Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.068
Filter
1.
FASEB J ; 38(13): e23784, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38953567

ABSTRACT

To investigate the effects of heavy-load strength training during (neo-)adjuvant chemotherapy in women with breast cancer on muscle strength, body composition, muscle fiber size, satellite cells, and myonuclei. Women with stage I-III breast cancer were randomly assigned to a strength training group (ST, n = 23) performing supervised heavy-load strength training twice a week during chemotherapy, or a usual care control group (CON, n = 17). Muscle strength and body composition were measured and biopsies from m. vastus lateralis collected before the first cycle of chemotherapy (T0) and after chemotherapy and training (T1). Muscle strength increased significantly more in ST than in CON in chest-press (ST: +10 ± 8%, p < .001, CON: -3 ± 5%, p = .023) and leg-press (ST: +11 ± 8%, p < .001, CON: +3 ± 6%, p = .137). Both groups reduced fat-free mass (ST: -4.9 ± 4.0%, p < .001, CON: -5.2 ± 4.9%, p = .004), and increased fat mass (ST: +15.3 ± 16.5%, p < .001, CON: +16.3 ± 19.8%, p = .015) with no significant differences between groups. No significant changes from T0 to T1 and no significant differences between groups were observed in muscle fiber size. For myonuclei per fiber a non-statistically significant increase in CON and a non-statistically significant decrease in ST in type I fibers tended (p = .053) to be different between groups. Satellite cells tended to decrease in ST (type I: -14 ± 36%, p = .097, type II: -9 ± 55%, p = .084), with no changes in CON and no differences between groups. Strength training during chemotherapy improved muscle strength but did not significantly affect body composition, muscle fiber size, numbers of satellite cells, and myonuclei compared to usual care.


Subject(s)
Breast Neoplasms , Muscle Strength , Resistance Training , Satellite Cells, Skeletal Muscle , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Resistance Training/methods , Satellite Cells, Skeletal Muscle/drug effects , Middle Aged , Adult , Chemotherapy, Adjuvant , Body Composition , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/physiology , Neoadjuvant Therapy , Aged
2.
Article in English | MEDLINE | ID: mdl-38953890

ABSTRACT

BACKGROUND: This study aimed to evaluate if combining low muscle mass with additional body composition abnormalities, such as myosteatosis or adiposity, could improve survival prediction accuracy in a large cohort of gastrointestinal and genitourinary malignancies. METHODS: In total, 2015 patients with surgically-treated gastrointestinal or genitourinary cancer were retrospectively analyzed. Skeletal muscle index, skeletal muscle radiodensity, and visceral/subcutaneous adipose tissue index were determined. The primary outcome was overall survival determined by hospital records. Multivariate Cox hazard models were used to identify independent predictors for poor survival. C-statistics were assessed to quantify the prognostic capability of the models with or without incorporating body composition parameters. RESULTS: Survival curves were significantly demarcated by all 4 measures. Skeletal muscle radiodensity was associated with non-cancer-related deaths but not with cancer-specific survival. The survival outcome of patients with low skeletal muscle index was poor (5-year OS; 65.2%), especially when present in combination with low skeletal muscle radiodensity (5-year overall survival; 50.2%). All examined body composition parameters were independent predictors of lower overall survival. The model for predicting overall survival without incorporating body composition parameters had a c-index of 0.68 but increased to 0.71 with the inclusion of low skeletal muscle index and 0.72 when incorporating both low skeletal muscle index and low skeletal muscle radiodensity/visceral adipose tissue index/subcutaneous adipose tissue index. CONCLUSION: Patients exhibiting both low skeletal muscle index and other body composition abnormalities, particularly low skeletal muscle radiodensity, had poorer overall survival. Models incorporating multiple body composition prove valuable for mortality prediction in oncology settings.

3.
Ann Surg Oncol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954088

ABSTRACT

BACKGROUND: Because of to the removal of subclassification of papillary renal cell carcinoma (pRCC), the survival prognostification of localized pRCC after surgical treatment became inadequate. Sarcopenia was widely evaluated and proved to be a predictive factor for prognosis in RCC patients. Therefore, we comprehensively investigated the survival prediction of the body composition parameters for localized pRCC. METHODS: Patients pathologically diagnosed with pRCC between February 2012 and February 2022 in our center were enrolled. The body composition parameters, including skeletal muscle index (SMI), subcutaneous adipose tissue (SAT), and perirenal adipose tissue (PRAT), were measured by the images of preoperative computed tomography (CT). The primary outcome was set as progression-free survival (PFS), and the cutoff values of body composition parameters were calculated by using the Youden from receiver operating characteristic curve (ROC) curves. Univariate and multivariate Cox proportional regression analyses were performed to explore independent risk factors for survival prediction. Then, significant factors were used to construct a prognostic nomogram. The performance of the nomogram was evaluated by Harrell's C-index, calibration curves and time-dependent ROC curves. RESULTS: A total of 105 patients were enrolled for analysis. With a median follow-up time of 30.48 months, 25 (23.81%) patients experienced cancer progression. The percentage of sarcopenia was 74.29%. Univariate Cox analysis identified that gender, PRAT, SAT, skeletal muscle (SM), sarcopenia, surgical technique, and tumor diameter were associated with progression. Further multivariate analysis showed that sarcopenia (hazard ratio [HR] 0.15, 95% confidence interval [CI] 0.03-0.66), SAT (HR 6.36, 95% CI 2.39-16.93), PRAT (HR 4.66, 95% CI 1.77-12.27), tumor diameter (HR 0.35, 95% CI 0.14-0.86), and surgical technique (HR 2.85, 95% CI 1.06-7.64) were independent risk factors for cancer progression. Then, a prognostic nomogram based on independent risk factors was constructed and the C-index for progression prediction was 0.831 (95% CI 0.761-0.901), representing a reasonable discrimination, the calibration curves, and the time-dependent ROC curves verified the good performance of the nomogram. CONCLUSIONS: A prognostic nomogram, including sarcopenia, SAT, PRAT, tumor diameter, and surgical technique, was constructed to calculate the probability of progression for localized pRCC patients and needs further external validation for clinical use in the future.

4.
Arch Gerontol Geriatr ; 126: 105524, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38954986

ABSTRACT

PURPOSE: Sarcopenic obesity is a combination of sarcopenia and obesity, which is associated with the onset of disability. Fat to muscle ratio (FMR) is a screening measure that assesses the ratio of muscle mass to fat mass. However, the relationship between the FMR and disability has not been investigated. METHODS: This study included 11,427 community-dwelling older adults aged ≥65 years enrolled in NCGG-SGS (National Center for Geriatrics and Gerontology-Study of Geriatric Syndromes), a national cohort study in Japan. FMR was measured by the bioelectrical impedance analysis and calculated by dividing fat mass by muscle mass. Cox proportional hazard regression analysis adjusted for covariates was used to investigate the association between FMR and the risk of developing new care needs at 5 years. FMR was divided by about quintile, with quintile 5 as the high. RESULTS: The high FMR group had the highest incidence of disability at 20.8 % for women and 20.1 % for men. In women, the association between FMR and disability was significantly different for the FMR (hazard risk [HR]: 1.43, 95 % confidence interval [CI]: 1.16-1.75). There was no association between FMR and disability in men (HR: 0.98, 95 %CI: 0.76-1.25). Lagged analyses accounting for reverse causality did not change the relationship. CONCLUSIONS: FMR is associated with increased risk of disability in women community-dwelling older adults but not among men. Because the rate of decreased muscle strength is faster in men than in women, early decreased muscle strength may affect men's risk of disability more than muscle mass or fat mass.

5.
Diabetes Obes Metab ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956175

ABSTRACT

AIM: To perform a meta-analysis to investigate the effects of intermittent fasting (IF), as compared with either a control diet (CON) and/or calorie restriction (CR), on body composition and cardiometabolic health in individuals with prediabetes and type 2 diabetes (T2D). METHODS: PubMed, Web of Science, and Scopus were searched from their inception to March 2024 to identify original randomized trials with parallel or crossover designs that studied the effects of IF on body composition and cardiometabolic health. Weighted mean differences (WMDs) or standardized mean differences with 95% confidence intervals (CIs) were calculated using random-effects models. RESULTS: Overall, 14 studies involving 1101 adults with prediabetes or T2D were included in the meta-analysis. IF decreased body weight (WMD -4.56 kg [95% CI -6.23 to -2.83]; p = 0.001), body mass index (BMI; WMD -1.99 kg.m2 [95% CI -2.74 to -1.23]; p = 0.001), glycated haemoglobin (HbA1c; WMD -0.81% [95% CI -1.24 to -0.38]; p = 0.001), fasting glucose (WMD -0.36 mmol/L [95% CI -0.63 to -0.09]; p = 0.008), total cholesterol (WMD -0.31 mmol/L [95% CI -0.60 to -0.02]; p = 0.03) and triglycerides (WMD -0.14 mmol/L [95% CI -0.27 to -0.01]; p = 0.02), but did not significantly decrease fat mass, insulin, low-densitiy lipoprotein, high-density lipoprotein, or blood pressure as compared with CON. Furthermore, IF decreased body weight (WMD -1.14 kg [95% CI -1.69 to -0.60]; p = 0.001) and BMI (WMD -0.43 kg.m2 [95% CI -0.58 to -0.27]; p = 0.001), but did not significantly affect fat mass, lean body mass, visceral fat, insulin, HbA1c, lipid profiles or blood pressure. CONCLUSION: Intermittent fasting is effective for weight loss and specific cardiometabolic health markers in individuals with prediabetes or T2D. Additionally, IF is associated with a reduction in body weight and BMI compared to CR, without effects on glycaemic markers, lipid profiles or blood pressure.

6.
Pediatr Obes ; : e13149, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958048

ABSTRACT

OBJECTIVE: This study identified metabolite modules associated with adiposity and body fat distribution in childhood using gold-standard measurements. METHODS: We used cross-sectional data from 329 children at mid-childhood (age 5.3 ± 0.3 years; BMI 15.7 ± 1.5 kg/m2) from the Genetics of Glucose regulation in Gestation and Growth (Gen3G), a prospective pre-birth cohort. We quantified 1038 plasma metabolites and measured body composition using the gold-standard dual-energy x-ray absorptiometry (DXA), in addition to skinfold, waist circumference, and BMI. We applied weighted-correlation network analysis to identify a network of highly correlated metabolite modules. Spearman's partial correlations were applied to determine the associations of adiposity with metabolite modules and individual metabolites with false discovery rate (FDR) correction. RESULTS: We identified a 'green' module of 120 metabolites, primarily comprised of lipids (mostly sphingomyelins and phosphatidylcholine), that showed positive correlations (all FDR p < 0.05) with DXA estimates of total and truncal fat (ρadjusted = 0.11-0.19), skinfold measures (ρadjusted = 0.09-0.26), and BMI and waist circumference (ρadjusted = 0.15 and 0.18, respectively). These correlations were similar when stratified by sex. Within this module, sphingomyelin (d18:2/14:0, d18:1/14:1)*, a sphingomyelin sub-specie that is an important component of cell membranes, showed the strongest associations. CONCLUSIONS: A module of metabolites was associated with adiposity measures in childhood.

7.
Nutrition ; 125: 112500, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38964261

ABSTRACT

OBJECTIVES: The purpose of the present study was to explore the latent growth trajectory of body mass index (BMI) from birth to 24 months and comprehensively analyze body composition development influencing factor in preschool children. METHODS: This ambidirectional cohort study was conducted in Tianjin, China, from 2017 to 2020, and children's regular medical check-up data from birth to 24 months were retrospectively collected. The growth models were used to fit BMI z-score trajectories for children aged 0-24 months. Crossover analysis and interaction model were used to explore the interaction of influencing factors. RESULTS: We analyzed the growth trajectories of 3217 children, of these, 1493 children with complete follow-up data were included in the influencing factors analysis. Trajectories and parental prepregnancy BMI (ppBMI) were independent factors influencing children's body composition. When paternal ppBMI ≥24 kg/m2, regardless of maternal ppBMI, the risk of overweight and obesity in senior-class children was increased. The high trajectories played a partial mediating role in the association between paternal ppBMI and body composition in preschool children. CONCLUSIONS: BMI growth in children aged 0-24 months can be divided into three latent trajectories: low, middle, and high. These trajectories and parental ppBMI were independent and interactive factors influencing children's body composition. The high trajectories played a partial mediating role in the association between paternal ppBMI and body composition in preschool children. It is necessary to pay attention to the BMI growth level of children aged 0-24 months, which plays an important role in the development of body fat in the future.

8.
Clin Nutr ESPEN ; 63: 226-233, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38970787

ABSTRACT

BACKGROUND & AIMS: Equations estimating fat-free mass (FFM) in people living with the human immunodeficiency virus (HIV) show differences in the validation process. The current study aimed to verify the validity of FFM estimation equations derived from bioelectrical impedance (BIA) in people living with HIV aged 40 years and older. METHODS: A cross-sectional study was conducted with 68 participants evaluated using dual-energy X-ray absorptiometry (DXA) and by two BIA devices (Analyzer and Biodynamics). The study aimed to determine the validity of six different FFM equations from four different studies by Lukaski and Bolonchuk (1987), Kotler et al. (1996), Beraldo et al. (2015) and Hegelund et al. (2017). Comparisons were made using the t-test or Wilcoxon test. To verify the validity between DXA and two BIA devices, the following statistical analyses were performed: Lin's concordance correlation coefficient, intraclass correlation coefficient, coefficient of determination, standard error of the estimate, differences in the limits of agreement by Bland and Altman analysis, correlation between the average and the differences of the methods by Pearson or Spearman correlation. RESULTS: Only equation 2 of Kotler et al. (1996) for males by Biodynamics BIA showed no difference in FFM. The Lin's concordance correlation coefficient was excellent (0.96), irrespective of sex, for Equation 2 of Kotler et al. (1996) by BIA Analyzer. All equations were reproducible (>0.85). The coefficient of determination ranged from 68% to 92%, and the standard error of the estimates ranged from 1.8 kg to 5.0 kg. The differences between the limits of agreement ranged from 7.2 kg to 14.9 kg, and the correlations between the average and the differences of the methods showed differences in FFM for three equations (p < 0.01). CONCLUSION: The choice of equations must consider the equipment used and the sex of the sample investigated. Only Equation 2 of Kotler et al. (1996) was considered valid, irrespective of sex, to estimate the FFM by BIA Analyzer.

9.
Clin Nutr ESPEN ; 63: 214-225, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38970786

ABSTRACT

BACKGROUND: Bioelectrical impedance analysis (BIA) and dual-energy X-ray absorptiometry (DXA) serves as common modalities for body composition assessment. This study was aimed to evaluate the agreement between BIA and DXA measures in UK Biobank. METHODS: UK Biobank participants with body fat mass (FM) and fat-free mass (FFM) estimates obtained through BIA (Tanita BC418MA) and DXA concurrently were included. Correlation between BIA and DXA-derived estimates were assessed with Lin's concordance correlation coefficients. Bland-Altman and Passing-Boblok analyses were performed to quantify the difference and agreement between BIA and DXA. Multivariable linear regression was used to identify predictors influencing the differences. Finally, prediction models were developed to calibrate BIA measures against DXA. RESULTS: The analysis included 34437 participants (female 51.4%, mean age 64.1 years at imaging assessment). BIA and DXA measurements were highly correlated (Lin's concordance correlation coefficient 0.94 for FM and 0.94 for FFM). BIA (Tanita BC418MA) underestimates FM overall by 1.84 kg (23.77 vs. 25.61, p < 0.01), and overestimated FFM overall by 2.56 kg (52.49 vs. 49.93, p < 0.01). The BIA-DXA differences were associated with FM, FFM, BMI and waist circumference. The developed prediction models showed overall good performance in calibrating BIA data. CONCLUSION: Our analysis exhibited strong correlation between BIA (Tanita BC418MA)- and DXA-derived body composition measures at a population level in UK Biobank. However, the BIA-DXA differences were observed at individual level and associated with individual anthropometric measures. Future studies may explore the use of prediction models to enhance the calibration of BIA measures for more accurate assessments in UK Biobank.

10.
Eur J Sport Sci ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967991

ABSTRACT

Challenges for some women meeting the physical employment standards (PES) for ground close combat (GCC) roles stem from physical fitness and anthropometric characteristics. The purpose of this study was to identify the modifiable and nonmodifiable characteristics predictive of passing GCC-based PES tasks and determine the modifiable characteristics suitable to overcome nonmodifiable limitations. 107 adults (46 women) underwent multiday testing assessing regional and total lean mass (LM), percent body fat (BF%), aerobic capacity (V̇O2peak), strength, power, and PES performance. Predictors with p-value <0.200 were included in stepwise logistic regression analysis or binary logistic regression when outcomes among sexes were insufficient. Relative and absolute arm LM (OR: 4.617-8.522, p < 0.05), leg LM (OR: 2.463, p < 0.05), and upper body power (OR: 2.061, p < 0.05) predicted medicine ball chest throw success. Relative and absolute arm LM (OR: 3.734-11.694, p < 0.05), absolute trunk LM (OR: 2.576, p < 0.05), and leg LM (OR: 2.088, p < 0.05) predicted casualty drag success. Upper body power (OR: 3.910, p < 0.05), absolute trunk LM (OR: 2.387, p < 0.05), leg LM (OR: 2.290, p < 0.05), and total LM (OR: 1.830, p < 0.05) predicted maximum single lift success. Relative and absolute arm LM (OR: 3.488-7.377, p < 0.05), leg LM (OR: 1.965, p < 0.05), and upper body power (OR: 1.957, p < 0.05) predicted water can carry success. %BF (OR: 0.814, p = 0.007), V̇O2peak (OR: 1.160, p = 0.031), and lower body strength (OR: 1.059, p < 0.001) predicted repeated lift and carry success. V̇O2peak (OR: 1.540, p < 0.001) predicted 2-km ruck march success. Modifiable characteristics were the strongest predictors for GCC-based PES task success to warrant their improvement for enhancing PES performance for women.

11.
J Biomech ; 172: 112213, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38968649

ABSTRACT

Hip fractures are a severe health concern among older adults. While anthropometric factors have been shown to influence hip fracture risk, the low fidelity of common body composition metrics (e.g. body mass index) reduces our ability to infer underlying mechanisms. While simulation approaches can be used to explore how body composition influences impact dynamics, there is value in experimental data with human volunteers to support the advancement of computational modeling efforts. Accordingly, the goal of this study was to use a novel combination of subject-specific clinical imaging and laboratory-based impact paradigms to assess potential relationships between high-fidelity body composition and impact dynamics metrics (including load magnitude and distribution and pelvis deflection) during sideways falls on the hip in human volunteers. Nineteen females (<35 years) participated. Body composition was assessed via DXA and ultrasound. Participants underwent low-energy (but clinically relevant) sideways falls on the hip during which impact kinetics (total peak force, contract area, peak pressure) and pelvis deformation were measured. Pearson correlations assessed potential relationships between body composition and impact characteristics. Peak force was more strongly correlated with total mass (r = 0.712) and lean mass indices (r = 0.510-0.713) than fat mass indices (r = 0.401-0.592). Peak deflection was positively correlated with indices of adiposity (all r > 0.7), but not of lean mass. Contact area and peak pressure were positively and negatively associated, respectively, with indices of adiposity (all r > 0.49). Trochanteric soft tissue thickness predicted 59 % of the variance in both variables, and was the single strongest correlate with peak pressure. In five-of-eight comparisons, hip-local (vs. whole body) anthropometrics were more highly associated with impact dynamics. In summary, fall-related impact dynamics were strongly associated with body composition, providing support for subject-specific lateral pelvis load prediction models that incorporate soft tissue characteristics. Integrating soft and skeletal tissue properties may have important implications for improving the biomechanical effectiveness of engineering-based protective products.

12.
Musculoskelet Sci Pract ; 73: 103133, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38968681

ABSTRACT

OBJECTIVE: This study aimed to compare the pain intensity, spine structure, and body composition according to functional disability levels in patients with acute discogenic lumbar radiculopathy (DLR). METHODS: A total of 118 women (n = 83) and men (n = 35) patients with acute DLR (mean age: 51.87 ± 13.38 years) were included in the study. The function ability was measured with the Oswestry Disability Index, pain intensity was measured with the Visual Analogue Scale, spine structure was measured with the Spinal Mouse® device, and body composition was measured with the Bioelectrical Impedance Analysis System. RESULTS: Patients with mild functional disability levels had significantly lower activity (p˂.001) and night pain intensity (p = 0.001) than patients with moderate, severe, and completely functional disability levels, and patients with completely functional disability levels had significantly higher rest pain intensity (p = 0.005) than patients with mild, moderate, and severe functional disability levels. Patients with mild functional disability levels had significantly better spine check scores (p = 0.001), posture (p = 0.005), and mobility (p = 0.003) than patients with moderate, severe, and completely functional disability levels. Patients with mild functional disability levels had significantly lower fat percentage (p = 0.032), and higher basal metabolic rate (p = 0.024) than patients with moderate, severe, and completely functional disability levels. CONCLUSION: Pain intensity, spinal structure, and body composition of acute DLR patients differ greatly according to their functional disability levels. Although it is known that the level of functional disability of patients is a result of the severity or prognosis of the disease, performing different treatment methods aimed at decreasing the functional disability level of patients by health professionals may be important in terms of coping with the disease.

13.
BMC Pulm Med ; 24(1): 319, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965493

ABSTRACT

BACKGROUND: Obesity is a major public health concern associated with various health problems, including respiratory impairment. Bioelectrical impedance (BIA) is used in health screening to assess body fat. However, there is no consensus in healthcare on how body fat should be assessed in relation to lung function. In this study, we aimed to investigate how BIA in relation to waist circumference contribute, using data from a large Swedish population study. METHODS: A total of 17,097 participants (aged 45-75 years) were included in the study. The relationships between fat mass, waist circumference, and lung function were analysed using weighted quantile sum regression. RESULTS: Increased fat mass was significantly associated with decreased lung function (FEV1, FVC) in both sexes. Also, the influence of trunk fat and waist circumference on FVC and FEV1 differed by sex: in males, waist circumference and trunk fat had nearly equal importance for FVC (variable weights of 0.42 and 0.41), whereas in females, trunk fat was significantly more important (variable weights 0.84 and 0.14). For FEV1, waist circumference was more important in males, while trunk fat was more significant in females (variable weights male 0.68 and 0.28 and 0.23 and 0.77 in female). CONCLUSIONS: Our results suggest that trunk fat should be considered when assessing the impact of adipose tissue on lung function and should potentially be included in the health controls.


Subject(s)
Electric Impedance , Obesity, Abdominal , Waist Circumference , Humans , Male , Female , Middle Aged , Aged , Sweden , Sex Factors , Obesity, Abdominal/physiopathology , Forced Expiratory Volume , Vital Capacity , Lung/physiopathology , Respiratory Function Tests , Cross-Sectional Studies
14.
Front Physiol ; 15: 1406749, 2024.
Article in English | MEDLINE | ID: mdl-38957215

ABSTRACT

Few US Marines earn perfect 300 scores on both their Physical Fitness Test (PFT) and Combat Fitness Test (CFT). The number 300 invokes the legendary 300 Spartans that fought at the Battle of Thermopylae, which inspired high physical fitness capabilities for elite ground forces ever since. Purpose: Determine distinguishing characteristics of the "300 Marines" (perfect PFT and CFT scores) that may provide insights into the physical and physiological requirements associated with this capability. These tests have been refined over time to reflect physical capabilities associated with Marine Corps basic rifleman performance. Materials and methods: Data were analyzed from US Marines, including 497 women (age, 29 ± 7 years; height 1.63 ± 0.07 m; body mass, 67.4 ± 8.4 kg) and 1,224 men (30 ± 8 years; 1.77 ± 0.07 m; 86.1 ± 11.1 kg). Marines were grouped by whether they earned perfect 300 scores on both the PFT and CFT (300 Marines) or not. We analyzed group differences in individual fitness test events and body composition (dual-energy x-ray absorptiometry). Results: Only 2.5% (n = 43) of this sample earned perfect PFT and CFT scores (n = 21 women; n = 22 men). Compared to sex-matched peers, 300 Marines performed more pull-ups, with faster three-mile run, maneuver-under-fire, and movement-to-contact times (each p < 0.001); 300 Marines of both sexes had lower fat mass, body mass index, and percent body fat (each p < 0.001). The lower percent body fat was explained by greater lean mass (p = 0.041) but similar body mass (p = 0.085) in women, whereas men had similar lean mass (p = 0.618), but lower total body mass (p = 0.025). Conclusion: Marines earning perfect PFT and CFT scores are most distinguished from their peers by their maneuverability, suggesting speed and agility capabilities. While both sexes had considerably lower percent body fat than their peers, 300 Marine women were relatively more muscular while men were lighter.

16.
Clin Nutr ESPEN ; 63: 417-426, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39002131

ABSTRACT

BACKGROUND & AIMS: Weight loss in individuals with obesity and overweight leads to metabolic and health benefits but also poses the risk of muscle mass reduction. This systematic review and meta-analysis of randomized controlled trials aims to determine the initial protein amount necessary for achieving weight loss while maintaining muscle mass, strength, and physical function in adults with overweight and obesity. METHODS: Relevant literature databases, including Medical Literature Analysis and Retrieval System Online (Medline), Excerpta Medica (Embase), the Cumulative Index to Nursing and Allied Health Literature (CINHAL), and Web of Science, were electronically searched up to 15 March 2023. We examined the effect of additional protein intake on muscle mass, strength, and physical function in adults with overweight or obesity targeting weight loss. The risk of bias was assessed using the Cochrane RoB 2.0 tool. Results were synthesized using standardized mean differences (SMD) and 95% confidence intervals (CI) via a random-effects model. RESULTS: Forty-seven studies (n = 3218) were included. In the muscle mass analysis, twenty-eight trials with 1989 participants were encompassed. Results indicated that increased protein intake significantly prevents muscle mass decline in adults with overweight or obesity aiming for weight loss (SMD 0.75; 95% CI 0.41 to 1.10; p < 0.001). Enhanced protein intake did not significantly prevent decreases in muscle strength and physical function. An intake exceeding 1.3 g/kg/day is anticipated to increase muscle mass, while an intake below 1.0 g/kg/day is associated with a higher risk of muscle mass decline. The risk of bias in studies regarding muscle mass ranged from low to high. CONCLUSIONS: Adults with overweight or obesity and aim for weight loss can more effectively retain muscle mass through higher protein intake, as opposed to no protein intake enhancement.

17.
Physiol Behav ; 284: 114627, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964565

ABSTRACT

There is growing interest in the therapeutic potential of psilocybin for the treatment of a wide variety of medical problems, and even for the promotion of wellbeing among healthy individuals. Interestingly, among the many proposed indications, both obesity and anorexia nervosa (AN) have been discussed. However, the effect of psilocybin on appetitive behavior and metabolism is not well known. Here, we report the effects of psilocybin on body weight, intake and output, body composition, and metabolic function among lean male and female wild-type mice. In the days immediately following treatment, both male and female mice receiving a single intraperitoneal dose of psilocybin were consistently heavier than saline controls, with no effect of psilocybin on intake or output. Co-administration of the 5-HT2A/2C receptor antagonist ketanserin had no effect on this outcome. Body composition analysis revealed that psilocybin significantly increased lean and water mass among males, with a similar trend among females. A metabolic panel revealed increased creatine kinase (CK), aspartate aminotransferase (AST), and chloride among male and female psilocybin treated mice. Together, these findings begin to investigate the potential mechanisms of psilocybin's effects on body weight and metabolic measures. Such understanding will be critical for the safe, efficacious, and well-informed use of psilocybin in clinical and non-clinical settings.

18.
Eur Radiol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995381

ABSTRACT

OBJECTIVES: To evaluate the utility of CT-based abdominal fat measures for predicting the risk of death and cardiometabolic disease in an asymptomatic adult screening population. METHODS: Fully automated AI tools quantifying abdominal adipose tissue (L3 level visceral [VAT] and subcutaneous [SAT] fat area, visceral-to-subcutaneous fat ratio [VSR], VAT attenuation), muscle attenuation (L3 level), and liver attenuation were applied to non-contrast CT scans in asymptomatic adults undergoing CT colonography (CTC). Longitudinal follow-up documented subsequent deaths, cardiovascular events, and diabetes. ROC and time-to-event analyses were performed to generate AUCs and hazard ratios (HR) binned by octile. RESULTS: A total of 9223 adults (mean age, 57 years; 4071:5152 M:F) underwent screening CTC from April 2004 to December 2016. 549 patients died on follow-up (median, nine years). Fat measures outperformed BMI for predicting mortality risk-5-year AUCs for muscle attenuation, VSR, and BMI were 0.721, 0.661, and 0.499, respectively. Higher visceral, muscle, and liver fat were associated with increased mortality risk-VSR > 1.53, HR = 3.1; muscle attenuation < 15 HU, HR = 5.4; liver attenuation < 45 HU, HR = 2.3. Higher VAT area and VSR were associated with increased cardiovascular event and diabetes risk-VSR > 1.59, HR = 2.6 for cardiovascular event; VAT area > 291 cm2, HR = 6.3 for diabetes (p < 0.001). A U-shaped association was observed for SAT with a higher risk of death for very low and very high SAT. CONCLUSION: Fully automated CT-based measures of abdominal fat are predictive of mortality and cardiometabolic disease risk in asymptomatic adults and uncover trends that are not reflected in anthropomorphic measures. CLINICAL RELEVANCE STATEMENT: Fully automated CT-based measures of abdominal fat soundly outperform anthropometric measures for mortality and cardiometabolic risk prediction in asymptomatic patients. KEY POINTS: Abdominal fat depots associated with metabolic dysregulation and cardiovascular disease can be derived from abdominal CT. Fully automated AI body composition tools can measure factors associated with increased mortality and cardiometabolic risk. CT-based abdominal fat measures uncover trends in mortality and cardiometabolic risk not captured by BMI in asymptomatic outpatients.

19.
Clin Nutr ; 43(8): 1907-1913, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38996661

ABSTRACT

BACKGROUND & AIMS: Very-low calorie diets (VLCD) and the glucagon-like peptide-1 receptor agonist (GLP1RA) Semaglutide induce significant weight loss and improve glycaemic control in individuals with type 2 diabetes (T2D). This pilot study was conducted to explore the comparative short-term effects of these interventions individually, and in combination, on weight, body composition and metabolic outcomes. METHODS: Thirty individuals with T2D (age 18-75 years, BMI 27-50  kg m-2) were randomly assigned to receive Semaglutide (SEM), 800 kilocalorie/day VLCD (VLCD), or both in combination (COMB) for 12 weeks. Measurement of weight and glycated haemoglobin (HbA1c), dual energy X-ray absorptiometry, and intravenous glucose tolerance tests (IVGTT) were performed at baseline and post-intervention. Diet diaries were utilised to assess compliance. Insulin first phase response during IVGTT provided a marker of pancreatic beta-cell function, and insulin sensitivity was estimated using HOMA-IR. RESULTS: Significantly greater reductions in body weight and fat mass were observed in VLCD and COMB, than SEM (p < 0.01 v both). VLCD and COMB resulted in a 5.4 and 7 percentage-point greater weight loss than SEM, respectively. HbA1c and fasting glucose reduced significantly in all groups, however fasting insulin and HOMA-IR improved in VLCD and COMB only. Insulin first phase response during IVGTT increased in SEM and COMB, and this increase was significantly greater in COMB than VLCD (p < 0.01). CONCLUSION: VLCD elicited greater short-term losses of weight and fat mass than Semaglutide. Adding VLCD to Semaglutide stimulated further weight loss than Semaglutide alone. The combination did not yield any additive effects on weight and body composition above VLCD alone, but did provoke greater improvements in pancreatic beta-cell function. Thus, combination of Semaglutide and VLCD warrants further exploration as a novel approach to T2D management.

20.
Clin Nutr ESPEN ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38997109

ABSTRACT

BACKGROUND: Low muscle mass and skeletal muscle mass (SMM) loss are associated with adverse patient outcomes, but the time-consuming nature of manual SMM quantification prohibits implementation of this metric in clinical practice. Therefore, we assessed the feasibility of automated SMM quantification compared to manual quantification. We evaluated both diagnostic accuracy for low muscle mass and associations of SMM (change) with survival in colorectal cancer (CRC) patients. METHODS: Computed tomography (CT) images from CRC patients enrolled in two clinical studies were analyzed. We compared i) manual vs. automated segmentation of preselected slices at the third lumbar [L3] vertebra ("semi-automated"), and ii) manual L3-slice-selection + manual segmentation vs. automated L3-slice-selection + automated segmentation ("fully-automated"). Automated L3-selection and automated segmentation was performed with Quantib Body Composition v0.2.1. Bland-Altman analyses, within-subject coefficients of variation (WSCVs) and Intraclass Correlation Coefficients (ICCs) were used to evaluate the agreement between manual and automatic segmentation. Diagnostic accuracy for low muscle mass (defined by an established sarcopenia cut-off) was calculated with manual assessment as the "gold standard". Using either manual or automated assessment, Cox proportional hazard ratios (HRs) were used to study the association between changes in SMM (>5% decrease yes/no) during first-line metastatic CRC treatment and mortality adjusted for prognostic factors. SMM change was also assessed separately in weight-stable (<5%, i.e. occult SMM loss) patients. RESULTS: In total, 1580 CT scans were analyzed, while a subset of 307 scans were analyzed in the fully-automated comparison. Included patients (n=553) had a mean age of 63±9 years and 39% were female. The semi-automated comparison revealed a bias of -2.41 cm2, 95% limits of agreement [-9.02 to 4.20], a WSCV of 2.25%, and an ICC of 0.99 (95% confidence intervals (CI) 0.97 to 1.00). The fully-automated comparison method revealed a bias of -0.08 cm2 [-10.91 to 10.75], a WSCV of 2.85% and an ICC of 0.98 (95% CI 0.98 to 0.99). Sensitivity and specificity for low muscle mass were 0.99 and 0.89 for the semi-automated comparison and 0.96 and 0.90 for the fully-automated comparison. SMM decrease was associated with shorter survival in both manual and automated assessment (n=78/280, HR 1.36 [95% CI 1.03 to 1.80] and n=89/280, HR 1.38 [95% CI 1.05 to 1.81]). Occult SMM loss was associated with shorter survival in manual assessment, but not significantly in automated assessment (n=44/263, HR 1.43 [95% CI 1.01 to 2.03] and n=51/2639, HR 1.23 [95% CI 0.87 to 1.74]). CONCLUSION: Deep-learning based assessment of SMM at L3 shows reliable performance, enabling the use of CT measures to guide clinical decision making. Implementation in clinical practice helps to identify patients with low muscle mass or (occult) SMM loss who may benefit from lifestyle interventions.

SELECTION OF CITATIONS
SEARCH DETAIL