Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters











Publication year range
1.
Trends Ecol Evol ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39107207

ABSTRACT

Understanding how natural communities and ecosystems are structured and respond to anthropogenic pressures in a rapidly changing world is key to successful management and conservation. A fundamental but often overlooked biological characteristic of organisms is sex. Sex-based responses are often considered when conducting studies at organismal and population levels, but are rarely investigated in community ecology. Focusing on kelp forests as a model system, and through a review of other marine and terrestrial ecosystems, we found evidence of widespread sex-based variation in species interactions. Sex-based variation in species interactions is expected to affect ecosystem structure and functioning via multiple trophic and nontrophic pathways. Understanding the drivers and consequences of sex-based variation in species interactions can inform more effective management and restoration.

2.
Ecol Appl ; : e3026, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192366

ABSTRACT

Human activities have triggered profound changes in natural landscapes, resulting in species loss and disruption of pivotal ecological interactions such as insect herbivory. This antagonistic interaction is affected by complex pathways (e.g., abundance of herbivores and predators, plant chemical defenses, and resource availability), but the knowledge regarding how forest loss and fragmentation affect insect herbivory in human-modified tropical landscapes still remains poorly understood. In this context, we assessed multi-pathways by which changes in landscape structure likely influence insect herbivory in 20 Atlantic forest fragments in Brazil. Using path analysis, we estimated the direct effects of forest cover and forest edge density, and the indirect effect via canopy openness, number of understory plants and phenolic compounds, on leaf damage in understory plants located in the edge and interior of forest fragments. In particular, plants located in forest edges experienced greater leaf damage than interior ones. We observed that landscape edge density exerted a positive and direct effect on leaf damage in plants sampled at the edge of forest fragments. Our findings also indicated that forest loss and increase of edge density led to an increase in the canopy opening in the forest interior, which causes a reduction in the number of understory plants and, consequently, an increase in leaf damage. In addition, we detected that phenolic compounds negatively influence leaf damage in forest interior plants. Given the increasing forest loss in tropical regions, in which forest fragments become stranded in highly deforested, edge-dominated and degraded landscapes, our study highlights the pervasive enhancement in insect herbivory in remaining forest fragments-especially along forest edges and canopy gaps in the forest interior. As a result, increased herbivory is likely to affect forest regeneration and accelerate the ecological meltdown processes in these highly deforested and disturbed anthropogenic landscapes.

3.
J Theor Biol ; 590: 111856, 2024 08 07.
Article in English | MEDLINE | ID: mdl-38777134

ABSTRACT

Natural systems show heterogeneous patchy distributions of vegetation over large landscapes. Reaction-diffusion systems can demonstrate such heterogeneity of species distributions. Here, we analyse a reaction-diffusion model of plant-herbivore interactions in two-dimensional space to illustrate non-homogeneous distributions of plants and herbivores. The non-spatial system shows bottom-up control, where herbivore density is low under low and high primary productivity but increased at intermediate productivity. In addition, the non-spatial system provides bistability between a dense vegetation state devoid of herbivores and a coexisting state of plants and herbivores. In the spatiotemporal model, we give analytical conditions of occurring diffusion-driven (Turing) instability, where a novel point in our model is the relative dispersal of herbivores, which represents the movement of herbivores from a higher to a lower vegetation state in addition to the self-diffusion of both species. It is shown that heterogeneity in the population distribution does not occur if the relative dispersal of herbivores is low, but it appears in the opposite case. Due to bistability in the underlying non-spatial system, the spatiotemporal model produces initial value-dependent patterns. The two initial values make different patterns despite having the same primary productivity and relative dispersal rate. As productivity increases with a given relative herbivore dispersal, pattern transition occurs from a blend of stripes and spots of low vegetation state to a predominantly low-density vegetation state with smaller patches of densely vegetated states with one initial value. On the contrary, a discernible change in vegetation patterns from cold spots in the dense vegetation to hot stripes in the primarily low-vegetated state is noticed under the other initial population value. Furthermore, the population distributions of plants and herbivores in the entire domain after a long period are heterogeneous for both initial values, provided the relative herbivore dispersal is substantial. We estimated mean population densities to observe species fitness in the whole domain under variable productivity. When productivity is high, the mean population density of plants may go up or down, depending on the herbivore's relative dispersal rate. In contrast to the bottom-up control dynamics of the non-spatial system, the system exhibits a top-down control under high relative dispersal, where the herbivore regulates vegetation growth under high productivity. On the other hand, herbivores are extinct under high productivity if the relative dispersal is low.


Subject(s)
Herbivory , Models, Biological , Plants , Herbivory/physiology , Animals , Population Dynamics , Ecosystem
4.
Water Res ; 255: 121487, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38518414

ABSTRACT

Eutrophication and climate change may affect the top-down versus bottom-up controls in aquatic ecosystems. However, the relative prevalence of the two controls in planktonic ecosystems along the eutrophication and climate gradients has rarely been addressed. Here, using the field surveys of 17 years in a typical bay and estuary, we test two opposite patterns of trophic control dominance and their response to regional temporal eutrophication and climate fluctuations. It was found that trophic control of planktonic ecosystems fluctuated between the dominance of top-down and bottom-up controls on time scales in both the bay and estuary studied. The relative prevalence of these two controls in both ecosystems was significantly driven directly by regional dissolved inorganic nitrogen but, for the estuary, also by the nonlinear effects of regional sea surface temperature. In terms of indirect pathways, community relationships (synchrony and grazing pressure) in the bay are driven by both regional dissolved inorganic nitrogen - soluble reactive phosphorus ratio and sea surface temperature, but this drive did not continue to be transmitted to the trophic control. Conversely, trophic control in estuary was directly related to grazing pressure and indirectly related to synchrony. These findings support the view that eutrophication and climate drive the relative prevalence of top-down versus bottom-up controls at ecosystem and temporal scales in planktonic ecosystems, which has important implications for predicting the potential impacts of anthropogenic and environmental perturbations on the structure and function of marine ecosystems.

5.
Sci Total Environ ; 918: 170729, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38325445

ABSTRACT

Decades of overfishing have greatly altered the community structure in the East China Sea (ECS). The decrease of top predators in the food web has weakened the control exerted from higher trophic levels. As a result, the biomass of benthic crustaceans, representing the third trophic level, has increased. This has probably led to a restriction of the second trophic level, diminishing its ability to control primary producer biomass. Consequently, the ecological pyramid of trophic levels in the ECS has been altered, reducing the top-down control on the first trophic level. This has made algal blooms more susceptible to occur under nutrient loads, temperate temperatures, and light availability. The reduced abundance of the fourth trophic levels has caused a larger portion of primary productivity to sink directly to the benthic community, bypassing the food web. This influx of sinking organic matter has resulted in organic enrichment in the bottom waters, impacting the biomass and diversity of benthic organisms. Furthermore, it has intensified anthropogenic carbon storage in the sediment. Subsequently, intense decomposition processes occur, leading to the development of anoxia and even hypoxia. The seasonal hypoxia off the Changjiang Estuary can be attributed to the combined influence of top-down control and bottom-up control related to nutrient loading, and terrestrial inputs. In order to mitigate extreme hypoxia events, it is necessary to implement comprehensive fisheries policies that prioritize the maintenance of a healthy and functional ecosystem. This approach should go beyond relying solely on watershed management strategies to regulate riverine inputs. PLAIN LANGUAGE SUMMARY: Decades of overfishing changed the food web in the East China Sea and weaken the resistance of ecosystem to hypoxia. Commercial fishing on top predators decreases the fourth trophic level while relatively increases the third trophic represented by crab and shrimp, which enhances grazing on the zooplankton. The decrease of the second trophic level fails to control the biomass of phytoplankton, thus more primary productivities directly sink to the benthic community and cause organic enrichment. The elevated flux of organic matters to the bottom waters causes the thrive of the carbs and shrimps, as well as more remineralization processes and eventually low oxygen level. Unlike the bottom-up perspective of hypoxia mechanism off the Changjiang Estuary, which is from the nutrient load, phytoplankton bloom, quick sink, effective decomposition and eventually hypoxia, the top-down control focuses on the changes of ecosystem structure and thus derived hindered energy transfer, changed community structure, enhanced carbon sink, elevated remineralization and ultimately hypoxia. These two mechanisms combine with each other and control the seasonal hypoxia off the Changjiang Estuary and even other coastal regions around the world.


Subject(s)
Conservation of Natural Resources , Ecosystem , Humans , Fisheries , Food Chain , Biomass , Phytoplankton/physiology , Hypoxia
6.
Sci Total Environ ; 916: 170140, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38244618

ABSTRACT

Shallow lake ecosystems are particularly prone to disturbances such as pulsed dissolved organic matter (allochthonous-DOM; hereafter allo-DOM) loadings from catchments. However, the effects of allo-DOM with contrasting quality (in addition to quantity) on the planktonic communities of microbial loop are poorly understood. To determine the impact of different qualities of pulsed allo-DOM disturbance on the coupling between bacteria and ciliates, we conducted a mesocosm experiment with two different allo-DOM sources added to mesocosms in a single-pulse disturbance event: Alder tree leaf extract, a more labile (L) source and HuminFeed® (HF), a more recalcitrant source. Allo-DOM sources were used as separate treatments and in combination (HFL) relative to the control without allo-DOM additions (C). Our results indicate that the quality of allo-DOM was a major regulator of planktonic microbial community biomass and/or composition through which both bottom-up and top-down forces were involved. Bacteria biomass showed significant nonlinear responses in L and HFL with initial increases followed by decreases to pre-pulse conditions. Ciliate biomass was significantly higher in L compared to all other treatments. In terms of composition, bacterivore ciliate abundance was significantly higher in both L and HFL treatments, mainly driven by the bacterial biomass increase in the same treatments. GAMM models showed negative interaction between metazoan zooplankton biomass and ciliates, but only in the L treatment, indicating top-down control on ciliates. Ecosystem stability analyses revealed overperformance, high resilience and full recovery of bacteria in the HFL and L treatments, while ciliates showed significant shift in compositional stability in HFL and L with incomplete taxonomic recovery. Our study highlights the importance of allo-DOM quality shaping the response within the microbial loop not only through triggering different scenarios in biomass, but also the community composition, stability, and species interactions (top-down and bottom-up) in bacteria and plankton.


Subject(s)
Ecosystem , Lakes , Animals , Lakes/microbiology , Dissolved Organic Matter , Bacteria , Biomass , Plankton
7.
Mar Pollut Bull ; 197: 115772, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37988968

ABSTRACT

Microbial food webs (MFW) play an indispensable role in marine pelagic ecosystem, yet their composition and response to abiotic variables were poorly documented in the oligotrophic tropical Western Pacific. During winter of 2015, we conducted a survey to examine key components of MFW, including Synechococcus, Prochlorococcus, picoeukaryotes, heterotrophic prokaryotes (HP), heterotrophic/pigmented nanoflagellates and ciliates, across water column from surface to 2000 m. Each MFW component exhibited unique vertical distribution pattern, with abundance ratio varying over six and three orders of magnitude across Pico/Microplankton (1.6 ± 1.0 × 106) and Nano/Microplankton (3.2 ± 2.8 × 103), respectively. Furthermore, HP was main component for MFW in the bathypelagic (>1000 m) zone. Multivariate biota-environment analysis demonstrated that environmental variables, particularly temperature, significantly impacted MFW composition, suggesting that bottom-up control (resource availability) dominated the water column. Our study provides benchmark information for future environmental dynamics forcing on MFW in the oligotrophic tropical seas.


Subject(s)
Ecosystem , Food Chain , Plankton , Oceans and Seas , Water
8.
Ecology ; 104(12): e4180, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37784259

ABSTRACT

Community structure is driven by the interaction of physical processes and biological interactions that can vary across environmental gradients and the strength of top-down control is expected to vary along gradients of primary productivity. In coastal marine systems, upwelling drives regional resource availability through the bottom-up effect of nutrient subsidies. This alters rates of primary production and is expected to alter algae-herbivore interactions in rocky intertidal habitats. Despite the potential for upwelling to alter these interactions, the interaction of upwelling and grazing pressure is poorly understood, particularly for warm-temperate systems. Using in situ herbivore exclusion experiments replicated across multiple upwelling regimes, we investigated the effects of both grazing pressure, upwelling, and their interactions on the sessile invertebrate community and biomass of macroalgal communities in a warm-temperate system. The sessile invertebrate cover showed indirect effects of grazing, being consistently low where algal biomass was high at upwelling sites and at nonupwelling sites when grazers were excluded. The macroalgal cover was greater at upwelling sites when grazers were excluded and there was a strong effect of succession throughout the experimental period. Grazing effects were greater at upwelling sites, particularly during winter months. There was a nonsignificant trend toward greater grazing pressure on early than later successional stages. Our results show that the positive bottom-up effects of nutrient supply on algal production do not overwhelm top-down control in this warm-temperate system but do have knock-on consequences for invertebrates that compete with macroalgae for space. We speculate that global increases in air and sea surface temperatures in warm-temperate systems will promote top-down effects in upwelling regions by increasing herbivore metabolic and growth rates.


Subject(s)
Ecosystem , Invertebrates , Animals , Biomass , Seasons , Temperature
9.
Ecol Lett ; 26(3): 411-424, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36688259

ABSTRACT

In the long-term absence of disturbance, ecosystems often enter a decline or retrogressive phase which leads to reductions in primary productivity, plant biomass, nutrient cycling and foliar quality. However, the consequences of ecosystem retrogression for higher trophic levels such as herbivores and predators, are less clear. Using a post-fire forested island-chronosequence across which retrogression occurs, we provide evidence that nutrient availability strongly controls invertebrate herbivore biomass when predators are few, but that there is a switch from bottom-up to top-down control when predators are common. This trophic flip in herbivore control probably arises because invertebrate predators respond to alternative energy channels from the adjacent aquatic matrix, which were independent of terrestrial plant biomass. Our results suggest that effects of nutrient limitation resulting from ecosystem retrogression on trophic cascades are modified by nutrient-independent variation in predator abundance, and this calls for a more holistic approach to trophic ecology to better understand herbivore effects on plant communities.


Subject(s)
Ecosystem , Herbivory , Animals , Invertebrates , Biomass , Plants , Food Chain , Predatory Behavior
10.
Bull Math Biol ; 84(1): 5, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34807309

ABSTRACT

Autotrophs, mixotrophs and bacteria exhibit complex interrelationships containing multiple ecological mechanisms. A mathematical model based on ecological stoichiometry is proposed to describe the interactions among them. Some dynamic analysis and numerical simulations of this model are presented. The roles of autotrophs and mixotrophs in controlling bacterioplankton are explored to examine the experiments and hypotheses of Medina-Sánchez, Villar-Argaiz and Carrillo for La Caldera Lake. Our results show that the dual control (bottom-up control and top-down control) of bacteria by mixotrophs is a key reason for the ratio of bacterial and phytoplankton biomass in La Caldera Lake to deviate from the general tendency. The numerical bifurcation diagrams suggest that the competition between phytoplankton and bacteria for nutrients can also be an important factor for the decrease of the bacterial biomass in an oligotrophic lake.


Subject(s)
Ecosystem , Models, Biological , Bacteria , Biomass , Mathematical Concepts , Phytoplankton
11.
Front Microbiol ; 12: 690200, 2021.
Article in English | MEDLINE | ID: mdl-34489886

ABSTRACT

The ability of marine diazotrophs to fix dinitrogen gas (N2) is one of the most influential yet enigmatic processes in the ocean. With their activity diazotrophs support biological production by fixing about 100-200 Tg N/year and turning otherwise unavailable dinitrogen into bioavailable nitrogen (N), an essential limiting nutrient. Despite their important role, the factors that control the distribution of diazotrophs and their ability to fix N2 are not fully elucidated. We discuss insights that can be gained from the emerging picture of a wide geographical distribution of marine diazotrophs and provide a critical assessment of environmental (bottom-up) versus trophic (top-down) controls. We expand a simplified theoretical framework to understand how top-down control affects competition for resources that determine ecological niches. Selective mortality, mediated by grazing or viral-lysis, on non-fixing phytoplankton is identified as a critical process that can broaden the ability of diazotrophs to compete for resources in top-down controlled systems and explain an expanded ecological niche for diazotrophs. Our simplified analysis predicts a larger importance of top-down control on competition patterns as resource levels increase. As grazing controls the faster growing phytoplankton, coexistence of the slower growing diazotrophs can be established. However, these predictions require corroboration by experimental and field data, together with the identification of specific traits of organisms and associated trade-offs related to selective top-down control. Elucidation of these factors could greatly improve our predictive capability for patterns and rates of marine N2 fixation. The susceptibility of this key biogeochemical process to future changes may not only be determined by changes in environmental conditions but also via changes in the ecological interactions.

12.
Ecol Evol ; 11(16): 10956-10967, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34429894

ABSTRACT

The historical ecological paradigm of wetland ecosystems emphasized the role of physical or "bottom-up" factors in maintaining functions and services. However, recent studies have shown that the loss of predators in coastal salt marshes can lead to a significant reduction in wetland extent due to overgrazing of vegetation by herbivores. Such studies indicate that consumers or "top-down" factors may play a much larger role in the maintenance of wetland ecosystems than was previously thought. The objective of this study was to evaluate whether altering top-down control by manipulating the presence of predators can lead to measurable changes in salt marsh ecosystem properties. Between May and August of 2015 and 2016, we established exclosure and enclosure cages within three New England coastal wetland areas and manipulated the presence of green crab predators to assess how they and their fiddler and purple marsh crab prey affect changes in ecosystem properties. Predator presence was associated with changes in soil nitrogen and aboveground biomass at two of the three field sites, though the magnitude and direction of these effects varied from site to site. Further, path analysis results indicate that across field sites, a combination of bottom-up and top-down factors influenced changes in measured variables. These results challenge the growing consensus that consumers have strong effects, indicating instead that predator impacts may be highly context-dependent.

13.
Ecology ; 102(6): e03335, 2021 06.
Article in English | MEDLINE | ID: mdl-33709403

ABSTRACT

Communities are shaped by a variety of ecological and environmental processes, each acting at different spatial scales. Seminal research on rocky shores highlighted the effects of consumers as local determinants of primary productivity and community assembly. However, it is now clear that the species interactions shaping communities at local scales are themselves regulated by large-scale oceanographic processes that generate regional variation in resource availability. Upwelling events deliver nutrient-rich water to coastal ecosystems, influencing primary productivity and algae-herbivore interactions. Despite the potential for upwelling to alter top-down control by herbivores, we know relatively little about the coupling between oceanographic processes and herbivory on tropical rocky shores, where herbivore effects on producers are considered to be strong and nutrient levels are considered to be limiting. By replicating seasonal molluscan herbivore exclusion experiments across three regions exposed to varying intensity of seasonal upwelling, separated by hundreds of kilometers along Panama's Pacific coast, we examine large-scale environmental determinants of consumer effects and community structure on tropical rocky shores. At sites experiencing seasonal upwelling, grazers strongly limited macroalgal cover when upwelling was absent, leading to dominance by crustose algae. As nutrients increased and surface water cooled during upwelling events, increases in primary productivity temporarily weakened herbivory, allowing foliose, turf and filamentous algae to replace crusts. Meanwhile, grazer effects were persistently strong at sites without seasonal upwelling. Our results confirm that herbivores are key determinants of tropical algal cover, and that the mollusk grazing guild can control initial stages of macroalgal succession. However, our focus on regional oceanographic conditions revealed that bottom-up processes regulate top-down control on tropical shorelines. This study expands on the extensive body of work highlighting the influence of upwelling on local ecological processes by demonstrating that nutrient subsidies delivered by upwelling events can weaken herbivory in tropical rocky shores.


Subject(s)
Ecosystem , Herbivory , Seasons
14.
Wiley Interdiscip Rev Dev Biol ; 10(1): e384, 2021 01.
Article in English | MEDLINE | ID: mdl-32436370

ABSTRACT

The study of the mechanisms controlling organ size during development and regeneration is critical to understanding how complex life arises from cooperating single cells. Long bones are powerful models in this regard, as their size depends on a scaffold made from another tissue (cartilage, composed of chondrocytes), and both tissues interact during the growth period. Investigating long bone growth offers a valuable window into the processes that integrate internal and external cues to yield finely controlled size of organs. Within the cellular and molecular pathways that control bone growth, the regulation of stem-cell renewal, along with amplification and differentiation of their progeny, are key to understanding normal and perturbed long-bone development. The phenomenon of "catch-up" growth-where cellular hyperproliferation occurs following injury to restore a normal growth trajectory-reveals key aspects of this regulation, such as the fact that bone growth is target-seeking. The control mechanisms that lead to this behavior are either bottom-up or top-down, and the interaction between these modes is likely critical to achieve a highly nuanced, yet flexible, degree of control. The role of cartilage-intrinsic mechanisms has been well studied, establishing a very solid groundwork for this field. However, addressing the unanswered questions of bone growth arguably requires new hypotheses and approaches. Future research could for example address to what extent extrinsic signals and cells, as well as communication with other tissues, modulate intra-limb and inter-organ growth coordination. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Vertebrate Organogenesis > Musculoskeletal and Vascular.


Subject(s)
Bone Development , Cell Differentiation , Osteogenesis , Stem Cells/cytology , Animals , Humans , Stem Cells/physiology
15.
J Eukaryot Microbiol ; 68(1): e12823, 2021 01.
Article in English | MEDLINE | ID: mdl-33241612

ABSTRACT

We conducted microcosm experiments with two contrasting freshwater ciliates on functional traits (FTs) related to their growth rate (numerical response, NR) and ingestion rate (functional response, FR) over a range of ecologically relevant temperatures. Histiobalantium bodamicum and Vorticella natans are common planktonic ciliates but their abundance, swimming behavior, and temperature tolerance are different. In contrast to most sessile peritrich species, the motile V. natans is not strictly bacterivorous but also voraciously feeds upon small algae. We observed three main alterations in the shape of NR of both species with temperature, that is, change in the maximum growth rate, in the initial slope and in the threshold food level needed to sustain the population. Similarly, maximum ingestion rate, gross growth efficiency (GGE), and cell size varied with temperature and species. These findings caution against generalizing ciliate performance in relation to the ongoing global warming. Our results suggest that V. natans is the superior competitor to H. bodamicum in terms of temperature tolerance and bottom-up control. However, the abundance of V. natans is usually low compared to H. bodamicum and other common freshwater ciliates, suggesting that V. natans is more strongly top-down controlled via predation than H. bodamicum. The taxonomic position of V. natans has been debated. Therefore, to confirm species and genus affiliation of our study objects, we sequenced their small subunit ribosomal RNA (SSU rDNA) gene.


Subject(s)
Life History Traits , Oligohymenophorea/physiology , Feeding Behavior , Global Warming , Oligohymenophorea/classification , Species Specificity , Temperature
16.
Ecology ; 102(4): e03277, 2021 04.
Article in English | MEDLINE | ID: mdl-33354775

ABSTRACT

Top-down and bottom-up theories of trophic control have been fundamental to our understanding of community dynamics and structure. However, most ecological theories have focused on equilibrium dynamics and do not provide predictions for communities' responses in temporally fluctuating environments. By deriving the frequency response of populations in different trophic communities, we extend the top-down and bottom-up theories of ecology to include how temporal fluctuations in potential primary productivity percolate up the food chain and are re-expressed as population variability. Moreover, by switching from a time-based representation into the frequency domain, we provide a unified method to compare how the time scale of perturbations determines communities' responses. At low frequencies, primary producers and secondary consumers have the highest temporal variability, while the primary consumers are relatively stable. Similar to the Exploitation Ecosystem Hypothesis, top-down effects drive this alternating pattern of variability. We define the top-down effect of consumers on the variability of lower trophic levels as a variation cascade. However, at intermediate frequencies, variation cascades can amplify temporal variation up the food chain. At high frequencies, variation cascades weaken, and fluctuations are attenuated up the food chain. In summary, we provide a novel theory for how communities will respond to fluctuations in productivity, and we show that indirect species interactions play a crucial role in determining community dynamics across the frequency spectrum.


Subject(s)
Ecosystem , Food Chain
18.
FEMS Microbiol Ecol ; 96(12)2020 11 26.
Article in English | MEDLINE | ID: mdl-32975583

ABSTRACT

To seek how soil biotic and abiotic factors which might shape the Bdellovibrio-and-like-organisms community, we sampled paddy soils under different fertilization treatments including fertilization without nitrogen (Control), the nitrogen use treatment (N) and the nitrogen overuse one (HNK) at three rice growing stages. The abundances of BALOs were impacted by the rice-growing stages but not the fertilization treatments. The abundances of Bdellovibrionaceae-like were positively associated with soil moisture, which showed a negative relationship with Bacteriovoracaceae-like bacteria. High-throughput sequencing analysis of the whole bacterial community revealed that the α-diversity of BALOs was not correlated with any soil properties data. Network analysis detected eight families directly linked to BALOs, namely, Pseudomonadaceae, Peptostreptococcaceae, Flavobacteriaceae, Sediment-4, Verrucomicrobiaceae, OM27, Solirubrobacteraceae and Roseiflexaceae. The richness and composition of OTUs in the eight families were correlated with different soil properties, while the evenness of them had a positive effect on the predicted BALO biomass. These results highlighted that the bottom-up control of BALOs in paddy soil at least partially relied on the changes of soil water content and the diversity of bacteria directly linked to BALOs in the microbial network.


Subject(s)
Bdellovibrio , Oryza , Bacteria/genetics , Biomass , Phylogeny , Soil , Soil Microbiology
19.
Mar Environ Res ; 159: 104963, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32662425

ABSTRACT

The key prey was determined based on the diet and spatial patterns of the Nektonic community in southern Brazil. The proposed tool to discriminate key prey was based on simple probabilistic methods and analytical procedures that integrate freely available software on the web. To avoid using arbitrary criteria in key prey determination it was used an indicator based on an adapted outlier analysis including a run of principal component analysis (PCA) and then the choice of prey that fall out of the 99% concentration ellipse. The results showed three key prey identified at species level: the shrimp Artemesia longinaris in the coastal habitats and euphausid Euphausia similis and anchovy Engraulis anchoita in the continental shelf habitats (warm and cold). The analysis of the diets of the indicator species of three necktonic assemblages showed that all of them had both pelagic and detritus as primary sources of energy. However, in shallow coastal waters prevailed access to benthic food web key prey. In deeper areas, the Warm shelf assemblage accessed more evenly the epifauna, infauna and the pelagic compartments, while the Cold shelf assemblage was more dependent on planktonic production and had a prevalence of pelagic key prey. Is demonstrated the importance of the identification of key prey, since it may indicate greater or lesser stability of predator populations depending on whether they come from compartments with more or less dynamic primary production processes, including climate-related changes that may affect the predator prey interactions. This study confirmed the prediction that demersal nekton has high disturbance recovery capacity, which may mask for decades the growing impact of fishing.


Subject(s)
Ecosystem , Food Chain , Aquatic Organisms , Brazil , Climate Change , Diet , Fisheries
20.
Pest Manag Sci ; 76(2): 797-806, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31400056

ABSTRACT

BACKGROUND: The green peach aphids, Myzus persicae, are a predominant pest in peach orchards as they can alter fruiting and shoot development for several years. This aphid developed resistance against pesticides. Among the alternative control strategies is the reduction of the trees' attractiveness to aphids. In order to identify the plant variables related to plant susceptibility, young peach trees were submitted to various supplies of water and nitrogen, and then artificially infested with aphids. Shoot development, plant water potential and aphid abundance were then monitored on a weekly basis. The apex concentrations in total N, amino acids, soluble sugars and polyphenols were determined at infestation start and infestation peak. RESULTS: Until infestation peak, the thermal time requests for aphid development were independent of infestation severity. The aphid populations then collapsed more rapidly on the low infested shoots than on the high infested ones. Aphid abundances appeared to be positively related to shoot development (leaf expansion and secondary ramification), to shoot growth (stem length and diameter) and to apex concentrations in amino acids and non-structural carbohydrates (NSC). Polyphenols had the opposite effect. CONCLUSION: Peach susceptibility to aphids depends on shoot development and apex composition, and could be lowered by decreasing the water and nitrogen inputs. © 2019 Society of Chemical Industry.


Subject(s)
Aphids , Prunus persica , Animals , Phenotype , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL