Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.067
Filter
1.
Food Chem ; 462: 140925, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39190981

ABSTRACT

Grape pomace (GP) and pecan shell (PS) are two by-products rich in phenolic compounds (PC), and dietary fiber (DF) that may be considered for the development of functional baked foods. In this study, four formulations with different GP:PS ratios (F1(8%:5%), F2(5%:5%), F3(5%:2%), F4(0%:5%), and control bread (CB)) were elaborated and characterized (physiochemical and phytochemical content). Also, their inner structure (SEM), changes in their FTIR functional group's vibrations, and the bioaccessibility of PC and sugars, including an in vitro glycemic index, were analyzed. Results showed that all GP:PS formulations had higher mineral, protein, DF (total, soluble, and insoluble), and PC content than CB. Additionally, PC and non-starch polysaccharides affected gluten and starch absorbance and pores distribution. In vitro digestion model showed a reduction in the glycemic index for all formulations, compared to CB. These findings highlight the possible health benefits of by-products and their interactions in baked goods.


Subject(s)
Bread , Dietary Fiber , Glycemic Index , Phenols , Vitis , Dietary Fiber/analysis , Dietary Fiber/metabolism , Bread/analysis , Vitis/chemistry , Phenols/chemistry , Phenols/metabolism , Humans , Digestion , Food, Fortified/analysis , Waste Products/analysis
2.
Food Chem ; 462: 140967, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39208726

ABSTRACT

This study examined the impact of live bread yeast (Saccharomyces cerevisiae) on the nutritional characteristics of Asian dried noodles. Micronutrient analysis of fermented noodles revealed a 6.9% increase in the overall amino acid content, a 37.1% increase in the vitamin B content and a 63.0% decrease in the phytic acid level. Molecular weight analysis of starch and protein contents revealed moderate decrease in the fermented noodles. The in vitro digestion of fermented noodles showed a slightly faster initial acidification, four-fold decrease in the initial shear viscosity (from 8.85 to 1.94 Pa·s). The initial large food particle count (>2 mm diameter) was 19.5% lower in the fermented noodles. The fermented noodles contained slightly higher free sugar content (73.5 mg g-1 noodle) during the gastric digestion phase. The overall nutrition and digestion results indicate nutritional improvement and digestion-easing attributes in the fermented noodles.


Subject(s)
Digestion , Fermentation , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Nutrients/metabolism , Nutrients/analysis , Humans , Amino Acids/metabolism , Amino Acids/analysis , Bread/analysis , Bread/microbiology , Models, Biological , China , East Asian People
3.
Int J Biol Macromol ; : 136268, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39366600

ABSTRACT

The study examined the effects of oat ß-glucan (OßG), chitosan (CTS), araboxylan (AX), and fructosan (FOS) on wheat dough formation. Adding 0-7 % OßG, AX, and FOS increased SS content, enhancing gluten stability. D-AX and D-FOS showed higher ß-sheet structures, higher air retention and gluten network, smaller pores and denser structures, higher elastic and viscosity moduli. Excessive OßG and CTS could reduce the dough stability, and ß-turn and ß-sheet ratios, respectively. Therefore, B-7AX and B-7FOS exhibited lower hardness indices during storage, leading to a smoother appearance and more orderly gas chamber distribution. The study provides a theoretical foundation for using non-starch polysaccharides in flour-based products.

4.
J Sci Food Agric ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39229832

ABSTRACT

BACKGROUND: Gluten-free bread (GFB) has technical bottlenecks such as hard texture, rough taste and low nutrition in practical production. In order to solve these problems, this study used germinated brown rice starch as the main raw material, and investigated the effects of soybean isolate protein (SPI) on the multiscale structure of germinated brown rice starch and bread quality. RESULTS: A gluten-free rice bread process simulation system was established, and the interaction between SPI and starch in the simulation system was characterized. The result shows that the interaction forces between SPI and germinated brown rice starch were mainly represented by hydrogen bonds, and with the addition of SPI, the crystallinity of starch showed a downward trend. At the same time, when the amount of SPI was 3%, the appearance quality was the best and the specific volume of bread was 1.08 mL g-1. When the amount of SPI was 6%, the texture quality was the best. Compared with the bread without SPI, the hardness of the bread with 6% SPI was reduced by 0.13 times, the springiness was increased by 0.03 times, the color was the most vibrant, the L* value being 1.02 times the original, and the baking loss was reduced to 0.98 times the original. CONCLUSIONS: The interaction force between SPI and germinated brown rice starch and its effect on bread quality were clarified, and these results inform choices about providing a theoretical basis for the subsequent development of higher-quality GFB. © 2024 Society of Chemical Industry.

5.
Heliyon ; 10(16): e36062, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39229510

ABSTRACT

Wheat is an important crop for food security, providing a source of protein and energy for the growing population in Ethiopia. However, both biotic and abiotic factors limit national wheat productivity. The availability of genetically diverse wheat genotypes is crucial for developing new wheat varieties that are both high-yielding and resilient to stress. Therefore, this field trial aimed to assess phenotypic variation and relationship among ICARDA-derived bread wheat genotypes using multivariate analysis techniques. The trial was conducted at three locations: Enewari, Wogere, and Kulumsa using an alpha lattice design with two replications during the main cropping seasons of 2022 and 2023. Phenotypic data on eight agronomic traits and the severity of yellow rust were collected and R programming was used for data analysis. Individual and combined location data analysis of variance showed significant differences (p ≤ 0.05) among genotypes for most of the studied traits. The highest heritability and genetic advance as a percentage of the mean were observed in days to heading (90.8, 21.29), plant height (72.4, 28.6), seeds per spike (61.7, 28), thousand kernel weight (61.9, 12), and area under the disease progress curve (67, 39.8), suggesting a predominance of additive gene action. Grain yield showed a strong positive correlation with days to maturity, plant height, spike length, spikelet per spike, and thousand kernel weight for each location. Dendrogram and phylogenetic tree methods were used to group genotypes into four genetically distinct clusters. Cluster II and III had the greatest inter-cluster distance, indicating higher diversity among their genotypes. This study identified new candidate genotypes with superior agronomic performance, high grain yield traits, and robust resistance to yellow rust, making them valuable for both current and future wheat breeding programs. Additionally, the comprehensive dataset produced in this study could facilitate the identification of genetic variations influencing desirable traits through genome-wide association analysis.

6.
Food Chem X ; 23: 101754, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39263339

ABSTRACT

This study investigated the effects of incorporating different levels of Euglena gracilis microalgae powder (MP) on the dough properties, rheology, and quality attributes of Chinese steamed bread (CSB) for the first time. Moderate levels of MP (2%) reinforced the gluten network and improved protein structure, while higher levels (4-8%) adversely affected the gluten network and rheological properties. The addition of MP decreased the specific volume, pore number, and pore density of CSB, but increased pore size, hardness, and chewiness. It also imparted a yellow color to the CSB and slowed down moisture loss during storage. Notably, MP effectively increased the protein and lipid content of CSB, enhancing its nutritional value. The results suggest that optimizing the MP level is crucial to achieve nutritional enhancement while maintaining desirable texture and sensory attributes. An addition of 2% MP can strike a balance between nutrition and the overall quality of the final product.

7.
Food Res Int ; 195: 114962, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39277233

ABSTRACT

Konjac glucomannan (KGM), a water-soluble hydrocolloid, holds considerable potential in the food industry, especially for improving the quality and nutritional properties of frozen products. This study explored the alleviative effect of KGM on the quality characteristics, water status, multi-scale structure, and flavor compounds of steamed bread throughout frozen storage. KGM significantly improved the quality of steamed bread by slowing down the decrease in water content and the increase in water migration while maintaining softness and taste during frozen storage. Notably, KGM also delayed amylopectin retrogradation and starch recrystallization, thus preserving the texture and structure of the steamed bread. At week 3, the microstructure of the steamed bread with 1.0 % KGM remained intact, with the lowest free sulfhydryl content. Additionally, heat map analysis revealed that KGM contributed to flavor retention in steamed bread frozen for 3 weeks. These results indicate that KGM holds promise as an effective cryoprotectant for improving the quality of frozen steamed bread.


Subject(s)
Bread , Food Storage , Freezing , Mannans , Taste , Water , Mannans/chemistry , Bread/analysis , Food Storage/methods , Water/chemistry , Steam , Humans , Food Quality
8.
Foods ; 13(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39272444

ABSTRACT

Pursuing enhanced nutritional value in bakery products through technological advancements and new recipes is a promising facet of the food industry. This study focuses on incorporating rice and buckwheat brans, additional raw materials rich in biologically active substances, into bakery products. Utilizing a second-order rotatable plan, optimal ratios were determined-5% rice bran and 10% buckwheat bran. The application of these brans influenced dough and bread quality, reducing sugar content by 5% in dry form and 29% in the fermented brew, potentially aiding in diabetes prevention and cholesterol control. Introducing brans, especially in fermented brew, positively impacted microbiological stability, reducing the risk of mold and potato disease. The developed bread technology using rice and buckwheat brans in fermented brew significantly increased nutritional value, satisfying adult daily protein needs by 31.2%, fats by 15%, and dietary fibers by 18.4%. This innovative approach ensures a sufficient intake of essential vitamins and minerals, showcasing a promising avenue for creating healthier and more nutritious bakery products.

9.
Foods ; 13(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39272464

ABSTRACT

This study investigated the effects of incorporating sprouted chickpeas, at a 25% enrichment level, into bread production as either grits (90% of particles ≥500 µm) or flour (90% of particles ≤250 µm). The focus was to investigate the role of particle size on dough and bread. In addition to the functional, mixing and pasting properties of ingredients, gluten aggregation, mixing, extensional, leavening, and pasting properties of the blends were assessed during bread-making, as well as bread volume and texture. Chickpea particle size influenced water absorption capacity (1.8 for grits vs. 0.75 g/g for flour) and viscosity (245 for grits vs. 88 BU for flour), with flour showing a greater decrease in both properties. With regard to dough properties, dough development time (16.6 vs. 5.3 min), stability (14.6 vs. 4.6 min), and resistance to extension (319 vs. 235 BU) was higher, whereas extensibility was lower (105 vs. 152 mm) with grits, compared to flour. During bread-making, grits resulted in a higher specific volume (2.5 vs. 2.1 mL/g) and softer crumb (6.2 vs. 17.4 N) at all the considered storage times. In conclusion, sprouted chickpea grits can be effectively used as a new ingredient in bread-making favouring the consumption of chickpea, without compromising product quality.

10.
Foods ; 13(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39272471

ABSTRACT

The current investigation focuses on the effect of different concentrations of green coffee bean powder (GCBp) on the physicochemical, microbiological, and sensory characteristics of whole wheat bread (WWB). C1 bread formulation (containing 1% GCBp) exhibited the highest loaf volume, suggesting optimal fermentation. Moisture analysis revealed minor alterations in the moisture retention attributes of the bread formulations. Impedance analysis suggested that C1 exhibited the highest impedance with a high degree of material homogeneity. Swelling studies suggested similar swelling properties, except C5 (containing 5% GCBp), which showed the lowest swelling percentage. Furthermore, color and microcolor analysis revealed the highest L* and WI in C1. Conversely, higher concentrations of GCBp reduced the color attributes in other GCBp-containing formulations. FTIR study demonstrated an improved intermolecular interaction in C1 and C2 (containing 2% GCBp) among all. No significant variation in the overall textural parameters was observed in GCBp-introduced formulations, except C2, which showed an improved gumminess. Moreover, the TPC (total phenolic content) and microbial analysis revealed enhanced antioxidant and antimicrobial properties in GCBp-incorporated formulations compared to Control (C0, without GCBp). The sensory evaluation showed an enhanced appearance and aroma in C1 compared to others. In short, C1 showed better physicochemical, biological, and sensory properties than the other formulations.

11.
Foods ; 13(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39272477

ABSTRACT

The use of inulin in food is highly appreciated by consumers because of its prebiotic effect. In this study, the effects of increasing additions (5, 10 and 20%) of inulin as a substitute for wheat flour in bread production were investigated with regard to the physical, technological and rheological properties of the flour blends. Inulin reduced the water-binding capacity from 1.4 g/100 g with 0 flour to 0.80 g/100 g with the 20% inulin addition, while there were no statistical differences in the oil-binding capacity. The addition of inulin also influenced the yeast rates, especially in the samples with 5 and 10% addition. On the farinograph, inulin caused a reduction in water absorption (40.75 g/100 g with 20% inulin), an increase in dough development time (18.35 min with 10% inulin) and dough stability (13.10 min with 10% inulin). The mixograph showed a longer kneading time for the sample with 20% inulin (8.70 min) than for the control (4.61 min). In addition, there was an increase in dough firmness and tightness due to the addition of inulin (W: 203 × 10-4 J; P/L: 4.55 for the 20% inulin sample) compared with the control. The physical and technological properties of the loaves were evaluated at time 0 and after 4 days (T4). The addition of inulin reduced the volume of the bread while increasing the weight, albeit with a weight loss at T4 (compared to T0) of 4.8% for the 20% inulin and 14.7% for the control. The addition of inulin caused a darkening of the crust of the enriched bread, proportional to the increase in inulin content. In addition, the inulin content ranged from 0.82 g/100 g in the control to 14.42 g/100 g in the 20% inulin bread, while the predicted glycemic index ranged from 94.52 in the control to 89.39 in the 20% inulin bread. The available data suggest that the formulation with 5% inulin provides the highest performance.

12.
Foods ; 13(17)2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39272619

ABSTRACT

The effects of replacing 5-25% of wheat flour (WF) with Taiwanese cocoa bean shells (CBSs) on the physicochemical, antioxidant, starch digestion, and sensory properties of the bread were studied. The lead (0.18) and cadmium (0.77) contents (mg/kg) of the CBSs were below the Codex Alimentarius specifications for cocoa powder. Ochratoxin A and aflatoxins (B1, B2, G1, and G2) were not detected in the CBSs. The CBSs were rich in dietary fiber (42.9%) and bioactive components and showed good antioxidant capacity. The ash, fat, protein, dietary fiber, crumb a* and c*, hardness, chewiness, total phenols, and antioxidant activities of the bread increased with an increasing CBSs level. The starch hydrolysis rate (45.1-36.49%) of the CBS breads at 180 min was lower than that of the control (49.6%). The predicted glycemic index of the bread (CBS20 and CBS25) with 20-25% of the WF replaced with CBSs was classified as a medium-GI food using white bread as a reference. In the nine-point hedonic test, the overall preference scores were highest for control (6.8) and CBS breads, where CBSs replaced 5-10% of WF, with scores of 7.2 and 6.7. CBS20 supplemented with an additional 20-30% water improved its volume, specific volume, and staling rate, but the overall liking score (6.5-7.2) was not significantly different from the control (p > 0.05). Overall, partially replacing wheat flour with CBSs in the production of baked bread can result in a new medium-GI value food containing more dietary fiber, bioactive compounds, and enhanced antioxidant capacity.

13.
Foods ; 13(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39272622

ABSTRACT

The effects of single- (Lactobacillus fermentum) or mixed-strain (Lactobacillus fermentum, Kluyveromyces marxianus) fermentation of red bean with or without wheat bran on sourdough bread quality and nutritional aspects were investigated. The results showed that, compared to unfermented controls, the tannins, phytic acid, and trypsin inhibitor levels were significantly reduced, whereas the phytochemical (TPC, TFC, and gallic acid) and soluble dietary fiber were increased in sourdough. Meanwhile, more outstanding changes were obtained in sourdough following a mixed-strain than single-strain fermentation, which might be associated with its corresponding ß-glucosidase, feruloyl esterase, and phytase activities. An increased specific volume, reduced crumb firmness, and greater sensory evaluation of bread was achieved after mixed-strain fermentation. Moreover, diets containing sourdough, especially those prepared with mixed-strain-fermented red bean with wheat bran, significantly decreased serum pro-inflammatory cytokines levels, and improved the lipid profile, HDL/LDL ratio, glucose tolerance, and insulin sensitivity of mice. Moreover, gut microbiota diversity increased towards beneficial genera (e.g., Bifidobacterium), accompanied with a greater increase in short-chain fatty acid production in mice fed on sourdough-based bread diets compared to their controls and white bread. In conclusion, mixed-strain fermentation's synergistic effect on high fiber-legume substrate improved the baking, sensory quality, and prebiotic effect of bread, leading to potential health benefits in mice.

14.
Curr Dev Nutr ; 8(9): 104430, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39279786

ABSTRACT

Background: Sufficient dietary fiber consumption is associated with well-established health benefits, yet such intake is currently suboptimal globally. Thus, there is interest in developing strategies to improve dietary fiber intake. One such approach is to increase the dietary fiber content of staple foods, but this needs relevant investigation. Methods: Forty-two United Kingdom (UK) based consumers (18-76 y) were recruited to take part in seven focus group sessions investigating: (i) key factors in food choice; (ii) dietary fiber-related knowledge, awareness, consumption habits, and engagement levels; (iii) willingness to consume dietary fiber-rich staple foods; and (iv) gain initial feedback on dietary fiber-rich breads. Results: Overall, key dietary fiber themes emerged such as knowledge (benefits, foods, recommendations and labeling), consumption (not measuring intake), barriers (convenience and knowledge), resources (education and public appeal), and topics (food examples and cooking). Consumers were positive per se to the idea of dietary fiber-rich staple foods but with various caveats (no changes in appearance, taste, and cost). White bread trends were centered around context (sandwich and toast), habit (comfort food), preferences (soft and fresh), and consumption is variable (daily to less often). In addition, consumers' preferred labeling strategy for dietary fiber-rich breads was predominately focused on transparency and visibility. Overall, the newly developed breads were well received demonstrating the potential of our prototypes to fit into the white bread market; however, additional consumer insights are needed. Conclusion: Our findings recommend combining education with a personalized element of advice, coupled with a collective effort from the government and food industry, as essential to help encourage a step-change in dietary fiber consumption in the UK population.

15.
Compr Rev Food Sci Food Saf ; 23(5): e13411, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39245919

ABSTRACT

Although bread is the principal food in most countries, polycyclic aromatic hydrocarbons (PAHs) may be present and pose a potential risk to consumers. The aim of this review is to provide a comprehensive report on the concentration and health risks associated with PAHs in bread around the world. Various databases, such as Scopus, PubMed, Science Direct, and Google Scholar, were searched from their beginnings until December 2023 for this systematic review, which included 34 potentially relevant articles with data relating to 1057 bread samples. Utilizing a multilevel regression modeling approach, the study evaluated various factors such as fuel type, bread type, and geographical location. Following the initial evaluation, in 26.47% and 20.28% of all studies, the levels of Bap and PAH4 were higher than the permissible limit values, respectively. Based on the isomer ratios, 55.88% of the studies associated the presence of PAHs in bread samples with pyrogenic/coal combustion sources. According to the carcinogenic risk results, bread consumers in all studies have been exposed to moderate or high levels of carcinogenicity. The most significant risk levels are associated with the consumption of bread in Egypt, Kuwait, Iran, and India. Moreover, meta-regression analysis demonstrated significantly higher toxicity equivalent quotient and cancer risk mean values in bread baked using fossil fuels compared to other sources (p < .05). The high concentrations of PAHs, especially Benzo[a]pyrene, in bread pose a serious public health risk. Stringent regulations and monitoring are crucial to reduce contamination. Further research is necessary to develop safe processing methods to remove PAHs in bread.


Subject(s)
Bread , Food Contamination , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Bread/analysis , Risk Assessment , Humans , Food Contamination/analysis
16.
PeerJ ; 12: e18136, 2024.
Article in English | MEDLINE | ID: mdl-39346035

ABSTRACT

The most important step in plant breeding is the correct selection of parents, and it would be wise to use heterotic groups for this. The purpose of this study is to analyse yield and its components as well as genetic diversity in line × tester wheat populations. It also seeks to present a coherent framework for the isolation of early superior families and the development of heterotic groups in bread wheat. F1 and F2 generations of 51 genotypes, including 36 combinations between 12 lines and three testers and 15 parents, were evaluated for yield and its components in a three-replication experiment according to the randomized block design. Line ×  tester analysis of variance, general and specific combining abilities, heterosis, heterobeltiosis and inbreeding depression were calculated. Heterotic groups created based on general and specific combining abilities were compared with each other. The results showed that there was sufficient genetic variation in the population and that further genetic calculations could be made. The selections made based on general and specific combining abilities, heterosis values and average performance of genotypes without heterotic grouping indicated different genotypes for each feature. The creation of heterotic groups made it possible to select genotypes that were superior in terms of all the criteria listed. It was concluded that heterotic groups created based on specific combining abilities may be more useful for breeding studies.


Subject(s)
Genetic Variation , Genotype , Hybrid Vigor , Plant Breeding , Triticum , Triticum/genetics , Hybrid Vigor/genetics , Plant Breeding/methods , Genetic Variation/genetics , Hybridization, Genetic
17.
Plants (Basel) ; 13(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39339597

ABSTRACT

This study evaluated 290 recombinant inbred lines (RILs) of the nested association mapping (NAM) population from the UK. The population derived from 24 families, where a common parent was "Paragon," one of the UK's spring wheat cultivar standards. All genotypes were tested in two regions of Kazakhstan at the Kazakh Research Institute of Agriculture and Plant Industry (KRIAPI, Almaty region, Southeast Kazakhstan, 2019-2022 years) and Alexandr Barayev Scientific-Production Center for Grain Farming (SPCGF, Shortandy, Akmola region, Northern Kazakhstan, 2019-2022 years). The studied traits consisted of plant adaptation-related traits, including heading date (HD, days), seed maturation date (SMD, days), plant height (PH, cm), and peduncle length (PL, cm). In addition, the yield per m2 was analyzed in both regions. Based on a field evaluation of the population in northern and southeastern Kazakhstan and using 10,448 polymorphic SNP (single-nucleotide polymorphism) markers, the genome-wide association study (GWAS) allowed for detecting 74 QTLs in four studied agronomic traits (HD, SMD, PH, and PL). The literature survey suggested that 16 of the 74 QTLs identified in our study had also been detected in previous QTL mapping studies and GWASs for all studied traits. The results will be used for further studies related to the adaptation and productivity of wheat in breeding projects for higher grain productivity.

18.
Foods ; 13(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39335791

ABSTRACT

Fava beans, renowned for their nutritional value and sustainable cultivation, are pivotal in various food applications. This study examined the implications of varying the particle size on the functional, physicochemical, and in vitro digestibility properties of fava bean flour. Fava bean was milled into 0.14, 0.50, and 1.0 mm particle sizes using a Ferkar multipurpose knife mill. Physicochemical analyses showed that the 0.14 mm flour had more starch damage, but higher protein and fat contents. Functionality assessments revealed that the finer particle sizes had better foaming properties, swelling power, and gelation behavior than the coarse particle size. Emulsion capacity showed that for all the pH conditions, 1.00 mm particle size flour had a significantly higher (p < 0.05) oil droplet size, while the 0.5 and 0.14 mm flours had smaller and similar oil droplet sizes. Moreover, in vitro digestibility assays resulted in improved starch digestion (p ˂ 0.05) with the increase in flour particle size. Varying the particle size of fava bean flour had less impact on the in vitro digestibility of the bread produced from wheat-fava bean composite flour, with an average of 84%. The findings underscore the critical role of particle size in tailoring fava bean flour for specific culinary purposes and nutritional considerations.

19.
Foods ; 13(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39335838

ABSTRACT

The objective of this study was to explore how watermelon rinds (WMRs) and their derivatives, specifically water-soluble polysaccharides (WMRPs) and hemicellulose (WMRH), as sources of dietary fiber, could enhance the quality of wheat bread. The extraction process yielded 34.4% for WMRP and 8.22% for WMRH. WMR, WMRP, and WMRH exhibited promising functional characteristics and were incorporated separately into wheat flour with low bread-making quality (FLBM) at varying proportions (0.5%, 1%, and 1.5% (w/w)). The volume, texture, and crust and crumb color underwent evaluation and were compared to the control. The findings indicated that incorporating WMR notably enhanced the alveograph profile of the dough, demonstrating a more effective impact than the addition of WMRP and WMRH. Adding WMR, WMRP, and WMRH at a 1% concentration to low-quality wheat flour for bread making increased the deformation work values by 16%, 15%, and 13%, respectively, and raised the P/L ratios by 42%, 36%, and 38%, respectively. Additionally, the assessment of the bread highlighted a substantial enhancement in both volume and texture profile when WMR was added, in contrast to the control bread (made with FLBM). These findings underscore that incorporating 1% WMR into FLBM was the most effective means of improving bread quality based on the results of this study.

20.
Foods ; 13(18)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39335943

ABSTRACT

Bread can vary in textural and nutritional attributes based on differences in the bread making process (e.g., flour type, fermentation agent, fermentation time). Four bread recipes (BRs) made with sourdough preferments (BR1, white flour; BR2, whole grain flour) or regular yeast breads (BR3, white flour; BR4, whole grain flour) were evaluated for texture, digestibility, and their effect on the metabolic activity and composition of the gut microbiota using texture profile analysis (TPA) coupled with in vitro upper gastrointestinal (GIT) digestion and colonic fermentation (Colon-on-a-plate™ model), using fecal samples from eight healthy human donors. TPA revealed significantly higher values for hardness, fracturability, gumminess, and chewiness, and significantly lower values for springiness, cohesiveness, and resilience with whole grain versus white breads (all p < 0.001); values for springiness, cohesiveness, and resilience were significantly higher for sourdough versus yeast bread (p < 0.001). Nutrient composition and bioaccessibility were generally comparable between sourdough and yeast bread with similar flours. Following simulation of upper GIT digestion, all BRs demonstrated good digestibility of minerals, carbohydrates, and proteins. Colonic fermentation revealed changes in gut microbiota composition, significant increases in short-chain fatty acids, and a significant decrease in branched short-chain fatty acids with all BRs versus a blank. Overall, new insights into wheat bread digestibility and colonic fermentation were provided, which are important aspects to fully characterize bread nutritional profile and potential.

SELECTION OF CITATIONS
SEARCH DETAIL