Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 599
Filter
1.
Discov Oncol ; 15(1): 431, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259234

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the third most prevalent cancer worldwide, with the tumor microenvironment (TME) playing a crucial role in its progression. Aggregated autophagy (AA) has been recognized as a factor that exacerbates CRC progression. This study aims to study the relationship between aggregated autophagy and CRC using single-cell sequencing techniques. Our goal is to explain the heterogeneity of the TME and to explore the potential for targeted personalized therapies. OBJECTIVE: To study the role of AA in CRC, we employed single-cell sequencing to discern distinct subpopulations within the TME. These subpopulations were characterized by their autophagy levels and further analyzed to identify specific biological processes and marker genes. RESULTS: Our study revealed significant correlations between immune factors and both clinical and biological characteristics of the tumor microenvironment (TME), particularly in cells expressing TUBA1B and HSP90AA1. These immune factors were associated with T cell depletion, a reduction in protective factors, diminished efficacy of immune checkpoint blockade (ICB), and enhanced migration of cancer-associated fibroblasts (CAFs), resulting in pronounced inflammation. In vitro experiments showd that silencing TUBA1B and HSP90AA1 using siRNA (Si-TUBA1B and Si-HSP90AA1) significantly reduced the expression of IL-6, IL-7, CXCL1, and CXCL2 and inhibition of tumor cell growth in Caco-2 and Colo-205 cell lines. This reduction led to a substantial alleviation of chronic inflammation and highlighted the heterogeneous nature of the TME. CONCLUSION: This study marks an initial foray into understanding how AA-associated processes may potentiate the TME and weaken immune function. Our findings provide insights into the complex dynamics of the TME and highlight potential targets for therapeutic intervention, suggesting a key role for AA in the advancement of colorectal cancer.

2.
J Cardiovasc Thorac Res ; 16(2): 135-141, 2024.
Article in English | MEDLINE | ID: mdl-39253348

ABSTRACT

Most cases of congenital coronary artery fistula (CAF) resolve spontaneously, symptomatic patients with severe shunting require surgical intervention. Our aim is to evaluate success rate and outcome of CAFs treatment using transcatheter interventional methods.This retrospective study conducted on 28 CAF patients who were referred to Rajaie Cardiovascular Medical and Research Center in Tehran between 2015 and 2020. Baseline characteristics were collected by assessing hospital records, and patients were followed up annually for long-term evaluation. All of 28 patients gone throughtranscatheter closure of CAF. In 23 patient's it was proximal type (82.1%) and in 5 patients was distal type (17.9%). In 11 patients, the fistula originated from the RCA (39.3%) and in 11 patients, it originated from the LAD and Diagonal. Most common drainage site was the pulmonary artery (82.1%). Coil used in 23 patients(82.1%). PDA occluder (7.1%) for 2 patients. VSD occluder for one patient (3.6%) and VSD+PDA occluder combination was used for one patient (3.6%). Procedure failure was in only one patient. Non-significant remaining shunt in the injection immediately after the procedure was seen in 4 patients (14.3%), which was reduced during the follow-up. None of the patients had significant shunt or clinical symptoms during long-term follow-up. As for complications, fistula dissection occurred in only one patient.The transcatheter interventional approach for the treatment of CAFs leads to favorable long-term results.

3.
Pathol Res Pract ; 262: 155576, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232286

ABSTRACT

Cancer-associated fibroblasts are the most important cellular component of the tumor microenvironment, controlling cancer progression and therapeutic response. These cells in the tumor microenvironment regulate tumor progression and development as oncogenic or tumor suppressor agents. However, the mechanisms by which CAFs communicate with cancer cells remain to investigate. Here, we review evidence that extracellular vesicles, particularly exosomes, serve as vehicles for the intercellular transfer of bioactive cargos, notably microRNAs and long non-coding RNAs, from CAFs to cancer cells. We try to highlight molecular pathways of non-coding RNAs and the interaction among these molecules. Together, these findings elucidate a critical exosome-based communication axis by which CAFs create mostly a supportive pro-tumorigenic microenvironment and highlight therapeutic opportunities for disrupting this intercellular crosstalk.


Subject(s)
Cancer-Associated Fibroblasts , Disease Progression , Exosomes , Neoplasms , Tumor Microenvironment , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Exosomes/metabolism , Exosomes/genetics , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Cell Communication , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism
4.
Molecules ; 29(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39339346

ABSTRACT

The Caf1/CNOT7 nuclease is a catalytic component of the Ccr4-Not deadenylase complex, which is a key regulator of post-transcriptional gene regulation. In addition to providing catalytic activity, Caf1/CNOT7 and its paralogue Caf1/CNOT8 also contribute a structural function by mediating interactions between the large, non-catalytic subunit CNOT1, which forms the backbone of the Ccr4-Not complex and the second nuclease subunit Ccr4 (CNOT6/CNOT6L). To facilitate investigations into the role of Caf1/CNOT7 in gene regulation, we aimed to discover and develop non-nucleoside inhibitors of the enzyme. Here, we disclose that the tri-substituted 2-pyridone compound 5-(5-bromo-2-hydroxy-benzoyl)-1-(4-chloro-2-methoxy-5-methyl-phenyl)-2-oxo-pyridine-3-carbonitrile is an inhibitor of the Caf1/CNOT7 nuclease. Using a fluorescence-based nuclease assay, the activity of 16 structural analogues was determined, which predominantly explored substituents on the 1-phenyl group. While no compound with higher potency was identified among this set of structural analogues, the lowest potency was observed with the analogue lacking substituents on the 1-phenyl group. This indicates that substituents on the 1-phenyl group contribute significantly to binding. To identify possible binding modes of the inhibitors, molecular docking was carried out. This analysis suggested that the binding modes of the five most potent inhibitors may display similar conformations upon binding active site residues. Possible interactions include π-π interactions with His225, hydrogen bonding with the backbone of Phe43 and Van der Waals interactions with His225, Leu209, Leu112 and Leu115.


Subject(s)
Pyridones , Humans , Pyridones/chemistry , Pyridones/pharmacology , Molecular Docking Simulation , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Transcription Factors/chemistry , Ribonucleases/chemistry , Ribonucleases/antagonists & inhibitors , Ribonucleases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Structure-Activity Relationship , Exoribonucleases , Repressor Proteins
5.
Cells ; 13(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39273037

ABSTRACT

The microenvironment of a cancer stem cell (CSC) niche is often found in coexistence with cancer-associated fibroblasts (CAFs). Here, we show the first in-depth analysis of the interaction between primary triple-negative breast cancer stem cells (BCSCs) with fibroblasts. Using 2D co-culture models with specific seeding ratios, we identified stromal fibroblast aggregation at the BCSC cluster periphery, and, on closer observation, the aggregated fibroblasts was found to encircle BCSC clusters in nematic organization. In addition, collagen type I and fibronectin accumulation were also found at the BCSC-stromal periphery. MACE-Seq analysis of BCSC-encapsulating fibroblasts displayed the transformation of stromal fibroblasts to CAFs and the upregulation of fibrosis regulating genes of which the Interferon Regulatory Factor 6 (IRF6) gene was identified. Loss of function experiments with the IRF6 gene decreased fibroblast encapsulation around BCSC clusters in 2D co-cultures. In BCSC xenografts, fibroblast IRF6 expression led to an increase in the stromal area and fibroblast density in tumors, in addition to a reduction in necrotic growth. Based on our findings, we propose that fibroblast IRF6 function is an important factor in the development of the stromal microenvironment and in sustaining the BCSC tumor niche.


Subject(s)
Coculture Techniques , Fibroblasts , Interferon Regulatory Factors , Neoplastic Stem Cells , Stromal Cells , Tumor Microenvironment , Up-Regulation , Humans , Female , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Fibroblasts/metabolism , Fibroblasts/pathology , Up-Regulation/genetics , Mice , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor
6.
Heliyon ; 10(16): e35727, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39229506

ABSTRACT

The emerging tumor microenvironment (TME) is a complex and constantly evolving entity. Cancer-associated fibroblasts (CAFs) are a vital component of the TME with diverse functions. They interact closely with cancer cells through reciprocal signaling and play a crucial role in tumor progression. Exosomes, which contain diverse biological information, are identified as an important mediator of cell-cell communication. This study aimed to investigate how CAF-derived exosomes promote metastasis of endometrial cancer (EC). Our findings revealed that CAF-derived exosomes significantly enhanced EC cell proliferation and migration compared to normal fibroblast-derived exosomes. Quantitative proteomics analysis of CAF/NF-derived exosomes demonstrated differential expression of CTHRC1, a protein overexpressed in multiple tumors, promoting cancer progression through enhanced cell migration and invasion. Exosomal overload of CTHRC1 significantly contributes to EC cell migration. Mechanically, we determined that ITGB3 was immunoprecipitated by CTHRC1 and phosphorylated FAK on Tyr397, which was important for exosomal CTHRC1 mediated migratory ability of EC cells. Overexpression of CTHRC1 in secreted exosomes promotes the metastatic ability of EC cells in mouse models and may be eliminated by Defactinib, an inhibitor of FAK Tyr397 phosphorylation. Moreover, overexpression of CTHRC1 was increased in EC patients, elevating with cancer progression, and correlated with negative tumor prognosis. Our results revealed that CAF mediated endometrial cancer progression is related to high levels of CTHRC1 and exosomal CTHRC1 derived from CAF may be a promising therapeutic strategy for metastatic endometrial cancer.

7.
Phytomedicine ; 135: 156051, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39299097

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is the most intractable subgroup of breast neoplasms due to its aggressive nature. In recent years, immune checkpoint inhibitors (ICIs) have exhibited potential efficacy in TNBC treatment. However, only a limited fraction of patients benefit from ICI therapy, primarily because of the suppressive tumor immune microenvironment (TIME). Trametes robiniophila Murr (Huaier) is a traditional Chinese medicine (TCM) with potential immunoregulatory functions. However, the underlying mechanism remains unclear. PURPOSE: The present study aimed to investigate the therapeutic role of Huaier in the TIME of TNBC patients. METHODS: Single-cell RNA sequencing (scRNA-seq) was used to systematically analyze the influence of Huaier on the TNBC microenvironment for the first time. The mechanisms of the Huaier-induced suppression of cancer-associated fibroblasts (CAFs) were assessed via real-time quantitative polymerase chain reaction (qRT‒PCR) and western blotting. A tumor-bearing mouse model was established to verify the effects of the oral administration of Huaier on immune infiltration. RESULTS: Unsupervised clustering of the transcriptional profiles suggested an increase in the number of apoptotic cancer cells in the Huaier group. Treatment with Huaier induced immunological alterations from a "cold" to a "hot" state, which was accompanied by phenotypic changes in CAFs. Mechanistic analysis revealed that Huaier considerably attenuated the formation of myofibroblastic CAFs (myoCAFs) by impairing transforming growth factor-beta (TGF-ß)/SMAD signaling. In mouse xenograft models, Huaier dramatically modulated CAF differentiation, thus synergizing with the programmed cell death 1 (PD1) blockade to impede tumor progression. CONCLUSIONS: Our findings demonstrate that Huaier regulates cancer immunity in TNBC by suppressing the transition of CAFs to myoCAFs and emphasize the crucial role of Huaier as an effective adjuvant agent in immunotherapy.

8.
Molecules ; 29(17)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39275024

ABSTRACT

Upconversion nanoparticles (UCNPs) are well-reported for bioimaging. However, their applications are limited by low luminescence intensity. To enhance the intensity, often the UCNPs are coated with macromolecules or excited with high laser power, which is detrimental to their long-term biological applications. Herein, we report a novel approach to prepare co-doped CaF2:Yb3+ (20%), Er3+ with varying concentrations of Er (2%, 2.5%, 3%, and 5%) at ambient temperature with minimal surfactant and high-pressure homogenization. Strong luminescence and effective red emission of the UCNPs were seen even at low power and without functionalization. X-ray diffraction (XRD) of UCNPs revealed the formation of highly crystalline, single-phase cubic fluorite-type nanostructures, and transmission electron microscopy (TEM) showed co-doped UCNPs are of ~12 nm. The successful doping of Yb and Er was evident from TEM-energy dispersive X-ray analysis (TEM-EDAX) and X-ray photoelectron spectroscopy (XPS) studies. Photoluminescence studies of UCNPs revealed the effect of phonon coupling between host lattice (CaF2), sensitizer (Yb3+), and activator (Er3+). They exhibited tunable upconversion luminescence (UCL) under irradiation of near-infrared (NIR) light (980 nm) at low laser powers (0.28-0.7 W). The UCL properties increased until 3% doping of Er3+ ions, after which quenching of UCL was observed with higher Er3+ ion concentration, probably due to non-radiative energy transfer and cross-relaxation between Yb3+-Er3+ and Er3+-Er3+ ions. The decay studies aligned with the above observation and showed the dependence of UCL on Er3+ concentration. Further, the UCNPs exhibited strong red emission under irradiation of 980 nm light and retained their red luminescence upon internalization into cancer cell lines, as evident from confocal microscopic imaging. The present study demonstrated an effective approach to designing UCNPs with tunable luminescence properties and their capability for cellular imaging under low laser power.

9.
J Biochem Mol Toxicol ; 38(9): e23769, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39152098

ABSTRACT

Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment (TME) and can induce functional polarization of tumor macrophages. This study aimed to explore the effect of CAFs-derived exosome LINC01833 on the malignant biological behavior of non-small cell lung cancer (NSCLC) cells and its mechanism. Tumor tissues (n = 3) and adjacent noncancerous tissues (n = 3) were collected from patients with NSCLC, and fibroblasts (CAF, NF) were isolated from the two tissues. Expression of LINC01833/miR-335-5p/VAPA in NSCLC clinical tissues and cell lines was detected by RT-qPCR. Exosomes of CAFs and NFs were isolated by ultracentrifugation. Cell proliferation, migration, invasion, and M2 macrophage polarization were detected by MTT, transwell, wound-healing assay, and flow cytometry assay, while western blot was used to verify the expression of M2 macrophage polarization-related proteins. Tumor volume weight and M2 macrophage polarization were detected by tumor xenografts in nude mice. LINC01833 was highly expressed in NSCLC tumor tissues and cells. Knockdown of LINC01833 exosomes could significantly inhibit proliferation, migration, invasion of NSCLC cells, and M2 macrophage polarization of THP-1 cells, while simultaneous knockdown of miR-335-5p on the above basis could reverse the effect of knockdown of LINC01833. In vivo experiments also indicated that knockdown of LINC01833 exosomes suppressed tumor growth and M2 macrophage polarization. CAF-derived LINC01833 exosomes can promote the proliferation, migration and invasion of NSCLC cells and M2 macrophage polarization by inhibiting miR-335-5p and regulating VAPA activity.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Non-Small-Cell Lung , Exosomes , Lung Neoplasms , Mice, Nude , MicroRNAs , RNA, Long Noncoding , Animals , Female , Humans , Male , Mice , A549 Cells , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Exosomes/metabolism , Exosomes/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Mice, Inbred BALB C , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
10.
Angiogenesis ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115624

ABSTRACT

Colorectal cancer (CRC) is one of the common clinical malignancies and the fourth leading cause of cancer-related death in the world. The tumor microenvironment (TME) plays a crucial role in promoting tumor angiogenesis, and cancer-associated fibroblasts (CAFs) are one of the key components of the tumor microenvironment. However, due to the high heterogeneity of CAFs, elucidating the molecular mechanism of CAF-mediated tumor angiogenesis remained elusive. In our study, we found that there is pro-angiogenic functional heterogeneity of CAFs in colorectal cancer and we clarified that Podoplanin (PDPN) can specifically label CAF subpopulations with pro-angiogenic functions. We also revealed that PDPN + CAF could maintain CAF heterogeneity by forming a PDPN/CCL2/STAT3 feedback loop through autocrine CCL2, while activate STAT3 signaling pathway in endothelial cells to promote angiogenesis through paracrine CCL2. We demonstrated WP1066 could inhibit colorectal cancer angiogenesis by blocking both the PDPN/CCL2/STAT3 feedback loop in CAFs and the STAT3 signaling pathway in endothelial cells. Altogether, our study suggests that STAT3 could be a potential therapeutic target for blocking angiogenesis in colorectal cancer. We provide theoretical basis and new therapeutic strategies for the clinical treatment of colorectal cancer.

11.
Heliyon ; 10(15): e34526, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39157370

ABSTRACT

Background: Cancer associated fibroblasts (CAF), an important cancer-promoting and immunosuppressive component of the tumor immune microenvironment (TIME), have recently been found to infiltrate adult diffuse highest-grade gliomas (ADHGG) (gliomas of grade IV). Methods: Gene expression and clinical data of ADHGG patients were obtained from the CGGA and TCGA databases. Consensus clustering was used to identify CAF subtypes based on CAF key genes acquired from single-cell omics and spatial transcriptomomics. CIBERSORT, ssGSEA, MCPcounter, and ESTIMATE analyses were used to assess the TIME of GBM. Survival analysis, drug sensitivity analysis, TCIA database, TIDE and cMap algorithms were used to compare the prognosis and treatment response between patients with different CAF subtypes. An artificial neural network (ANN) model based on random forest was constructed to exactly identify CAF subtypes, which was validated in a real-world patient cohort of ADHGG. Results: Consensus clustering classified ADHGG into two CAF subtypes. Compared with subtype B, patients with ADHGG subtype A had a poorer prognosis, worse responsiveness to immunotherapy and radiotherapy, higher CAF infiltration in TIME, but higher sensitivity to temozolomide. Furthermore, patients with subtype A had a much lower proportion of IDH mutations. Finally, the ANN model based on five genes (COL3A1, COL1A2, CD248, FN1, and COL1A1) could exactly discriminate CAF subtypes, and the validation of the real-world cohort indicated consistent results with the bioinformatics analyses. Conclusion: This study revealed a novel CAF subtype to distinguish ADHGG patients with different prognosis and treatment responsiveness, which may be helpful for accurate clinical decision-making of ADHGG.

12.
Transl Oncol ; 48: 102080, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39116799

ABSTRACT

BACKGROUND: Gastric cancer (GC) is the fourth leading cause of cancer deaths, with advanced cases having a median survival of less than one year. Neoadjuvant chemotherapy (NCT) is vital but faces drug resistance issues, partly due to cancer-associated fibroblasts (CAFs). Yet, specific CAF subpopulations contributing to resistance are poorly understood. METHODS: Differentially expressed genes (DEGs) between chemosensitive and resistant GC patients were identified using GEO2R. Single-cell sequencing (scRNA-seq) identified CAF-related genes. Immunohistochemistry verified key genes in NCT-treated GC samples, analyzing their correlation with tumor regression grade (TRG) and clinicopathological characteristics. RESULTS: PPIC as a gene highly expressed in CAFs was closely associated with NCT resistance in gastric cancer. Immunohistochemistry results revealed positivity for the expression of cyclophilin C (CypC), encoded by PPIC, in the 5-fluorouracil and cisplatin NCT resistant and -sensitive groups of gastric cancer patients at rates of 69.7 % (76/109) and 43.6 % (24/55), respectively (p < 0.001). The high expression of CypC in CAFs was positively correlated to tumor size (p = 0.025), T stage (p = 0.004), TNM stage (p = 0.004), and vascular invasion (p = 0.027). In cancer cells the expression of CypC was associated with OS (p = 0.026). However, in CAFs, CypC expression was not related to OS (p = 0.671). CONCLUSIONS: PPIC-labeled CAF subgroups are related to NCT resistance and poor prognosis in GC and they may cause drug resistance through signaling pathways such as glucose metabolism and extracellular matrix remodeling. However, the exact mechanism behind the involvement of PPIC-labeled CAF in drug resistance of GC requires further study.

13.
J Colloid Interface Sci ; 676: 551-559, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39053403

ABSTRACT

The uncontrollable growth of Li dendrites and severe interfacial parasitic reactions on the Li anode are the primary obstacles to the practical application of lithium (Li) metal batteries. Effective artificial solid electrolyte interphase is capable of regulating uniform Li deposition and isolateing Li from electrolyte, thereby eliminating parasitic reactions. Herein, we rationally design a uniform LiF-dominated solid electrolyte interphase through an in-situ reaction between CaF2 nanoparticles and the Li anode, which allows dendrite-free Li deposition and restrains interfacial deterioration. Accordingly, the protective Li electrode demonstrated exceptional stability, sustaining over 6000 h at a current density of 2 mA cm-2 in symmetric cells and attaining over 1000 cycles with a low capacity decay rate of 0.015 % per cycle in coupling with LiFePO4 cathodes.

14.
Endocrinology ; 165(9)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39041201

ABSTRACT

Breast cancer progression involves intricate interactions between cancer cells and the tumor microenvironment (TME). This study elucidates the critical role of progesterone receptor (PR) signaling in mediating the protumorigenic effects of cancer-associated fibroblasts (CAFs) on estrogen receptor-positive (ER+) luminal breast cancer cells. We demonstrate that CAFs produce physiologically relevant levels of estrogen and progesterone, which significantly contribute to breast cancer tumorigenicity. Specifically, CAF conditioned media (CM) promoted PR-dependent anchorage-independent growth, tumorsphere formation/stem cell expansion, and CD44 upregulation. CAF cells formed co-clusters more frequently with PR+ breast cancer cells relative to PR-null models. While both PR isoforms mediated these actions, PR-A was a dominant driver of tumorsphere formation/stemness, while PR-B induced robust CD44 expression and CAF/tumor cell co-cluster formation. CD44 knockdown impaired CAF/tumor cell co-clustering. Fibroblast growth factor 2 (FGF2), also secreted by CAFs, phosphorylated PR (Ser294) in a MAPK-dependent manner and activated PR to enhance CD44 expression and breast cancer tumorigenicity. The FGF receptor (FGFR) inhibitor PD173074 diminished CAF- and FGF2-dependent PR activation, tumorsphere formation, and co-clustering. In summary, this study reveals a novel mechanism through which stromal CAFs orchestrate elevated PR signaling in ER+ luminal breast cancer via secretion of both progesterone and FGF2, a potent activator of ERK1/2. Understanding tumor cell/TME interactions provides insights into potential therapeutic strategies aimed at disrupting PR- and/or FGF2/FGFR-dependent signaling pathways to prevent early metastasis in patients with ER+ breast cancer.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Hyaluronan Receptors , Receptors, Estrogen , Receptors, Progesterone , Signal Transduction , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Female , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Receptors, Estrogen/metabolism , Animals , Tumor Microenvironment , Cell Line, Tumor , Mice , Fibroblast Growth Factor 2/metabolism , Carcinogenesis/metabolism , Progesterone/pharmacology , Progesterone/metabolism , Culture Media, Conditioned/pharmacology
15.
Discov Oncol ; 15(1): 292, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030445

ABSTRACT

Fusobacterium nucleatum, (F. nucleatum) as a known factor in inducing oncogenic, invasive, and inflammatory responses, can lead to an increase in the incidence and progression of colorectal cancer (CRC). Cancer-associated fibroblasts (CAF) are also one of the key components of the tumor microenvironment (TME), which lead to resistance to treatment, metastasis, and disease recurrence with their markers, secretions, and functions. This study aimed to investigate the effect of F. nucleatum on the invasive phenotype and function of fibroblast cells isolated from normal and cancerous colorectal tissue. F. nucleatum bacteria were isolated from deep periodontal pockets and confirmed by various tests. CAF cells from tumor tissue and normal fibroblasts (NF) from a distance of 10 cm of tumor tissue were isolated from 5 patients by the explant method and were exposed to secretions and ghosts of F. nucleatum. The expression level of two markers, fibroblast activation protein (FAP), and α-smooth muscle actin (α-SMA), and the amount of production of two cytokines TGF-ß and IL-6 from fibroblast cells were measured by flow cytometry and ELISA test, respectively before and after exposure to different bacterial components. The expression of the FAP marker was significantly higher in CAF cells compared to NF cells (P < 0.05). Also, the expression of IL-6 in CAF cells was higher than that of NF cells. In investigating the effect of bacterial components on the function of fibroblastic cells, after comparing the amount of IL-6 produced between the normal tissue of each patient and his tumoral tissue under 4 treated conditions, it was found that the amount of IL-6 production from the CAF cells of patients in the control group, treated with heat-killed ghosts and treated with paraformaldehyde-fixed ghosts had a significant increase compared to NF cells (P < 0.05). Due to the significant increase in FAP marker expression in fibroblast cells of tumor tissue compared to normal tissue, it seems that FAP can be used as a very good therapeutic marker, especially in patients with high levels of CAF cells. Various components of F. nucleatum could affect fibroblast cells differentially and at least part of the effect of this bacterium in the TME is mediated by CAF cells.

16.
EJNMMI Radiopharm Chem ; 9(1): 55, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073475

ABSTRACT

BACKGROUND: Fibroblast activation protein (FAP), a transmembrane serine protease overexpressed by cancer-associated fibroblasts in the tumor stroma, is an interesting biomarker for targeted radionuclide theranostics. FAP-targeting radiotracers have demonstrated to be superior to [18F]FDG PET/CT in various solid cancers. However, these radiotracers have suboptimal tumor retention for targeted radionuclide therapy (TRT). We aimed to develop a novel FAP-targeting pharmacophore with improved pharmacokinetics by introducing a substitution at the 8-position of (4-quinolinoyl)-glycyl-2-cyanopyrrolidine, which allows for conjugation of a chelator, dye, or other payloads. RESULTS: Here we showed the synthesis of DOTA-conjugated eFAP-6 and sulfo-Cyanine5-conjugated eFAP-7. After chemical characterization, the uptake and specificity of both tracers were determined on FAP-expressing cells. In vitro, [111In]In-eFAP-6 demonstrated a superior affinity and a more rapid, although slightly lower, peak uptake than gold standard [111In]In-FAPI-46. Confocal microscopy demonstrated a quick FAP-mediated internalization of eFAP-7. Studies with HT1080-huFAP xenografted mice confirmed a more rapid uptake of [177Lu]Lu-eFAP-6 vs. [177Lu]Lu-FAPI-46. However, tumor retention at 24 h post injection of [177Lu]Lu-eFAP-6 was lower than that of [177Lu]Lu-FAPI-46, hereby currently limiting its use for TRT. CONCLUSION: The superior affinity and faster tumor accumulation of eFAP-6 over FAPI-46 makes it a suitable compound for radionuclide imaging. After further optimization, the eFAP series has great potential for various oncological interventions, including fluorescent-guided surgery and effective targeted radionuclide theranostics.

17.
Biomed Pharmacother ; 177: 117045, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955088

ABSTRACT

The interaction between the immune system and the tumor matrix has a huge impact on the progression and treatment of cancer. This paper summarizes and discusses the crosstalk between T cells and cancer-associated fibroblasts (CAFs). CAFs can also produce inhibitors that counteract the function of T cells and promote tumor immune escape, while T cells can also engage in complex two-way interactions with CAFs through direct cell contact, the exchange of soluble factors such as cytokines, and the remodeling of the extracellular matrix. Precise targeted intervention can effectively reverse tumor-promoting crosstalk between T cells and CAFs, improve anti-tumor immune response, and provide a new perspective for cancer treatment. Therefore, it is important to deeply understand the mechanism of crosstalk between T cells and CAFs. This review aims to outline the underlying mechanisms of these interactions and discuss potential therapeutic strategies that may become fundamental tools in the treatment of cancer, especially hard-to-cure cancers.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , T-Lymphocytes , Tumor Microenvironment , Humans , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/drug therapy , T-Lymphocytes/immunology , Tumor Microenvironment/immunology , Animals , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/pathology , Cell Communication , Tumor Escape/drug effects , Cytokines/metabolism , Cytokines/immunology , Extracellular Matrix/metabolism
18.
Environ Sci Pollut Res Int ; 31(31): 44348-44360, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951394

ABSTRACT

Aluminum electrolyte is a necessity for aluminum reduction cells; however, its stock is rising every year due to several factors, resulting in the accumulation of solid waste. Currently, it has become a favorable material for the resources of lithium, potassium, and fluoride. In this study, the calcification roasting-two-stage leaching process was introduced to extract lithium and potassium separately from aluminum electrolyte wastes, and the fluoride in the form of CaF2 was recycled. The separation behaviors of lithium and potassium under different conditions were investigated systematically. XRD and SEM-EDS were used to elucidate the phase evolution of the whole process. During calcification roasting-water leaching, the extraction efficiency of potassium was 98.7% under the most suitable roasting parameters, at which the lithium extraction efficiency was 6.6%. The mechanism analysis indicates that CaO combines with fluoride to form CaF2, while Li-containing and K-containing fluorides were transformed into water-insoluble LiAlO2 phase and water-soluble KAlO2 phase, respectively, thereby achieving the separation of two elements by water leaching. In the second acid-leaching stage, the extraction efficiency of lithium was 98.8% from water-leached residue under the most suitable leaching conditions, and CaF2 was obtained with a purity of 98.1%. The present process can provide an environmentally friendly and promising method to recycle aluminum electrolyte wastes and achieve resource utilization.


Subject(s)
Aluminum , Fluorides , Lithium , Potassium , Fluorides/chemistry , Lithium/chemistry , Aluminum/chemistry , Potassium/chemistry , Electrolytes/chemistry , Recycling
19.
Int J Periodontics Restorative Dent ; 0(0): 1-28, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39058943

ABSTRACT

We report the successful treatment of multiple recession type (RT) 3 gingival recessions in periodontally compromised mandibular anterior teeth with limited keratinized tissue. A 35-yearold man with stage III, grade C periodontitis underwent a two-stage intervention. Initially, a modification of the connective tissue graft (m-CTG) wall technique was used as part of phenotype modification therapy. The CTG acted as a protective 'wall,' securing space for periodontal regeneration, enhancing root coverage, soft tissue thickness, and keratinized mucosal width. Recombinant human fibroblast growth factor-2 and carbonate apatite promoted periodontal regeneration. This procedure successfully facilitated periodontal regeneration, resulting in the transition from RT3 to RT2 gingival recession and adequate keratinized mucosal width. Eighteen months later, the second surgery used a tunneled coronally advanced flap (TCAF) for root coverage. TCAF involved combining a coronally advanced flap and tunnel technique by elevating the trapezoidal surgical papilla and using a de-epithelialized CTG inserted beneath the tunneled flap. Root conditioning with ethylenediaminetetraacetic acid and enamel matrix derivative gel application were performed. Consequently, mean CAL gain was 5.3 mm, mean root coverage was 4.5 mm in height, and the gingival phenotype improved at the treated sites by the 12-month follow-up. This staged approach addresses the challenges of treating RT3 gingival recession with promising outcomes.

20.
J Dent Sci ; 19(3): 1783-1791, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39035315

ABSTRACT

Background/purpose: The retrograde filling material, particularly mineral trioxide aggregate (MTA) employed in apicoectomy, should possess high antibacterial efficacy and osteogenic potential. We evaluated the antibacterial efficacy, biocompatibility, and osteogenic potential following the addition of silver nanoparticles (AgNPs) and calcium fluoride (CaF2) in retrograde filling material of MTA. Materials and methods: MTA was mixed with four different solvents. Group 1 (G1): distilled water, Group 2 (G2): 50 ppm AgNPs, Group 3 (G3): 1 wt% CaF2, and Group 4 (G4): 50 ppm AgNPs and 1 wt% CaF2. The pH variation of each group was monitored, while the surface roughness was measured. The antibacterial efficacy against Enterococcus faecalis (E. faecalis) and the viability of murine pre-osteoblast (MC3T3) were evaluated for each group using colorimetric assays. The gene expression levels of osteogenic potential marker (OCN, ALPL, and RUNX2) in MC3T3 cells for each group were quantified using real-time-qPCR. Statistical analysis was performed at α = 0.05 level of significance. Results: When comparing the levels of antibacterial efficacy, the order of effectiveness was G4>G2>G3>G1 (P < 0.05). In the cell viability test, owing to MTA-eluted growth medium having a positive effect on MC3T3 cell proliferation, G1-4 exhibited a statistically increased cell viability compared to the control (P < 0.05). However, G2-4 did not result in a statistically significant difference when compared to G1 (P < 0.05). Moreover, G4 exhibited the highest gene expression among the four groups (P < 0.05). Conclusion: The addition of AgNPs and CaF2 to MTA could be a promising option for use as a new retrograde filling material.

SELECTION OF CITATIONS
SEARCH DETAIL