135246, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39251008

ABSTRACT

The feasibility of exopolysaccharides (EPS) production from cheese whey using Chlorella vulgaris was investigated as an example of circular bioeconomy application. The effects of dairy waste utilization in EPS biosynthesis and rheological properties were evaluated, comparing with both control conditions and commercial xanthan gum (CXG). A twofold increase in yield, up to 0.32 g L-1, was observed when Chlorella vulgaris was used for EPS production from whey rather than conventional fertilizers. Additionally, the EPS produced using cheese whey exhibited superior pseudoplasticity in the 0.4-1.0 (w/v) range compared to the control. The EPS from the whey wastewater contained functional groups similar to those of CXG (82.7 %). Moreover, the solutions containing 1 % biopolymer showed rheological profiles similar to those of the 0.4 % CXG. The molecular weight averages predominantly fell within the range of 284 to 324 kDa, as deduced using diffusion NMR, an innovative and rapid determination method for estimating EPS size. The potential applications of EPS notably extend beyond the dairy industry, reaching diverse market sectors, and thereby enhancing the competitiveness of microalgal biorefineries while contributing to the achievement of Sustainable Development Goals.

10.
ACS Biomater Sci Eng ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259773

ABSTRACT

Natural biopolymers have a rich history, with many uses across the fields of healthcare and medicine, including formulations for wound dressings, surgical implants, tissue culture substrates, and drug delivery vehicles. Yet, synthetic-based materials have been more successful in translation due to precise control and regulation achievable during manufacturing. However, there is a renewed interest in natural biopolymers, which offer a diverse landscape of architecture, sustainable sourcing, functional groups, and properties that synthetic counterparts cannot fully replicate as processing and sourcing of these materials has improved. Proteins and polysaccharides derived from various sources (crustaceans, plants, insects, etc.) are highlighted in this review. We discuss the common types of polysaccharide and protein biopolymers used in healthcare and medicine, highlighting methods and strategies to alter structures and intra- and interchain interactions to engineer specific functions, products, or materials. We focus on biopolymers obtained from natural, nonmammalian sources, including silk fibroins, alginates, chitosans, chitins, mucins, keratins, and resilins, while discussing strategies to improve upon their innate properties and sourcing standardization to expand their clinical uses and relevance. Emphasis will be placed on methods that preserve the structural integrity and native biological functions of the biopolymers and their makers. We will conclude by discussing the untapped potential of new technologies to manipulate native biopolymers while controlling their secondary and tertiary structures, offering a perspective on advancing biopolymer utility in novel applications within biomedical engineering, advanced manufacturing, and tissue engineering.

11.
Polymers (Basel) ; 16(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39274023

ABSTRACT

The escalating environmental impact of plastic packaging waste necessitates sustainable alternatives in food packaging. This study explores starch-based films derived from cassava and potato as viable substitutes, aiming to mitigate plastic pollution and enhance environmental sustainability. Utilizing a casting method, formulations optimized by CCRD were characterized for their physical, physicochemical, and morphological properties. Comprehensive analysis revealed both cassava and potato starch films to exhibit robust structural integrity, high tensile strength (up to 32.6 MPa for cassava starch films), and semi-crystalline morphology. These films demonstrated low water vapor permeability and moderate solubility, akin to conventional low-density polyethylene used in packaging. Differential scanning calorimetry indicated glass transition temperatures between 116.36 °C and 119.35 °C, affirming thermal stability suitable for packaging applications. Scanning electron microscopy confirmed homogeneous film surfaces, with cassava starch films (C4-15) exhibiting superior transparency and uniformity. X-ray diffraction corroborated the films' semi-crystalline nature, unaffected by sorbitol content variations. Despite their mechanical and thermal suitability, further enhancements in thermal degradation resistance are essential for broader thermoprocessing applicability. These findings underscore the potential of starch-based films to be used as lids or other part of a food package, decreasing the plastic dependency in food packaging, contributing decisively to waste reduction and environmental preservation.

12.
Polymers (Basel) ; 16(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39274021

ABSTRACT

As the only natural source of aromatic biopolymers, lignin can be converted into value-added chemicals and biofuels, showing great potential in realizing the development of green chemistry. At present, lignin is predominantly used for combustion to generate energy, and the real value of lignin is difficult to maximize. Accordingly, the depolymerization of lignin is of great significance for its high-value utilization. This review discusses the latest progress in the field of lignin depolymerization, including catalytic conversion systems using various thermochemical, chemocatalytic, photocatalytic, electrocatalytic, and biological depolymerization methods, as well as the involved reaction mechanisms and obtained products of various protocols, focusing on green and efficient lignin depolymerization strategies. In addition, the challenges faced by lignin depolymerization are also expounded, putting forward possible directions of developing lignin depolymerization strategies in the future.

13.
Polymers (Basel) ; 16(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39274125

ABSTRACT

This study explores lignin-retaining transparent wood biocomposite production through a lignin-modification process coupled with epoxy resin. The wood's biopolymer structure, which includes cellulose, hemicellulose, and lignin, is reinforced with the resin through impregnation. This impregnation process involves filling the voids and pores within the wood structure with resin. Once the resin cures, it forms a strong bond with the wood fibers, effectively reinforcing the biopolymer matrix and enhancing the mechanical properties of the resulting biocomposite material. This synergy between the natural biopolymer structure of wood and the synthetic resin impregnation is crucial for achieving the desired optical transparency and mechanical performance in transparent wood. Investigating three distinct wood species allows a comprehensive understanding of the relationship between natural and transparent wood biocomposite properties. The findings unveil promising results, such as remarkable light transmittance (up to 95%) for Aspen transparent wood. Moreover, transparent wood sourced from White Spruce demonstrates excellent stiffness (E = 2450 MPa), surpassing the resin's Young's modulus. Also, the resin impregnation enhanced the thermal stability of natural wood. Conversely, transparent wood originating from Larch showcases superior impact resistance. These results reveal a clear correlation between wood characteristics such as density, anatomy, and mechanical properties, and the resulting properties of the transparent wood.

14.
Materials (Basel) ; 17(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39274610

ABSTRACT

In recent years, a growing demand for biomaterials has been observed, particularly for applications in bone regenerative medicine. Bone tissue engineering (BTE) aims to develop innovative materials and strategies for repairing and regenerating bone defects and injuries. Polysaccharides, due to their biocompatibility, biodegradability as well as bioactivity, have emerged as promising candidates for scaffolds or composite systems in BTE. Polymers combined with bioactive ceramics can support osteointegration. Calcium phosphate (CaP) ceramics can be a broad choice as an inorganic phase that stimulates the formation of new apatite layers. This review provides a comprehensive analysis of composite systems based on selected polysaccharides used in bone tissue engineering, highlighting their synthesis, properties and applications. Moreover, the applicability of the produced biocomposites has been analyzed, as well as new trends in modifying biomaterials and endowing them with new functionalizations. The effects of these composites on the mechanical properties, biocompatibility and osteoconductivity were critically analyzed. This article summarizes the latest manufacturing methods as well as new developments in polysaccharide-based biomaterials for bone and cartilage regeneration applications.

15.
Int J Biol Macromol ; 279(Pt 4): 135519, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260639

ABSTRACT

Biopolymers have a transformative role in wound repair due to their biocompatibility, ability to stimulate collagen production, and controlled drug and growth factor delivery. This article delves into the biological parameters critical to wound healing emphasizing how combinations of hydrogels with reparative properties can be strategically designed to create matrices that stimulate targeted cellular responses at the wound site to facilitate tissue repair and recovery. Beyond a detailed examination of various biopolymer types and their functionalities in wound dressings acknowledging that the optimal choice depends on the specific wound type and application, this evaluation provides concepts for developing synergistic biopolymer blends to create next-generation dressings with enhanced efficiencies. Furthermore, the incorporation of therapeutic agents such as medications and wound healing accelerators into dressings to enhance their efficacy is examined. These agents often possess desirable properties such as antibacterial activity, antioxidant effects, and the ability to promote collagen synthesis and tissue regeneration. Finally, recent advancements in conductive hydrogels are explored, highlighting their capabilities in treatment and real-time wound monitoring. This comprehensive resource emphasizes the importance of optimizing ingredient efficiency besides assisting researchers in selecting suitable materials for personalized wound dressings, ultimately leading to more sophisticated and effective wound management strategies.

16.
Sci Rep ; 14(1): 21693, 2024 09 17.
Article in English | MEDLINE | ID: mdl-39289449

ABSTRACT

Helicobacter pylori can infect most people worldwide to cause hazardous consequences to health; the bacteria could not easily be controlled or disinfected. Toward exploring of innovative biocidal nanoformulations to control H. pylori, broccoli seeds (Brassica oleracea var. italica) mucilage (MBS) was employed for biosynthesizing selenium nanoparticles (MBS/SeNPs), which was intermingled with chitosan nanoparticles (NCT) to generate bioactive nanocomposites for suppressing H. pylori. The MBS could effectually generate and stabilize SeNPs with 13.61 nm mean diameter, where NCT had 338.52 nm mean diameter and positively charged (+ 39.62 mV). The cross-linkages between NCT-MBS-SeNPs were verified via infrared analysis and the nanocomposites from NCT:MBS/SeNPs at 1:2 (T1), 1:1 (T2) and 2:1 (T3) ratios had mean diameters of 204, 132 and 159 nm, respectively. The entire nanomaterials/composites exhibited potent anti- H. pylori activities using various assaying methods; the T2 nanocomposite was the utmost bactericidal agent with 0.08-0.10 mg/L minimal concentration and 25.9-27.3 mm inhibition zones. The scanning microscopy displayed the ability of nanocomposite to attach the bacterial cells, disrupt their membranes, and completely lyse them within 10 h. The NCT/MBS/SeNPs nanocomposites provided effectual innovative approach to control H. pylori.


Subject(s)
Anti-Bacterial Agents , Brassica , Chitosan , Helicobacter pylori , Nanocomposites , Plant Mucilage , Selenium , Helicobacter pylori/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Nanocomposites/chemistry , Selenium/chemistry , Selenium/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Brassica/microbiology , Plant Mucilage/chemistry , Nanoparticles/chemistry , Microbial Sensitivity Tests
17.
Int J Biol Macromol ; 279(Pt 3): 135227, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218178

ABSTRACT

Bone implantation is one of the recognized and effective means of treating bone defects, but osteoporosis and bone tumor-related bone abnormalities have a series of problems such as susceptibility to infection, difficulty in healing, and poor therapeutic effect, which poses a great challenge to clinical medicine. Three-dimensional things may be printed using 3D printing. Researchers can feed materials through the printer layer by layer to create the desired shape for a 3D structure. It is widely employed in the healing of bone defects, and it is an improved form of additive manufacturing technology with prospective future applications. This review's objective is to provide an overview of the findings reports pertaining to 3D printing biopolymers in recent years, provide an overview of biopolymer materials and their composites with black phosphorus for 3D printing bone implants, and the characterization methods of composite materials are also summarized. In addition, summarizes 3D printing methods based on ink printing and laser printing, pointing out their special features and advantages, and provide a combination strategy of photothermal therapy and bone regeneration materials for black phosphorus-based materials. Finally, the associations between bone implant materials and immune cells, the bio-environment, as well as the 3D printing bone implants prospects are outlined.

18.
N Biotechnol ; 84: 9-23, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39245322

ABSTRACT

Polyhydroxyalkanoates (PHAs) are a well-known group of biodegradable and biocompatible bioplastics that are synthesised and stored by microorganisms as carbon and energy reservoirs. Extracellular PHA depolymerases (ePhaZs), secreted by a limited range of microorganisms, are the main hydrolytic enzymes responsible for their environmental degradation. Pseudomonas sp. GK13, initially identified as P. fluorescens GK13, produces PHA and a prototypic ePhaZ that specifically degrades mcl-PHA. In this study, a comprehensive characterization of strain GK13 was performed. The whole genomic sequence of GK13 was consolidated into one complete chromosome, leading to its reclassification as P. solani GK13. We conducted a detailed in silico examination of the bacteria genomic sequence, specifically targeting PHA metabolic functions. From the different growth conditions explored, PHA accumulation occurred only under carbon/nitrogen (C/N) imbalance, whereas ePhaZ production was induced even at balanced C/N ratios in mineral media. We extend our study to other bacteria belonging to the Pseudomonas genus revealing that the ePhaZ production capacity is closely associated with mcl-PHA synthesis capacity, as also suggested by metagenomic samples. This finding suggests that these types of microorganisms could contribute to the carbon economy of the microbial community, by storing PHA in carbon-rich times, and sharing it with the rest of the population during times of carbon scarcity through PHA hydrolysis. The conclusion pointed that carbon cycle metabolism performed by P. solani GK13 may contribute to the environmental circular economy at a microscopic scale.

19.
Polymers (Basel) ; 16(18)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39339142

ABSTRACT

In biomaterials research, using one or two components to prepare materials is common. However, there is a growing interest in developing materials composed of three components, as these can offer enhanced physicochemical properties compared to those consisting of one or two components. The introduction of a third component can significantly improve the mechanical strength, biocompatibility, and functionality of the resulting materials. Cross-linking is often employed to further enhance these properties, with chemical cross-linking agents being the most widely used method. This article provides an overview of the chemical agents utilized in the cross-linking of three-component biomaterials. The literature review focused on cases where the material was composed of three components and a chemical substance was employed as the cross-linking agent. The most commonly used cross-linking agents identified in the literature include glyoxal, glutaraldehyde, dialdehyde starch, dialdehyde chitosan, and the EDC/NHS mixture. Additionally, the review briefly discusses materials cross-linked with the MES/EDC mixture, caffeic acid, tannic acid, and genipin. Through a critical analysis of current research, this work aims to guide the development of more effective and safer biopolymeric materials tailored for biomedical applications, highlighting potential areas for further investigation and optimization.

20.
Sci Total Environ ; 953: 176122, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39260493

ABSTRACT

This paper examines the impact of biopolymers on hydraulic conductivity of soils, representing a key parameter for many environmental and geotechnical applications. The complexity of this relationship is compounded by researchers employing diverse approaches and presentation formats, resulting in apparent inconsistencies. However, this review intends to address these challenges by identifying various categories of biopolymers that influence the hydraulic conductivity and discuss the recent research findings. By elucidating the diverse impacts of these biopolymers on hydraulic conductivity, this review offers valuable insights into the historical development and origins of soils treated with hydraulic conductivity modifying biopolymers. It not only traces the evolution and background of these treatments but also identifies areas of conflicting evidence and ongoing debate in the field. In the overall, this review is an essential resource for engineers and researchers working in the geotechnical field, by providing a nuanced understanding of the intricate dynamics between biopolymers and soil hydraulic conductivity. The newly developed multi-variable functions can be systematically utilized to predict the hydraulic conductivity of soils treated with biopolymers, commonly encountered in various geotechnical and environmental engineering applications.

SELECTION OF CITATIONS
SEARCH DETAIL