Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Biol Chem ; 300(7): 107478, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38879009

ABSTRACT

Antigenically sequence variable M proteins of the major bacterial pathogen Streptococcus pyogenes (Strep A) are responsible for recruiting human C4b-binding protein (C4BP) to the bacterial surface, which enables Strep A to evade destruction by the immune system. The most sequence divergent portion of M proteins, the hypervariable region (HVR), is responsible for binding C4BP. Structural evidence points to the conservation of two C4BP-binding sequence patterns (M2 and M22) in the HVR of numerous M proteins, with this conservation applicable to vaccine immunogen design. These two patterns, however, only partially explain C4BP binding by Strep A. Here, we identified several M proteins that lack these patterns but still bind C4BP and determined the structures of two, M68 and M87 HVRs, in complex with a C4BP fragment. Mutagenesis of these M proteins led to the identification of amino acids that are crucial for C4BP binding, enabling formulation of new C4BP-binding patterns. Mutagenesis was also carried out on M2 and M22 proteins to refine or generate experimentally grounded C4BP-binding patterns. The M22 pattern was the most prevalent among M proteins, followed by the M87 and M2 patterns, while the M68 pattern was rare. These patterns, except for M68, were also evident in numerous M-like Enn proteins. Binding of C4BP via these patterns to Enn proteins was verified. We conclude that C4BP-binding patterns occur frequently in Strep A strains of differing M types, being present in their M or Enn proteins, or frequently both, providing further impetus for their use as vaccine immunogens.


Subject(s)
Antigens, Bacterial , Complement C4b-Binding Protein , Streptococcus pyogenes , Streptococcus pyogenes/metabolism , Streptococcus pyogenes/genetics , Streptococcus pyogenes/chemistry , Complement C4b-Binding Protein/metabolism , Antigens, Bacterial/metabolism , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Humans , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/chemistry , Protein Binding , Amino Acid Sequence , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics
2.
Viruses ; 15(6)2023 05 29.
Article in English | MEDLINE | ID: mdl-37376569

ABSTRACT

The complement system is a key component of the innate immune response to viruses and proinflammatory events. Exaggerated complement activation has been attributed to the induction of a cytokine storm in severe SARS-CoV-2 infection. However, there is also an argument for the protective role of complement proteins, given their local synthesis or activation at the site of viral infection. This study investigated the complement activation-independent role of C1q and C4b-binding protein (C4BP) against SARS-CoV-2 infection. The interactions of C1q, its recombinant globular heads, and C4BP with the SARS-CoV-2 spike and receptor binding domain (RBD) were examined using direct ELISA. In addition, RT-qPCR was used to evaluate the modulatory effect of these complement proteins on the SARS-CoV-2-mediated immune response. Cell binding and luciferase-based viral entry assays were utilised to assess the effects of C1q, its recombinant globular heads, and C4BP on SARS-CoV-2 cell entry. C1q and C4BP bound directly to SARS-CoV-2 pseudotype particles via the RBD domain of the spike protein. C1q via its globular heads and C4BP were found to reduce binding as well as viral transduction of SARS-CoV-2 spike protein expressing lentiviral pseudotypes into transfected A549 cells expressing human ACE2 and TMPRSS2. Furthermore, the treatment of the SARS-CoV-2 spike, envelope, nucleoprotein, and membrane protein expressing alphaviral pseudotypes with C1q, its recombinant globular heads, or C4BP triggered a reduction in mRNA levels of proinflammatory cytokines and chemokines such as IL-1ß, IL-8, IL-6, TNF-α, IFN-α, and RANTES (as well as NF-κB) in A549 cells expressing human ACE2 and TMPRSS2. In addition, C1q and C4BP treatment also reduced SARS-CoV-2 pseudotype infection-mediated NF-κB activation in A549 cells expressing human ACE2 and TMPRSS2. C1q and C4BP are synthesised primarily by hepatocytes; however, they are also produced by macrophages, and alveolar type II cells, respectively, locally at the pulmonary site. These findings support the notion that the locally produced C1q and C4BP can be protective against SARS-CoV-2 infection in a complement activation-independent manner, offering immune resistance by inhibiting virus binding to target host cells and attenuating the infection-associated inflammatory response.


Subject(s)
COVID-19 , Complement C4b-Binding Protein , Humans , Complement C4b-Binding Protein/chemistry , Complement C4b-Binding Protein/metabolism , Complement C1q/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , NF-kappa B/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Complement Activation , Complement System Proteins/metabolism , Protein Binding
3.
J Biol Chem ; 299(8): 104980, 2023 08.
Article in English | MEDLINE | ID: mdl-37390991

ABSTRACT

Coiled coil-forming M proteins of the widespread and potentially deadly bacterial pathogen Streptococcus pyogenes (strep A) are immunodominant targets of opsonizing antibodies. However, antigenic sequence variability of M proteins into >220 M types, as defined by their hypervariable regions (HVRs), is considered to limit M proteins as vaccine immunogens because of type specificity in the antibody response. Surprisingly, a multi-HVR immunogen in clinical vaccine trials was shown to elicit M-type crossreactivity. The basis for this crossreactivity is unknown but may be due in part to antibody recognition of a 3D pattern conserved in many M protein HVRs that confers binding to human complement C4b-binding protein (C4BP). To test this hypothesis, we investigated whether a single M protein immunogen carrying the 3D pattern would elicit crossreactivity against other M types carrying the 3D pattern. We found that a 34-amino acid sequence of S. pyogenes M2 protein bearing the 3D pattern retained full C4BP-binding capacity when fused to a coiled coil-stabilizing sequence from the protein GCN4. We show that this immunogen, called M2G, elicited cross-reactive antibodies against a number of M types that carry the 3D pattern but not against those that lack the 3D pattern. We further show that the M2G antiserum-recognized M proteins displayed natively on the strep A surface and promoted the opsonophagocytic killing of strep A strains expressing these M proteins. As C4BP binding is a conserved virulence trait of strep A, we propose that targeting the 3D pattern may prove advantageous in vaccine design.


Subject(s)
Antigens, Bacterial , Bacterial Outer Membrane Proteins , Carrier Proteins , Streptococcus pyogenes , Humans , Antigens, Bacterial/chemistry , Antigens, Bacterial/immunology , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/immunology , Carrier Proteins/chemistry , Carrier Proteins/immunology , Protein Binding , Streptococcus pyogenes/immunology , Cross Reactions
4.
Front Immunol ; 14: 1149822, 2023.
Article in English | MEDLINE | ID: mdl-37283747

ABSTRACT

Dysregulated NLRP3 inflammasome activation drives a wide variety of diseases, while endogenous inhibition of this pathway is poorly characterised. The serum protein C4b-binding protein (C4BP) is a well-established inhibitor of complement with emerging functions as an endogenously expressed inhibitor of the NLRP3 inflammasome signalling pathway. Here, we identified that C4BP purified from human plasma is an inhibitor of crystalline- (monosodium urate, MSU) and particulate-induced (silica) NLRP3 inflammasome activation. Using a C4BP mutant panel, we identified that C4BP bound these particles via specific protein domains located on the C4BP α-chain. Plasma-purified C4BP was internalised into MSU- or silica-stimulated human primary macrophages, and inhibited MSU- or silica-induced inflammasome complex assembly and IL-1ß cytokine secretion. While internalised C4BP in MSU or silica-stimulated human macrophages was in close proximity to the inflammasome adaptor protein ASC, C4BP had no direct effect on ASC polymerisation in in vitro assays. C4BP was also protective against MSU- and silica-induced lysosomal membrane damage. We further provide evidence for an anti-inflammatory function for C4BP in vivo, as C4bp-/- mice showed an elevated pro-inflammatory state following intraperitoneal delivery of MSU. Therefore, internalised C4BP is an inhibitor of crystal- or particle-induced inflammasome responses in human primary macrophages, while murine C4BP protects against an enhanced inflammatory state in vivo. Our data suggests C4BP has important functions in retaining tissue homeostasis in both human and mice as an endogenous serum inhibitor of particulate-stimulated inflammasome activation.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Humans , Mice , Complement C4b-Binding Protein/metabolism , Inflammasomes/metabolism , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Silicon Dioxide/pharmacology
5.
Biochem Biophys Rep ; 33: 101434, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36748063

ABSTRACT

Coronary heart disease leading to myocardial ischemia is a major cause of heart failure. A hallmark of heart failure is myocardial fibrosis. Using a murine model of myocardial ischemia/reperfusion injury (IRI), we showed that, following IRI, in mice genetically deficient in the central factor of complement system, C3, myocardial necrosis was reduced compared with WT mice. Four weeks after the ischemic period, the C3-/- mice had significantly less cardiac fibrosis and better cardiac function than the WT controls. Overall, our results suggest that innate immune response through complement C3 plays an important role in necrotic cell death, which contributes to the cardiac fibrosis that underlies post-infarction heart failure.

6.
Foods ; 12(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36832782

ABSTRACT

In this study, an electrochemiluminescence (ECL) immunosensor based on nanobody heptamer and resonance energy transfer (RET) between g-C3N4 (g-CN) and NU-1000(Zr) was proposed for ultrasensitive ochratoxin A (OTA) detection. First, OTA heptamer fusion protein was prepared by fusing OTA-specific nanometric (Nb28) with a c-terminal fragment of C4 binding protein (C4bpα) (Nb28-C4bpα). Then, Nb28-C4bpα heptamer with the high affinity used as a molecular recognition probe, of which plenty of binding sites were provided for OTA-Apt-NU-1000(Zr) nanocomposites, thereby improving the immunosensors' sensitivity. In addition, the quantitative analysis of OTA can be achieved by using the signal quenching effect of NU-1000(Zr) on g-CN. As the concentration of OTA increases, the amount of OTA-Apt-NU-1000(Zr) fixed on the electrode surface decreases. RET between g-CN and NU-1000(Zr) is weakened leading to the increase of ECL signal. Thus, OTA content is indirectly proportional to ECL intensity. Based on the above principle, an ultra-sensitive and specific ECL immunosensor for OTA detection was constructed by using heptamer technology and RET between two nanomaterials, with a range from 0.1 pg/mL to 500 ng/mL, and the detection limit of only 33 fg/mL. The prepared ECL-RET immunosensor showed good performance and can be successfully used for the determination of OTA content in real coffee samples, suggesting that the nanobody polymerization strategy and the RET effect between NU-1000(Zr) and g-CN can provide an alternative for improving the sensitivity of important mycotoxin detection.

7.
Semin Immunopathol ; 43(6): 829-841, 2021 12.
Article in English | MEDLINE | ID: mdl-34159399

ABSTRACT

We are currently experiencing an enduring global epidemic of obesity and diabetes. It is now understood that chronic low-grade tissue inflammation plays an important role in metabolic disease, brought upon by increased uptake of a so-called Western diet, and a more sedentary lifestyle. Many evolutionarily conserved links exist between metabolism and the immune system, and an imbalance in this system induced by chronic over-nutrition has been termed 'metaflammation'. The complement system is an important and evolutionarily ancient part of innate immunity, but recent work has revealed that complement not only is involved in the recognition of pathogens and induction of inflammation, but also plays important roles in cellular and tissue homeostasis. Complement can therefore contribute both positively and negatively to metabolic control, depending on the nature and anatomical site of its activity. This review will therefore focus on the interactions of complement with mechanisms and tissues relevant for metabolic control, obesity and diabetes.


Subject(s)
Metabolic Diseases , Complement System Proteins , Humans , Immunity, Innate , Inflammation/metabolism , Metabolic Diseases/etiology , Obesity/metabolism
8.
Front Cell Infect Microbiol ; 11: 634610, 2021.
Article in English | MEDLINE | ID: mdl-33692968

ABSTRACT

The infection competence of the protozoan pathogen Toxoplasma gondii is critically dependent on the parasite's ability to inactivate the host complement system. Toxoplasma actively resists complement-mediated killing in non-immune serum by recruiting host-derived complement regulatory proteins C4BP and Factor H (FH) to the parasite surface to inactivate surface-bound C3 and limit formation of the C5b-9 membrane attack complex (MAC). While decreased complement activation on the parasite surface certainly protects Toxoplasma from immediate lysis, the biological effector functions of C3 split products C3b and C3a are maintained, which includes opsonization of the parasite for phagocytosis and potent immunomodulatory effects that promote pro-inflammatory responses and alters mucosal defenses during infection, respectively. In this review, we discuss how complement regulation by Toxoplasma controls parasite burden systemically but drives exacerbated immune responses locally in the gut of genetically susceptible C57BL/6J mice. In effect, Toxoplasma has evolved to strike a balance with the complement system, by inactivating complement to protect the parasite from immediate serum killing, it generates sufficient C3 catabolites that signal through their cognate receptors to stimulate protective immunity. This regulation ultimately controls tachyzoite proliferation and promotes host survival, parasite persistence, and transmissibility to new hosts.


Subject(s)
Toxoplasma , Toxoplasmosis , Animals , Complement Factor H , Complement System Proteins , Mice , Mice, Inbred C57BL
9.
Matrix Biol Plus ; 6-7: 100020, 2020 May.
Article in English | MEDLINE | ID: mdl-33543018

ABSTRACT

Streptococcus pyogenes is a major human pathogen that causes a variety of diseases ranging from mild skin and throat infections to fatal septicemia. In severe invasive infections, S. pyogenes encounters and interacts with components of the extracellular matrix (ECM), including small leucine rich-proteoglycans (SLRPs). In this study, we report a novel antimicrobial role played by SLRPs biglycan, decorin, fibromodulin and osteoadherin, specifically in promoting the eradication of S. pyogenes in a human sepsis model of infection. SLRPs can be released from the ECM and de novo synthesized by a number of cell types. We reveal that infection of human monocytes by S. pyogenes induces the expression of decorin. Furthermore, we show that the majority of genetically distinct and clinically relevant S. pyogenes isolates interact with SLRPs resulting in decreased survival in blood killing assays. Biglycan and decorin induce TLR2 and TLR4 signaling cascades resulting in secretion of proinflammatory and chemotactic molecules and recruitment of professional phagocytes. Surprisingly, SLRP-mediated elimination of S. pyogenes occurs independently of TLR activation. Our results indicate that SLRPs act in concert with human serum, enhancing deposition of complement activation fragments and the classical activator C1q on the bacterial surface, facilitating efficient microbial eradication. Addition of the complement C3 inhibitor compstatin significantly reverses SLRP-induced blood killing, confirming active complement as a key mediator in SLRP-mediated bacterial destruction. Taken together our results add to the functional repertoire of SLRPs, expanding to encompass their role in controlling bacterial infection.

10.
Front Immunol ; 11: 585361, 2020.
Article in English | MEDLINE | ID: mdl-33488586

ABSTRACT

C4b Binding Protein (C4BP) is a major fluid phase inhibitor of the classical and lectin pathways of the complement system. Complement inhibition is achieved by binding to and restricting the role of activated complement component C4b. C4BP functions as a co-factor for factor I in proteolytic inactivation of both soluble and cell surface-bound C4b, thus restricting the formation of the C3-convertase, C4b2a. C4BP also accelerates the natural decay/dissociation of the C3 convertase. This makes C4BP a prime target for exploitation by pathogens to escape complement attack, as seen in Streptococcus pyogenes or Flavivirus. Here, we examined whether C4BP can act on its own in a complement independent manner, against pathogens. C4BP bound H1N1 and H3N2 subtypes of Influenza A Virus (IAV) most likely via multiple sites in Complement Control Protein (CCP) 1-2, 4-5, and 7-8 domains of its α-chain. In addition, C4BP CCP1-2 bound H3N2 better than H1N1. C4BP bound three IAV envelope proteins: Haemagglutinin (~70 kDa), Neuraminidase (~55 kDa), and Matrix protein 1 (~25kDa). C4BP suppressed H1N1 subtype infection into the lung epithelial cell line, A549, while it promoted infection by H3N2 subtype. C4BP restricted viral entry for H1N1 but had the opposite effect on H3N2, as evident from experiments using pseudo-typed viral particles. C4BP downregulated mRNA levels of pro-inflammatory IFN-α, IL-12, and NFκB in the case of H1N1, while it promoted a pro-inflammatory immune response by upregulating IFN- α, TNF-α, RANTES, and IL-6 in the case of H3N2. We conclude that C4BP differentially modulates the efficacy of IAV entry, and hence, replication in a target cell in a strain-dependent manner, and acts as an entry inhibitor for H1N1. Thus, CCP containing complement proteins such as factor H and C4BP may have additional defense roles against IAV that do not rely on the regulation of complement activation.


Subject(s)
Complement C4b-Binding Protein/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/immunology , Virus Internalization , A549 Cells , Complement C4b-Binding Protein/metabolism , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/metabolism
11.
Mol Oncol ; 13(12): 2531-2553, 2019 12.
Article in English | MEDLINE | ID: mdl-31365168

ABSTRACT

Directing selective complement activation towards tumour cells is an attractive strategy to promote their elimination. In the present work, we have generated heteromultimeric immunoconjugates that selectively activate the complement alternative pathway (AP) on tumour cells. We used the C4b-binding protein C-terminal-α-/ß-chain scaffold for multimerisation to generate heteromultimeric immunoconjugates displaying (a) a multivalent-positive regulator of the AP, the human factor H-related protein 4 (FHR4) with; (b) a multivalent targeting function directed against erbB2 (HER2); and (c) a monovalent enhanced GFP tracking function. Two distinct VH H targeting two different epitopes against HER2 and competing either with trastuzumab or with pertuzumab-recognising epitopes [VH H(T) or VH H(P)], respectively, were used as HER2 anchoring moieties. Optimised high-FHR4 valence heteromultimeric immunoconjugates [FHR4/VH H(T) or FHR4/VH H(P)] were selected by sequential cell cloning and a selective multistep His-Trap purification. Optimised FHR4-heteromultimeric immunoconjugates successfully overcame FH-mediated complement inhibition threshold, causing increased C3b deposition on SK-OV-3, BT474 and SK-BR3 tumour cells, and increased formation of lytic membrane attack complex densities and complement-dependent cytotoxicity (CDC). CDC varies according to the pattern expression and densities of membrane-anchored complement regulatory proteins on tumour cell surfaces. In addition, opsonised BT474 tumour cells were efficiently phagocytosed by macrophages through complement-dependent cell-mediated cytotoxicity. We showed that the degree of FHR4-multivalency within the multimeric immunoconjugates was the key element to efficiently compete and deregulate FH and FH-mediated convertase decay locally on tumour cell surface. FHR4 can thus represent a novel therapeutic molecule, when expressed as a multimeric entity and associated with an anchoring system, to locally shift the complement steady-state towards activation on tumour cell surface.


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents, Immunological , Apolipoproteins/immunology , Complement Activation/drug effects , Complement Membrane Attack Complex/immunology , Immunoconjugates , Neoplasms , Receptor, ErbB-2 , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Antineoplastic Agents, Immunological/immunology , Antineoplastic Agents, Immunological/pharmacology , Apolipoproteins/antagonists & inhibitors , Cell Line, Tumor , Complement Activation/immunology , HEK293 Cells , Humans , Immunoconjugates/immunology , Immunoconjugates/pharmacology , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/immunology
12.
Front Immunol ; 9: 1945, 2018.
Article in English | MEDLINE | ID: mdl-30210498

ABSTRACT

The complement system is a tightly regulated network of proteins involved in defense against pathogens, inflammatory processes, and coordination of the innate and adaptive immune responses. Dysregulation of the complement cascade is associated with many inflammatory disorders. Thus, inhibition of the complement system has emerged as an option for treatment of a range of different inflammatory diseases. MAP-1 is a pattern recognition molecule (PRM)-associated inhibitor of the lectin pathway of the complement system, whereas C4b-binding protein (C4BP) regulates both the classical and lectin pathways. In this study we generated chimeric proteins consisting of MAP-1 and the first five domains of human C4BP (C4BP1-5) in order to develop a targeted inhibitor acting at different levels of the complement cascade. Two different constructs were designed and expressed in CHO cells where MAP-1 was fused with C4BP1-5 in either the C- or N-terminus. The functionality of the chimeric proteins was assessed using different in vitro complement activation assays. Both chimeric proteins displayed the characteristic Ca2+-dependent dimerization and binding to PRMs of native MAP-1, as well as the co-factor activity of native C4BP. In ELISA-based complement activation assays they could effectively inhibit the lectin and classical pathways. Notably, MAP-1:C4BP1-5 was five times more effective than rMAP-1 and rC4BP1-5 applied at the same time, emphasizing the advantage of a single inhibitor containing both functional domains. The MAP-1/C4BP chimeras exert unique complement inhibitory properties and represent a novel therapeutic approach targeting both upstream and central complement activation.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Complement C4b-Binding Protein , Complement Pathway, Mannose-Binding Lectin/immunology , Recombinant Fusion Proteins , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Animals , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/immunology , CHO Cells , Complement C4b-Binding Protein/chemistry , Complement C4b-Binding Protein/genetics , Complement C4b-Binding Protein/immunology , Cricetulus , Enzyme-Linked Immunosorbent Assay , Humans
13.
J Infect ; 77(3): 191-204, 2018 09.
Article in English | MEDLINE | ID: mdl-29902495

ABSTRACT

OBJECTIVES: The rise in multidrug resistant Neisseria gonorrhoeae poses a threat to healthcare, while the development of an effective vaccine has remained elusive due to antigenic and phase variability of surface-expressed proteins. In the current study, we identified a fully conserved surface expressed protein and characterized its suitability as a vaccine antigen. METHODS: An in silico approach was used to predict surface-expressed proteins and analyze sequence conservation and phase variability. The most conserved protein and its surface-exposed Loop 2, which was displayed as both a structural and linear epitope on the oligomerization domain of C4b binding protein, were used to immunize mice. Immunogenicity was subsequently analyzed by determination of antibody titers and serum bactericidal activity. RESULTS: MtrE was identified as one of the most conserved surface-expressed proteins. Furthermore, MtrE and both Loop 2-containing fusion proteins elicited high protein-specific antibody titers and particularly the two Loop 2 fusion proteins showed high anti-Loop 2 titers. In addition, antibodies raised against all three proteins were able to recognize MtrE expressed on the surface of N. gonorrhoeae and showed high MtrE-dependent bactericidal activity. CONCLUSIONS: Our results show that MtrE and Loop 2 are promising novel conserved surface-expressed antigens for vaccine development against N. gonorrhoeae.


Subject(s)
Antibodies, Bacterial/blood , Bacterial Outer Membrane Proteins/immunology , Blood Bactericidal Activity , Neisseria gonorrhoeae/immunology , Animals , Bacterial Outer Membrane Proteins/genetics , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Computational Biology , Conserved Sequence , Epitopes/genetics , Female , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice, Inbred BALB C , Neisseria gonorrhoeae/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
14.
Clin Case Rep ; 6(5): 935-938, 2018 May.
Article in English | MEDLINE | ID: mdl-29744091

ABSTRACT

In this study, we present the first case of a 34-year-old Surinamese female with ischemic retinopathy and increased free protein S due to C4BP deficiency. Possibly, the low PS/C4BP complex level has increased the risk of arterial thrombosis in our patient.

15.
Immunobiology ; 223(1): 125-134, 2018 01.
Article in English | MEDLINE | ID: mdl-29017821

ABSTRACT

The use of C3d, the final degradation product of complement protein C3, as a "natural" adjuvant has been widely examined since the initial documentation of its immunogenicity-enhancing properties as a consequence of binding to complement receptor 2. Subsequently it was demonstrated that these effects are most evident when oligomeric, rather than when monomeric forms of C3d, are linked to various test protein antigens. In this study, we examined the feasibility of enhancing the adjuvant properties of human C3d further by utilizing C4b-binding protein (C4BP) to provide an oligomeric arrayed scaffold fused to the model antigen, tetanus toxin C fragment (TTCF). High molecular weight, C3d-containing oligomeric vaccines were successfully expressed, purified from mammalian cells and used to immunize groups of mice. Surprisingly, anti-TTCF antibody responses measured in these mice were poor. Subsequently we established by in vitro and in vivo analysis that, in the presence of mouse C3, human C3d does not interact with either mouse or even human complement receptor 2. These data confirm the requirement to develop murine versions of C3d based adjuvant compounds to test in mice or that mice would need to be developed that express both human C3 and human CR2 to allow the testing of human C3d based adjuvants in mouse in any capacity.


Subject(s)
B-Lymphocytes/physiology , Complement C3d/immunology , Complement C4b-Binding Protein/genetics , Peptide Fragments/immunology , Tetanus Toxin/immunology , Vaccines, Synthetic/immunology , Adjuvants, Immunologic , Animals , Antibodies/blood , Cell Line , Complement C3d/genetics , Complement C4b-Binding Protein/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Peptide Fragments/genetics , Protein Multimerization/genetics , Receptors, Complement 3d/genetics , Receptors, Complement 3d/metabolism , Tetanus Toxin/genetics , Vaccination , Vaccines, Synthetic/genetics
16.
Diabetologia ; 60(8): 1522-1533, 2017 08.
Article in English | MEDLINE | ID: mdl-28500395

ABSTRACT

AIMS/HYPOTHESIS: Inflammasome activation and subsequent IL-1ß production is a driver of islet pathology in type 2 diabetes. Oligomers, but not mature amyloid fibrils, of human islet amyloid polypeptide (IAPP), which is co-secreted with insulin, trigger NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome activation. C4b-binding protein (C4BP), present in serum, binds to IAPP and affects transition of IAPP monomers and oligomers to amyloid fibrils. We therefore hypothesised that C4BP inhibits IAPP-mediated inflammasome activation and IL-1ß production. METHODS: Macrophages were exposed to IAPP in the presence or absence of plasma-purified human C4BP, and inflammasome activation was assessed by IL-1ß secretion as detected by ELISA and reporter cell lines. IAPP fibrillation was assessed by thioflavin T assay. Uptake of IAPP-C4BP complexes and their effects on phagolysosomal stability were assessed by flow cytometry and confocal microscopy. The effect of C4BP regulation of IAPP-mediated inflammasome activation on beta cell function was assessed using a clonal rat beta cell line. Immunohistochemistry was used to examine the association of IAPP amyloid deposits and macrophage infiltration in isolated human and mouse pancreatic islets, and expression of C4BP from isolated human pancreatic islets was assessed by quantitative PCR, immunohistochemistry and western blot. RESULTS: C4BP significantly inhibited IAPP-mediated IL-1ß secretion from primed macrophages at physiological concentrations in a dose-dependent manner. C4BP bound to and was internalised together with IAPP. C4BP did not affect IAPP uptake into phagolysosomal compartments, although it did inhibit its formation into amyloid fibrils. The loss of macrophage phagolysosomal integrity induced by IAPP incubation was inhibited by co-incubation with C4BP. Supernatant fractions from macrophages activated with IAPP inhibited both insulin secretion and viability of clonal beta cells in an IL-1ß-dependent manner but the presence of C4BP during macrophage IAPP incubation rescued beta cell function and viability. In human and mouse islets, the presence of amyloid deposits correlated with higher numbers of infiltrating macrophages. Isolated human islets expressed and secreted C4BP, which increased with addition of IL-1ß. CONCLUSIONS/INTERPRETATION: IAPP deposition is associated with inflammatory cell infiltrates in pancreatic islets. C4BP blocks IAPP-induced inflammasome activation by preventing the loss of macrophage phagolysosomal integrity required for NLRP3 activation. The consequence of this is the preservation of beta cell function and viability. C4BP is secreted directly from human pancreatic islets and this increases in response to inflammatory cytokines. We therefore propose that C4BP acts as an extracellular chaperone protein that limits the proinflammatory effects of IAPP.


Subject(s)
Complement C4b-Binding Protein/metabolism , Inflammasomes/drug effects , Inflammasomes/metabolism , Islet Amyloid Polypeptide/pharmacology , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Aged , Animals , Blotting, Western , Cell Line, Tumor , Cells, Cultured , Female , Humans , Insulin/metabolism , Interleukin-1beta/metabolism , Male , Middle Aged , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pancreas/drug effects , Pancreas/metabolism , Rats
17.
Mol Immunol ; 84: 34-42, 2017 04.
Article in English | MEDLINE | ID: mdl-28012560

ABSTRACT

Type 2 Diabetes (T2D) is a disease of increasing importance and represents a growing burden on global healthcare and human health. In T2D, loss of effectiveness of insulin signaling in peripheral tissues cannot be compensated for by adequate insulin secretion, leading to hyperglycemia and resultant complications. In recent years, inflammation has been identified as a central component of T2D, both in inducing peripheral insulin resistance as well as in the pancreatic islet, where it contributes to loss of insulin secretion and death of insulin-secreting beta cells. In this review we will focus on non-traditional roles of complement proteins which have been identified in T2D-associated inflammation, beta cell secretory function, and in maintaining homeostasis of the pancreatic islet. Improved understanding of both traditional and novel roles of complement proteins in T2D may lead to new therapeutic approaches for this global disease.


Subject(s)
Complement System Proteins/immunology , Diabetes Mellitus, Type 2/immunology , Homeostasis/immunology , Insulin/metabolism , Islets of Langerhans/immunology , Animals , Humans , Insulin Secretion
18.
Oncotarget ; 7(19): 28013-26, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27050367

ABSTRACT

Hepatitis B virus X protein (HBx) plays crucial roles in the development of hepatocellular carcinoma (HCC). We previously showed that HBx protected hepatoma cells from complement attack by activation of CD59. Moreover, in this study we found that HBx protected hepatoma cells from complement attack by activation of C4b-binding protein α (C4BPα), a potent inhibitor of complement system. We observed that HBx were positively correlated with those of C4BPα in clinical HCC tissues. Mechanistically, HBx activated the promoter core region of C4BPα, located at -1199/-803nt, through binding to transcription factor Sp1. In addition, chromatin immunoprecipitation (ChIP) assays showed that HBx was able to bind to the promoter of C4BPα, which could be blocked by Sp1 silencing. Functionally, knockdown of C4BPα obviously increased the deposition of C5b-9, a complex of complement membrane attack, and remarkably abolished the HBx-induced resistance of hepatoma cells from complement attack in vitro and in vivo. Thus, we conclude that HBx up-regulates C4BPα through activating transcription factor Sp1 in protection of liver cancer cells from complement attack. Our finding provides new insights into the mechanism by which HBx enhances protection of hepatoma cells from complement attack.


Subject(s)
Carcinoma, Hepatocellular/virology , Complement C4b-Binding Protein/biosynthesis , Liver Neoplasms/virology , Sp1 Transcription Factor/metabolism , Trans-Activators/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/physiology , Heterografts , Humans , Liver Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Up-Regulation , Viral Regulatory and Accessory Proteins
19.
Angew Chem Int Ed Engl ; 55(16): 5085-9, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-26991930

ABSTRACT

Multivalent ligands of death receptors hold particular promise as tumor cell-specific therapeutic agents because they induce an apoptotic cascade in cancerous cells. Herein, we present a modular approach to generate death receptor 5 (DR5) binding constructs comprising multiple copies of DR5 targeting peptide (DR5TP) covalently bound to biomolecular scaffolds of peptidic nature. This strategy allows for efficient oligomerization of synthetic DR5TP-derived peptides in different spatial orientations using a set of enzyme-promoted conjugations or recombinant production. Heptameric constructs based on a short (60-75 residues) scaffold of a C-terminal oligomerization domain of human C4b binding protein showed remarkable proapoptotic activity (EC50=3 nm) when DR5TP was ligated to its carboxy terminus. Our data support the notion that inter-ligand distance, relative spatial orientation and copy number of receptor-binding modules are key prerequisites for receptor activation and cell killing.


Subject(s)
Apoptosis , Peptides/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Humans
20.
Immunol Lett ; 173: 61-8, 2016 05.
Article in English | MEDLINE | ID: mdl-26976804

ABSTRACT

Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules present in pathogenic but not in saprophytic Leptospira species. We have previously shown that Lig proteins interact with the soluble complement regulators Factor H (FH), FH like-1 (FHL-1), FH related-1 (FHR-1) and C4b Binding Protein (C4BP). In this study, we used the saprophyte L. biflexa serovar Patoc as a surrogate host to address the specific role of LigA and LigB proteins in leptospiral complement evasion. L. biflexa expressing LigA or LigB was able to acquire FH and C4BP. Bound complement regulators retained their cofactor activities of FI in the proteolytic cleavage of C3b and C4b. Moreover, heterologous expression of ligA and ligB genes in the saprophyte L. biflexa enhanced bacterial survival in human serum. Complement deposition on lig-transformed L. biflexa was assessed by flow cytometry analysis. With regard to MAC deposition, L. biflexa expressing LigA or LigB presented an intermediate profile: MAC deposition levels were greater than those found in the pathogenic L. interrogans, but lower than those observed for L. biflexa wildtype. In conclusion, Lig proteins contribute to in vitro control of complement activation on the leptospiral surface, promoting an increased bacterial survival in human serum.


Subject(s)
Antigens, Bacterial/metabolism , Complement Factor I/metabolism , Immune Evasion , Leptospira/physiology , Leptospirosis/immunology , Antigens, Bacterial/immunology , Cell Survival , Complement C3b/metabolism , Complement C4b/metabolism , Complement Factor H/metabolism , Complement Membrane Attack Complex/immunology , Food Chain , Humans , Leptospira/pathogenicity , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL