Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Ann Bot ; 134(3): 367-384, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-38953500

ABSTRACT

This review summarizes recent progress in our current understanding of the mechanisms underlying the cell death pathways in bryophytes, focusing on conserved pathways and particularities in comparison to angiosperms. Regulated cell death (RCD) plays key roles during essential processes along the plant life cycle. It is part of specific developmental programmes and maintains homeostasis of the organism in response to unfavourable environments. Bryophytes could provide valuable models to study developmental RCD processes as well as those triggered by biotic and abiotic stresses. Some pathways analogous to those present in angiosperms occur in the gametophytic haploid generation of bryophytes, allowing direct genetic studies. In this review, we focus on such RCD programmes, identifying core conserved mechanisms and raising new key questions to analyse RCD from an evolutionary perspective.


Subject(s)
Bryophyta , Bryophyta/genetics , Bryophyta/physiology , Bryophyta/growth & development , Cell Death/physiology , Gene Expression Regulation, Plant , Signal Transduction , Models, Biological , Regulated Cell Death/physiology , Regulated Cell Death/genetics , Magnoliopsida/genetics , Magnoliopsida/physiology , Magnoliopsida/growth & development
2.
Microorganisms ; 12(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38930506

ABSTRACT

Biotic stress in cotton plants caused by the phytopathogenic fungus Colletotrichum gossypii var. cephalosporioides triggers symptoms of ramulosis, a disease characterized by necrotic spots on young leaves, followed by death of the affected branch's apical meristem, plant growth paralysis, and stimulation of lateral bud production. Severe cases of ramulosis can cause up to 85% yield losses in cotton plantations. Currently, this disease is controlled exclusively by using fungicides. However, few studies have focused on biological alternatives for mitigating the effects of contamination by C. gossypii var. cephalosporioides on cotton plants. Thus, the hypothesis raised is that endophytic fungi isolated from an Arecaceae species (Butia purpurascens), endemic to the Cerrado biome, have the potential to reduce physiological damage caused by ramulosis, decreasing its severity in these plants. This hypothesis was tested using plants grown from seeds contaminated with the pathogen and inoculated with strains of Gibberella moniliformis (BP10EF), Hamigera insecticola (BP33EF), Codinaeopsis sp. (BP328EF), G. moniliformis (BP335EF), and Aspergillus sp. (BP340EF). C. gossypii var. cephalosporioides is a leaf pathogen; thus, the evaluations were focused on leaf parameters: gas exchange, chlorophyll a fluorescence, and oxidative metabolism. The hypothesis that inoculation with endophytic strains can mitigate physiological and photochemical damage caused by ramulosis in cotton was confirmed, as the fungi improved plant growth and stomatal index and density, increased net photosynthetic rate (A) and carboxylation efficiency (A/Ci), and decreased photochemical stress (ABS/RC and DI0/RC) and oxidative stress by reducing enzyme activity (CAT, SOD, and APX) and the synthesis of malondialdehyde (MDA). Control plants developed leaves with a low adaxial stomatal index and density to reduce colonization of leaf tissues by C. gossypii var. cephalosporioides due to the absence of fungal antagonism. The Codinaeopsis sp. strain BP328EF can efficiently inhibit C. gossypii var. cephalosporioides in vitro (81.11% relative inhibition), improve gas exchange parameters, reduce photochemical stress of chlorophyll-a, and decrease lipid peroxidation in attacked leaves. Thus, BP328EF should be further evaluated for its potential effect as a biological alternative for enhancing the resistance of G. hirsutum plants and minimizing yield losses caused by C. gossypii var. cephalosporioides.

3.
Plants (Basel) ; 13(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38891329

ABSTRACT

The use of dwarf plants in tomato breeding has provided several advantages. However, there are no identified dwarf plants (dd) containing the self-pruning habit (spsp). The aim of this work was to obtain future generations, characterize the germplasm, and select potential dwarf plants with a determinate growth habit to obtain Salad-type lines. The work was started by carrying out hybridization, followed by the first, second, and third backcrosses. Once F2BC3 seeds became available, the introgression of the self-pruning gene (spsp) into dwarf plants (dd) began. Three strains of normal architecture and a determinate growth habit were hybridized with two strains of dwarf size and an indeterminate growth habit, thus yielding four hybrids. Additionally, donor genotype UFU MC TOM1, the commercial cultivar Santa Clara, and the wild accession Solanum pennellii were used in the experiment. Agronomic traits, fruit quality, metabolomics, and acylsugars content were evaluated, and dwarf plants with a determinate growth habit were selected. Hybrid 3 exhibited the highest yields. Visual differences between determinate and indeterminate dwarf plant seedlings were observed. It is suggested to carry out five self-pollinations of the best dwarf plant determined and subsequent hybridization with homozygous lines of normal plant architecture and determinate growth habit to obtain hybrids.

4.
Int J Mol Sci ; 25(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38732270

ABSTRACT

The majority of the world's natural rubber comes from the rubber tree (Hevea brasiliensis). As a key enzyme for synthesizing phenylpropanoid compounds, phenylalanine ammonia-lyase (PAL) has a critical role in plant satisfactory growth and environmental adaptation. To clarify the characteristics of rubber tree PAL family genes, a genome-wide characterization of rubber tree PALs was conducted in this study. Eight PAL genes (HbPAL1-HbPAL8), which spread over chromosomes 3, 7, 8, 10, 12, 13, 14, 16, and 18, were found to be present in the genome of H. brasiliensis. Phylogenetic analysis classified HbPALs into groups I and II, and the group I HbPALs (HbPAL1-HbPAL6) displayed similar conserved motif compositions and gene architectures. Tissue expression patterns of HbPALs quantified by quantitative real-time PCR (qPCR) proved that distinct HbPALs exhibited varying tissue expression patterns. The HbPAL promoters contained a plethora of cis-acting elements that responded to hormones and stress, and the qPCR analysis demonstrated that abiotic stressors like cold, drought, salt, and H2O2-induced oxidative stress, as well as hormones like salicylic acid, abscisic acid, ethylene, and methyl jasmonate, controlled the expression of HbPALs. The majority of HbPALs were also regulated by powdery mildew, anthracnose, and Corynespora leaf fall disease infection. In addition, HbPAL1, HbPAL4, and HbPAL7 were significantly up-regulated in the bark of tapping panel dryness rubber trees relative to that of healthy trees. Our results provide a thorough comprehension of the characteristics of HbPAL genes and set the groundwork for further investigation of the biological functions of HbPALs in rubber trees.


Subject(s)
Gene Expression Regulation, Plant , Hevea , Multigene Family , Phenylalanine Ammonia-Lyase , Plant Proteins , Gene Expression Profiling , Genome, Plant , Hevea/genetics , Hevea/enzymology , Hevea/metabolism , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Stress, Physiological/genetics
5.
BMC Plant Biol ; 24(1): 268, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605320

ABSTRACT

BACKGROUND: Considering the challenges posed by nitrogen (N) pollution and its impact on food security and sustainability, it is crucial to develop management techniques that optimize N fertilization in croplands. Our research intended to explore the potential benefits of co-inoculation with Azospirillum brasilense and Bacillus subtilis combined with N application rates on corn plants. The study focused on evaluating corn photosynthesis-related parameters, oxidative stress assay, and physiological nutrient use parameters. Focus was placed on the eventual improved capacity of plants to recover N from applied fertilizers (AFR) and enhance N use efficiency (NUE) during photosynthesis. The two-year field trial involved four seed inoculation treatments (control, A. brasilense, B. subtilis, and A. brasilense + B. subtilis) and five N application rates (0 to 240 kg N ha-1, applied as side-dress). RESULTS: Our results suggested that the combined effects of microbial consortia and adequate N-application rates played a crucial role in N-recovery; enhanced NUE; increased N accumulation, leaf chlorophyll index (LCI), and shoot and root growth; consequently improving corn grain yield. The integration of inoculation and adequate N rates upregulated CO2 uptake and assimilation, transpiration, and water use efficiency, while downregulated oxidative stress. CONCLUSIONS: The results indicated that the optimum N application rate could be reduced from 240 to 175 kg N ha-1 while increasing corn yield by 5.2%. Furthermore, our findings suggest that replacing 240 by 175 kg N ha-1 of N fertilizer (-65 kg N ha-1) with microbial consortia would reduce CO2 emission by 682.5 kg CO2 -e ha-1. Excessive N application, mainly with the presence of beneficial bacteria, can disrupt N-balance in the plant, alter soil and bacteria levels, and ultimately affect plant growth and yield. Hence, highlighting the importance of adequate N management to maximize the benefits of inoculation in agriculture and to counteract N loss from agricultural systems intensification.


Subject(s)
Fertilizers , Zea mays , Nitrogen/analysis , Carbon Dioxide , Agriculture , Soil
6.
World J Microbiol Biotechnol ; 40(4): 110, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411743

ABSTRACT

The traditional way of dealing with plant diseases has been the use of chemical products, but these harm the environment and are incompatible with the global effort for sustainable development. The use of Bacillus and related species in the biological control of plant diseases is a trend in green agriculture. Many studies report the positive effect of these bacteria, but a synthesis is still necessary. So, the objective of this work is to perform a meta-analysis of Bacillus biocontrol potential and identify factors that drive its efficacy. Data were compiled from articles published in journals listed in two of the main scientific databases between 2000 and 2021. Among 6159 articles retrieved, 399 research papers met the inclusion criteria for a systematic review. Overall, Bacilli biocontrol agents reduced disease by 60% compared to control groups. Furthermore, experimental tests with higher concentrations show a strong protective effect, unlike low and single concentration essays. Biocontrol efficacy also increased when used as a protective inoculation rather than therapeutic inoculation. Inoculation directly in the fruit has a greater effect than soil drenching. The size of the effect of Bacillus-based commercial products is lower than the newly tested strains. The findings presented in this study confirm the power of Bacillus-based bioinoculants and provide valuable guidance for practitioners, researchers, and policymakers seeking effective and sustainable solutions in plant disease management.


Subject(s)
Bacillus , Biological Control Agents , Plant Diseases , Plant Diseases/prevention & control , Plant Diseases/microbiology , Pest Control, Biological/methods , Agriculture/methods , Soil Microbiology , Fruit/microbiology
7.
PeerJ ; 12: e16666, 2024.
Article in English | MEDLINE | ID: mdl-38188144

ABSTRACT

Background: Fungal diseases can cause significant losses in the tomato crop. Phytophthora infestans causes the late blight disease, which considerably affects tomato production worldwide. Weed-based plant extracts are a promising ecological alternative for disease control. Methods: In this study, we analyzed the plant extract of Argemone mexicana L. using chromatography-mass spectrometry analysis (GC-MS). We evaluated its impact on the severity of P. infestans, as well as its effect on the components of the antioxidant defense system in tomato plants. Results: The extract from A. mexicana contains twelve compounds most have antifungal and biostimulant properties. The findings of the study indicate that applying the A. mexicana extract can reduce the severity of P. infestans, increase tomato fruit yield, enhance the levels of photosynthetic pigments, ascorbic acid, phenols, and flavonoids, as well as decrease the biosynthesis of H2O2, malondialdehyde (MDA), and superoxide anion in the leaves of plants infected with this pathogen. These results suggest that using the extract from A. mexicana could be a viable solution to control the disease caused by P. infestans in tomato crop.


Subject(s)
Argemone , Phytophthora infestans , Solanum lycopersicum , Hydrogen Peroxide , Plant Extracts/pharmacology
8.
Genes (Basel) ; 14(12)2023 12 05.
Article in English | MEDLINE | ID: mdl-38137003

ABSTRACT

Peanut (Arachis hypogaea) and its wild relatives are among the few species that naturally synthesize resveratrol, a well-known stilbenoid phytoalexin that plays a crucial role in plant defense against biotic and abiotic stresses. Resveratrol has received considerable attention due to its health benefits, such as preventing and treating various human diseases and disorders. Chalcone (CHS) and Stilbene (STS) Synthases are plant-specific type III Polyketide Synthases (PKSs) that share the same substrates and are key branch enzymes in the biosynthesis of flavonoids and stilbenoids, respectively. Although resveratrol accumulation in response to external stimulus has been described in peanut, there are no comprehensive studies of the CHS and STS gene families in the genus Arachis. In the present study, we identified and characterized 6 CHS and 46 STS genes in the tetraploid peanut and an average of 4 CHS and 22 STS genes in three diploid wild species (Arachis duranensis, Arachis ipaënsis and Arachis stenosperma). The CHS and STS gene and protein structures, chromosomal distributions, phylogenetic relationships, conserved amino acid domains, and cis-acting elements in the promoter regions were described for all Arachis species studied. Based on gene expression patterns of wild A. stenosperma STS genes in response to different biotic and abiotic stresses, we selected the candidate AsSTS4 gene, which is strongly induced by ultraviolet (UV) light exposure, for further functional investigation. The AsSTS4 overexpression in peanut hairy roots significantly reduced (47%) root-knot nematode infection, confirming that stilbene synthesis activation in transgenic plants can increase resistance to pathogens. These findings contribute to understanding the role of resveratrol in stress responses in Arachis species and provide the basis for genetic engineering for improved production of valuable secondary metabolites in plants.


Subject(s)
Arachis , Fabaceae , Humans , Arachis/genetics , Arachis/metabolism , Genome-Wide Association Study , Phylogeny , Resveratrol/metabolism , Fabaceae/genetics
9.
Plants (Basel) ; 12(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37687394

ABSTRACT

Intensive agriculture maintains high crop yields through chemical inputs, which are well known for their adverse effects on environmental quality and human health. Innovative technologies are required to reduce the risk generated by the extensive and harmful use of pesticides. The plant biostimulants made from humic substances isolated from recyclable biomass offer an alternative approach to address the need for replacing conventional agrochemicals without compromising the crop yield. The stimulatory effects of humic substances are commonly associated with plant hormones, particularly auxins. However, jasmonic acid (JA) is crucial metabolite in mediating the defence responses and governing plant growth and development. This work aimed to evaluate the changes in the biosynthesis and signalling pathway of JA in tomato seedlings treated with humic acids (HA) isolated from vermicompost. We use the tomato model system cultivar Micro-Tom (MT) harbouring a reporter gene fused to a synthetic promoter that responds to jasmonic acid (JERE::GUS). The transcript levels of genes involved in JA generation and activity were also determined using qRT-PCR. The application of HA promoted plant growth and altered the JA status, as revealed by both GUS and qRT-PCR assays. Both JA enzymatic synthesis (LOX, OPR3) and JA signalling genes (JAZ and JAR) were found in higher transcription levels in plants treated with HA. In addition, ethylene (ETR4) and auxin (ARF6) signalling components were positively modulated by HA, revealing a hormonal cross-talk. Our results prove that the plant defence system linked to JA can be emulated by HA application without growth inhibition.

10.
Plants (Basel) ; 12(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37299186

ABSTRACT

Phytopathogenic bacteria not only affect crop yield and quality but also the environment. Understanding the mechanisms involved in their survival is essential to develop new strategies to control plant disease. One such mechanism is the formation of biofilms; i.e., microbial communities within a three-dimensional structure that offers adaptive advantages, such as protection against unfavorable environmental conditions. Biofilm-producing phytopathogenic bacteria are difficult to manage. They colonize the intercellular spaces and the vascular system of the host plants and cause a wide range of symptoms such as necrosis, wilting, leaf spots, blight, soft rot, and hyperplasia. This review summarizes up-to-date information about saline and drought stress in plants (abiotic stress) and then goes on to focus on the biotic stress produced by biofilm-forming phytopathogenic bacteria, which are responsible for serious disease in many crops. Their characteristics, pathogenesis, virulence factors, systems of cellular communication, and the molecules implicated in the regulation of these processes are all covered.

11.
Plants (Basel) ; 12(12)2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37375895

ABSTRACT

The tomato crop is susceptible to various types of stress, both biotic and abiotic, which affect the morphology, physiology, biochemistry, and genetic regulation of plants. Among the biotic factors, is the phytopathogen Fusarium oxysporum f. sp. lycopersici (Fol), which can cause losses of up to 100%. Graphene-Cu nanocomposites have emerged as a potential alternative for pathogen control, thanks to their antimicrobial activity and their ability to induce the activation of the antioxidant defense system in plants. In the present study, the effect of the Graphene-Cu nanocomposites and the functionalization of graphene in the tomato crop inoculated with Fol was evaluated, analyzing their impacts on the antioxidant defense system, the foliar water potential (Ψh), and the efficiency of photosystem II (PSII). The results demonstrated multiple positive effects; in particular, the Graphene-Cu nanocomposite managed to delay the incidence of the "vascular wilt" disease and reduce the severity by 29.0%. This translated into an increase in the content of photosynthetic pigments and an increase in fruit production compared with Fol. In addition, the antioxidant system of the plants was improved, increasing the content of glutathione, flavonoids, and anthocyanins, and the activity of the GPX, PAL, and CAT enzymes. Regarding the impact on the water potential and the efficiency of the PSII, the plants inoculated with Fol and treated with the Graphene-Cu nanocomposite responded better to biotic stress compared with Fol, reducing water potential by up to 31.7% and Fv/Fm levels by 32.0%.

12.
Plant Sci ; 332: 111713, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37068662

ABSTRACT

The MutS homolog 6 (MSH6) is a nuclear DNA mismatch repair (MMR) gene that encodes the MSH6 protein. MSH6 interacts with MSH2 to form the MutSα heterodimer. MutSα corrects DNA mismatches and unpaired nucleotides arising during DNA replication, deamination of 5-methylcytosine, and recombination between non-identical DNA sequences. In addition to correcting DNA biosynthetic errors, MutSα also recognizes chemically damaged DNA bases. Here, we show that inactivation of MSH6 affects the basal susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv tomato DC3000. The msh6 T-DNA insertional mutant exhibited a reduced susceptibility to the bacterial invasion. This heightened basal resistance of msh6 mutants appears to be dependent on an increased stomatal closure, an accumulation of H2O2 and double-strand breaks (DSBs) and a constitutive expression of pathogenesis-related (NPR1 and PR1) and DNA damage response (RAD51D and SOG1) genes. Complementation of this mutant with the MSH6 wild type allele under the control of its own promoter resulted in reversal of the basal bacterial resistance phenotype and the stomatal closure back to wild type levels. Taken together, these results demonstrate that inactivation of MSH6 increases Arabidopsis basal susceptibility to the bacterial pathogen and suggests a link between DNA repair and stress signaling in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA-Binding Proteins , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA , DNA Mismatch Repair , DNA-Binding Proteins/genetics , Hydrogen Peroxide , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Pseudomonas syringae/physiology , Repressor Proteins/metabolism , Transcription Factors/genetics
13.
Plants (Basel) ; 12(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37050099

ABSTRACT

Endogenous microRNAs (miRNAs) are small non-coding RNAs that perform post-transcriptional regulatory roles across diverse cellular processes, including defence responses to biotic stresses. Pseudocercospora musae, the causal agent of Sigatoka leaf spot disease in banana (Musa spp.), is an important fungal pathogen of the plant. Illumina HiSeq 2500 sequencing of small RNA libraries derived from leaf material in Musa acuminata subsp. burmannicoides, var. Calcutta 4 (resistant) after inoculation with fungal conidiospores and equivalent non-inoculated controls revealed 202 conserved miRNAs from 30 miR-families together with 24 predicted novel miRNAs. Conserved members included those from families miRNA156, miRNA166, miRNA171, miRNA396, miRNA167, miRNA172, miRNA160, miRNA164, miRNA168, miRNA159, miRNA169, miRNA393, miRNA535, miRNA482, miRNA2118, and miRNA397, all known to be involved in plant immune responses. Gene ontology (GO) analysis of gene targets indicated molecular activity terms related to defence responses that included nucleotide binding, oxidoreductase activity, and protein kinase activity. Biological process terms associated with defence included response to hormone and response to oxidative stress. DNA binding and transcription factor activity also indicated the involvement of miRNA target genes in the regulation of gene expression during defence responses. sRNA-seq expression data for miRNAs and RNAseq data for target genes were validated using stem-loop quantitative real-time PCR (qRT-PCR). For the 11 conserved miRNAs selected based on family abundance and known involvement in plant defence responses, the data revealed a frequent negative correlation of expression between miRNAs and target host genes. This examination provides novel information on miRNA-mediated host defence responses, applicable in genetic engineering for the control of Sigatoka leaf spot disease.

14.
J Exp Bot ; 74(9): 2891-2911, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36723875

ABSTRACT

Climate change has intensified the infection of tomato plants by pathogens such as Pseudomonas syringae pv. tomato (Pst). Rootstocks may increase plant tolerance to leaf phytopathogens. The aim of this study was to evaluate the effects of the tolerant Poncho Negro (R) tomato rootstock on physiological defence and the role of hydrogen sulfide (H2S) in susceptible Limachino (L) tomato plant responses to Pst attack. Ungrafted (L), self-grafted (L/L), and grafted (L/R) plants were infected with Pst. Rootstock increased the concentration of antioxidant compounds including ascorbate in the scion. Tolerant rootstock induced an increase of H2S in the scion, which correlated with enhanced expression of the SlAPX2 gene. A high accumulation of salicylic acid was observed in Pst-inoculated grafted L/L and L/R plants, but this was higher in L/R plants. The increase of H2S during Pst infection was associated with a reduction of ethylene in L/R plants. Our study indicates that the Poncho Negro rootstock reduced the symptoms of bacterial speck disease in the Limachino tomato plants, conferring tolerance to Pst infection. This study provides new knowledge about the impact of rootstock in the defence of tomato plants against leaf pathogens that could be used in sustainable management of tomato cultivation.


Subject(s)
Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/genetics , Plants , Plant Leaves/physiology , Plant Diseases/microbiology
15.
Antibiotics (Basel) ; 12(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36830248

ABSTRACT

Nanoparticles are recognized due to their particular physical and chemical properties, which are conferred due to their size, in the range of nanometers. Nanoparticles are recognized for their application in medicine, electronics, and the textile industry, among others, but also in agriculture. The application of nanoparticles as nanofertilizers and biostimulants can help improve growth and crop productivity, and it has therefore been mentioned as an essential tool to control the adverse effects of abiotic stress. However, nanoparticles have also been noted for their exceptional antimicrobial properties. Therefore, this work reviews the state of the art of different nanoparticles that have shown the capacity to control biotic stress in plants. In this regard, metal and metal oxide nanoparticles, polymeric nanoparticles, and others, such as silica nanoparticles, have been described. Moreover, uptake and translocation are covered. Finally, future remarks about the studies on nanoparticles and their beneficial role in biotic stress management are made.

16.
Braz. J. Biol. ; 83: 1-8, 2023. tab
Article in English | VETINDEX | ID: vti-765527

ABSTRACT

Utilization of modern breeding techniques for developing high yielding and uniform plant types ultimately narrowing the genetic makeup of most crops. Narrowed genetic makeup of these crops has made them vulnerable towards disease and insect epidemics. For sustainable crop production, genetic variability of these crops must be broadened against various biotic and abiotic stresses. One of the ways to widen genetic configuration of these crops is to identify novel additional sources of durable resistance. In this regard crops wild relatives are providing valuable sources of allelic diversity towards various biotic, abiotic stress tolerance and quality components. For incorporating novel variability from wild relatives wide hybridization technique has become a promising breeding method. For this purpose, wheat-Th. bessarabicum amphiploid, addition and translocation lines have been screened in field and screen house conditions to get novel sources of yellow rust and Karnal bunt resistant. Stripe rust screening under field conditions has revealed addition lines 4JJ and 6JJ as resistant to moderately resistant while addition lines 3JJ, 5JJ, 7JJ and translocation lines Tr-3, Tr-6 as moderately resistant wheat-Thinopyrum-bessarabicum genetic stock. Karnal bunt screening depicted addition lines 5JJ and 4JJ as highly resistant genetic stock. These genetic stocks may be used to introgression novel stripe rust and Karnal bunt resistance from the tertiary gene pool into susceptible wheat backgrounds.(AU)


A utilização de técnicas modernas de melhoramento para o desenvolvimento de tipos de plantas uniformes e de alto rendimento, em última análise, estreitando a composição genética da maioria das culturas. A composição genética restrita dessas plantações tornou-as vulneráveis a doenças e epidemias de insetos. Para uma produção agrícola sustentável, a variabilidade genética dessas culturas deve ser ampliada contra vários estresses bióticos e abióticos. Uma das maneiras de ampliar a configuração genética dessas culturas é identificar novas fontes adicionais de resistência durável. A esse respeito, os parentes selvagens das culturas estão fornecendo fontes valiosas de diversidade alélica para vários componentes de qualidade e tolerância ao estresse abiótico e biótico. Para incorporar a nova variabilidade da ampla técnica de hibridização de parente selvagem tornou-se um método de reprodução promissor. Para esse efeito, trigo-Th. As linhas anfiploides, de adição e translocação de bessarabicum foram selecionadas em condições de campo e de casa de tela para obter novas fontes de ferrugem amarela e resistência ao bunt de Karnal. A triagem de ferrugem em faixas em condições de campo revelou as linhas de adição 4JJ e 6JJ como resistentes a moderadamente resistentes, enquanto as linhas de adição 3JJ, 5JJ, 7JJ e as linhas de translocação Tr-3, Tr-6 como estoque genético de trigo-Thinopyrum bessarabicum moderadamente resistente. A triagem Karnal bunt descreveu as linhas de adição 5JJ e 4JJ como estoque genético altamente resistente. Esses estoques genéticos podem ser usados para introgressão da nova ferrugem e resistência ao bunt de Karnal do pool genético terciário em origens de trigo suscetíveis.(AU)


Subject(s)
Triticum/genetics , Plant Breeding/methods , Pest Control/economics , Fungi/genetics , Fungi/isolation & purification
17.
Braz. j. biol ; 83: 1-8, 2023. tab
Article in English | LILACS, VETINDEX | ID: biblio-1468950

ABSTRACT

Utilization of modern breeding techniques for developing high yielding and uniform plant types ultimately narrowing the genetic makeup of most crops. Narrowed genetic makeup of these crops has made them vulnerable towards disease and insect epidemics. For sustainable crop production, genetic variability of these crops must be broadened against various biotic and abiotic stresses. One of the ways to widen genetic configuration of these crops is to identify novel additional sources of durable resistance. In this regard crops wild relatives are providing valuable sources of allelic diversity towards various biotic, abiotic stress tolerance and quality components. For incorporating novel variability from wild relative’s wide hybridization technique has become a promising breeding method. For this purpose, wheat-Th. bessarabicum amphiploid, addition and translocation lines have been screened in field and screen house conditions to get novel sources of yellow rust and Karnal bunt resistant. Stripe rust screening under field conditions has revealed addition lines 4JJ and 6JJ as resistant to moderately resistant while addition lines 3JJ, 5JJ, 7JJ and translocation lines Tr-3, Tr-6 as moderately resistant wheat-Thinopyrum-bessarabicum genetic stock. Karnal bunt screening depicted addition lines 5JJ and 4JJ as highly resistant genetic stock. These genetic stocks may be used to introgression novel stripe rust and Karnal bunt resistance from the tertiary gene pool into susceptible wheat backgrounds.


A utilização de técnicas modernas de melhoramento para o desenvolvimento de tipos de plantas uniformes e de alto rendimento, em última análise, estreitando a composição genética da maioria das culturas. A composição genética restrita dessas plantações tornou-as vulneráveis a doenças e epidemias de insetos. Para uma produção agrícola sustentável, a variabilidade genética dessas culturas deve ser ampliada contra vários estresses bióticos e abióticos. Uma das maneiras de ampliar a configuração genética dessas culturas é identificar novas fontes adicionais de resistência durável. A esse respeito, os parentes selvagens das culturas estão fornecendo fontes valiosas de diversidade alélica para vários componentes de qualidade e tolerância ao estresse abiótico e biótico. Para incorporar a nova variabilidade da ampla técnica de hibridização de parente selvagem tornou-se um método de reprodução promissor. Para esse efeito, trigo-Th. As linhas anfiploides, de adição e translocação de bessarabicum foram selecionadas em condições de campo e de casa de tela para obter novas fontes de ferrugem amarela e resistência ao bunt de Karnal. A triagem de ferrugem em faixas em condições de campo revelou as linhas de adição 4JJ e 6JJ como resistentes a moderadamente resistentes, enquanto as linhas de adição 3JJ, 5JJ, 7JJ e as linhas de translocação Tr-3, Tr-6 como estoque genético de trigo-Thinopyrum bessarabicum moderadamente resistente. A triagem Karnal bunt descreveu as linhas de adição 5JJ e 4JJ como estoque genético altamente resistente. Esses estoques genéticos podem ser usados para introgressão da nova ferrugem e resistência ao bunt de Karnal do pool genético terciário em origens de trigo suscetíveis.


Subject(s)
Pest Control/economics , Fungi/genetics , Fungi/isolation & purification , Plant Breeding/methods , Triticum/genetics
18.
Braz. j. biol ; 832023.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469166

ABSTRACT

Abstract Utilization of modern breeding techniques for developing high yielding and uniform plant types ultimately narrowing the genetic makeup of most crops. Narrowed genetic makeup of these crops has made them vulnerable towards disease and insect epidemics. For sustainable crop production, genetic variability of these crops must be broadened against various biotic and abiotic stresses. One of the ways to widen genetic configuration of these crops is to identify novel additional sources of durable resistance. In this regard crops wild relatives are providing valuable sources of allelic diversity towards various biotic, abiotic stress tolerance and quality components. For incorporating novel variability from wild relatives wide hybridization technique has become a promising breeding method. For this purpose, wheat-Th. bessarabicum amphiploid, addition and translocation lines have been screened in field and screen house conditions to get novel sources of yellow rust and Karnal bunt resistant. Stripe rust screening under field conditions has revealed addition lines 4JJ and 6JJ as resistant to moderately resistant while addition lines 3JJ, 5JJ, 7JJ and translocation lines Tr-3, Tr-6 as moderately resistant wheat-Thinopyrum-bessarabicum genetic stock. Karnal bunt screening depicted addition lines 5JJ and 4JJ as highly resistant genetic stock. These genetic stocks may be used to introgression novel stripe rust and Karnal bunt resistance from the tertiary gene pool into susceptible wheat backgrounds.


Resumo A utilização de técnicas modernas de melhoramento para o desenvolvimento de tipos de plantas uniformes e de alto rendimento, em última análise, estreitando a composição genética da maioria das culturas. A composição genética restrita dessas plantações tornou-as vulneráveis a doenças e epidemias de insetos. Para uma produção agrícola sustentável, a variabilidade genética dessas culturas deve ser ampliada contra vários estresses bióticos e abióticos. Uma das maneiras de ampliar a configuração genética dessas culturas é identificar novas fontes adicionais de resistência durável. A esse respeito, os parentes selvagens das culturas estão fornecendo fontes valiosas de diversidade alélica para vários componentes de qualidade e tolerância ao estresse abiótico e biótico. Para incorporar a nova variabilidade da ampla técnica de hibridização de parente selvagem tornou-se um método de reprodução promissor. Para esse efeito, trigo-Th. As linhas anfiploides, de adição e translocação de bessarabicum foram selecionadas em condições de campo e de casa de tela para obter novas fontes de ferrugem amarela e resistência ao bunt de Karnal. A triagem de ferrugem em faixas em condições de campo revelou as linhas de adição 4JJ e 6JJ como resistentes a moderadamente resistentes, enquanto as linhas de adição 3JJ, 5JJ, 7JJ e as linhas de translocação Tr-3, Tr-6 como estoque genético de trigo-Thinopyrum bessarabicum moderadamente resistente. A triagem Karnal bunt descreveu as linhas de adição 5JJ e 4JJ como estoque genético altamente resistente. Esses estoques genéticos podem ser usados para introgressão da nova ferrugem e resistência ao bunt de Karnal do pool genético terciário em origens de trigo suscetíveis.

19.
Braz. j. biol ; 83: e246440, 2023. tab
Article in English | LILACS, VETINDEX | ID: biblio-1339395

ABSTRACT

Abstract Utilization of modern breeding techniques for developing high yielding and uniform plant types ultimately narrowing the genetic makeup of most crops. Narrowed genetic makeup of these crops has made them vulnerable towards disease and insect epidemics. For sustainable crop production, genetic variability of these crops must be broadened against various biotic and abiotic stresses. One of the ways to widen genetic configuration of these crops is to identify novel additional sources of durable resistance. In this regard crops wild relatives are providing valuable sources of allelic diversity towards various biotic, abiotic stress tolerance and quality components. For incorporating novel variability from wild relative's wide hybridization technique has become a promising breeding method. For this purpose, wheat-Th. bessarabicum amphiploid, addition and translocation lines have been screened in field and screen house conditions to get novel sources of yellow rust and Karnal bunt resistant. Stripe rust screening under field conditions has revealed addition lines 4JJ and 6JJ as resistant to moderately resistant while addition lines 3JJ, 5JJ, 7JJ and translocation lines Tr-3, Tr-6 as moderately resistant wheat-Thinopyrum-bessarabicum genetic stock. Karnal bunt screening depicted addition lines 5JJ and 4JJ as highly resistant genetic stock. These genetic stocks may be used to introgression novel stripe rust and Karnal bunt resistance from the tertiary gene pool into susceptible wheat backgrounds.


Resumo A utilização de técnicas modernas de melhoramento para o desenvolvimento de tipos de plantas uniformes e de alto rendimento, em última análise, estreitando a composição genética da maioria das culturas. A composição genética restrita dessas plantações tornou-as vulneráveis a doenças e epidemias de insetos. Para uma produção agrícola sustentável, a variabilidade genética dessas culturas deve ser ampliada contra vários estresses bióticos e abióticos. Uma das maneiras de ampliar a configuração genética dessas culturas é identificar novas fontes adicionais de resistência durável. A esse respeito, os parentes selvagens das culturas estão fornecendo fontes valiosas de diversidade alélica para vários componentes de qualidade e tolerância ao estresse abiótico e biótico. Para incorporar a nova variabilidade da ampla técnica de hibridização de parente selvagem tornou-se um método de reprodução promissor. Para esse efeito, trigo-Th. As linhas anfiploides, de adição e translocação de bessarabicum foram selecionadas em condições de campo e de casa de tela para obter novas fontes de ferrugem amarela e resistência ao bunt de Karnal. A triagem de ferrugem em faixas em condições de campo revelou as linhas de adição 4JJ e 6JJ como resistentes a moderadamente resistentes, enquanto as linhas de adição 3JJ, 5JJ, 7JJ e as linhas de translocação Tr-3, Tr-6 como estoque genético de trigo-Thinopyrum bessarabicum moderadamente resistente. A triagem Karnal bunt descreveu as linhas de adição 5JJ e 4JJ como estoque genético altamente resistente. Esses estoques genéticos podem ser usados para introgressão da nova ferrugem e resistência ao bunt de Karnal do pool genético terciário em origens de trigo suscetíveis.


Subject(s)
Basidiomycota/genetics , Triticum/genetics , Plant Diseases/genetics , Chromosomes, Plant , Disease Resistance/genetics , Plant Breeding
20.
Int J Mol Sci ; 23(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36362377

ABSTRACT

Banana (Musa spp.), which is one of the world's most popular and most traded fruits, is highly susceptible to pests and diseases. Pseudocercospora musae, responsible for Sigatoka leaf spot disease, is a principal fungal pathogen of Musa spp., resulting in serious economic damage to cultivars in the Cavendish subgroup. The aim of this study was to characterize genetic components of the early immune response to P. musae in Musa acuminata subsp. burmannicoides, var. Calcutta 4, a resistant wild diploid. Leaf RNA samples were extracted from Calcutta 4 three days after inoculation with fungal conidiospores, with paired-end sequencing conducted in inoculated and non-inoculated controls using lllumina HiSeq 4000 technology. Following mapping to the reference M. acuminata ssp. malaccensis var. Pahang genome, differentially expressed genes (DEGs) were identified and expression representation analyzed on the basis of gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes orthology and MapMan pathway analysis. Sequence data mapped to 29,757 gene transcript models in the reference Musa genome. A total of 1073 DEGs were identified in pathogen-inoculated cDNA libraries, in comparison to non-inoculated controls, with 32% overexpressed. GO enrichment analysis revealed common assignment to terms that included chitin binding, chitinase activity, pattern binding, oxidoreductase activity and transcription factor (TF) activity. Allocation to KEGG pathways revealed DEGs associated with environmental information processing, signaling, biosynthesis of secondary metabolites, and metabolism of terpenoids and polyketides. With 144 up-regulated DEGs potentially involved in biotic stress response pathways, including genes involved in cell wall reinforcement, PTI responses, TF regulation, phytohormone signaling and secondary metabolism, data demonstrated diverse early-stage defense responses to P. musae. With increased understanding of the defense responses occurring during the incompatible interaction in resistant Calcutta 4, these data are appropriate for the development of effective disease management approaches based on genetic improvement through introgression of candidate genes in superior cultivars.


Subject(s)
Musa , Musa/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , India , Gene Expression Profiling , Transcriptome , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL