Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
New Phytol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39233529

ABSTRACT

Activity-based sensing probes are powerful tools for monitoring enzymatic activities in complex biological samples such as cellular and live animals; however, their application in plants remains challenging. Herein, fourteen activity-based fluorescent probes were assayed against Arabidopsis O-methyltransferases (AtOMTs). One probe, 3-BTD, displayed a high selectivity, reactivity, and fluorescence response toward AtOMTs especially the isoform AtCCoAOMT. We further characterized the features of this probe and explored whether it could be used to detect OMT activities in living plant cells. Our results show that 3-BTD can be used to visualize OMT activity in Arabidopsis, and no fluorescent signal was observed in the comt/ccoaomt double mutant, indicating that it has good specificity. Interestingly, in contrast to the observation that AtCCoAOMT-YFP accumulated in both cytoplasm and nucleus, OMT enzymatic activity tracked by 3-BTD probe was found only in the cytoplasm. This underscores the importance of activity-based sensing in studying protein function. Moreover, 3-BTD can be successfully applied in OMT visualization of different plants. This study indicates that 3-BTD can serve as a potential probe for in situ monitoring the real activity of OMT in multiple plants and provides a strategy for visualizing the activity of other enzymes in plants.

2.
Gene ; 928: 148810, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39089530

ABSTRACT

Caffeoyl-coenzyme 3 A-O-methyltransferase (CCoAOMT) plays a crucial role in the lignin synthesis in many higher plants. In this study, nine PbCCoAOMT genes in total were identified from pear, and classified into six categories. We treated pear fruits with hormones abscisic acid (ABA) and methyl jasmonate (MeJA) and salicylic acid (SA) and observed differential expression levels of these genes. Through qRT-PCR, we also preliminarily identified candidate PbCCoAOMT gene, potentially involved in lignin synthesis in pear fruits. Additionally, the overexpression of PbCCoAOMT1/2 in Arabidopsis and pear fruits increased in lignin content. Enzymatic assays showed that recombinant PbCCoAOMT1/2 proteins have similar enzymatic activity in vitro. The Y1H (Yeast one-hybrid) and dual luciferase (dual-LUC) experiments demonstrated that PbMYB25 can bind to the AC elements in the promoter region of the PbCCoAOMT1 gene. Our findings suggested that the PbCCoAOMT1 and PbCCoAOMT2 genes may contribute to the synthesis of lignin and provide insights into the mechanism of lignin biosynthesis and stone cell development in pear fruits.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Lignin , Methyltransferases , Pyrus , Lignin/metabolism , Lignin/biosynthesis , Methyltransferases/genetics , Methyltransferases/metabolism , Pyrus/genetics , Pyrus/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Abscisic Acid/metabolism , Fruit/genetics , Fruit/metabolism , Salicylic Acid/metabolism , Promoter Regions, Genetic , Plants, Genetically Modified/genetics , Oxylipins/metabolism , Cyclopentanes/metabolism , Acetates/metabolism
3.
Tree Physiol ; 44(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38728368

ABSTRACT

Flavonoids are crucial medicinal active ingredients in Ginkgo biloba L. However, the effect of protein post-translational modifications on flavonoid biosynthesis remains poorly explored. Lysine acetylation, a reversible post-translational modification, plays a crucial role in metabolic regulation. This study aims to investigate the potential role of acetylation in G. biloba flavonoid biosynthesis. Through comprehensive analysis of transcriptomes, metabolomes, proteomes and acetylated proteins in different tissues, a total of 11,788 lysine acetylation sites were identified on 4324 acetylated proteins, including 89 acetylation sites on 23 proteins. Additionally, 128 types of differentially accumulated flavonoids were identified among tissues, and a dataset of differentially expressed genes related to the flavonoid biosynthesis pathway was constructed. Twelve (CHI, C3H1, ANR, DFR, CCoAOMT1, F3H1, F3H2, CCoAOMT2, C3H2, HCT, F3'5'H and FG2) acetylated proteins that might be involved in flavonoid biosynthesis were identified. Specifically, we found that the modification levels of CCoAOMT1 and F3'5'H sites correlated with the catalytic production of homoeriodictyol and dihydromyricetin, respectively. Inhibitors of lysine deacetylase (trichostatin A) impacted total flavonoid content in different tissues and increased flavonoid levels in G. biloba roots. Treatment with trichostatin A revealed that expression levels of GbF3'5'H and GbCCoAOMT1 in stems and leaves aligned with total flavonoid content variations, while in roots, expression levels of GbC3H2 and GbFG2 corresponded to total flavonoid content changes. Collectively, these findings reveal for the first time the important role of acetylation in flavonoid biosynthesis.


Subject(s)
Flavonoids , Ginkgo biloba , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Flavonoids/metabolism , Flavonoids/biosynthesis , Acetylation , Plant Proteins/metabolism , Plant Proteins/genetics , Protein Processing, Post-Translational , Transcriptome , Proteome/metabolism , Gene Expression Regulation, Plant , Multiomics
4.
BMC Genomics ; 25(1): 238, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438984

ABSTRACT

BACKGROUND: The caffeoyl-CoA-O methyltransferase (CCoAOMT) family plays a crucial role in the oxidative methylation of phenolic substances and is involved in various plant processes, including growth, development, and stress response. However, there is a limited understanding of the interactions among CCoAOMT protein members in tea plants. RESULTS: In this study, we identified 10 members of the CsCCoAOMT family in the genome of Camellia sinensis (cultivar 'HuangDan'), characterized by conserved gene structures and motifs. These CsCCoAOMT members were located on six different chromosomes (1, 2, 3, 4, 6, and 14). Based on phylogenetic analysis, CsCCoAOMT can be divided into two groups: I and II. Notably, the CsCCoAOMT members of group Ia are likely to be candidate genes involved in lignin biosynthesis. Moreover, through the yeast two-hybrid (Y2H) assay, we established protein interaction networks for the CsCCoAOMT family, revealing 9 pairs of members with interaction relationships. CONCLUSIONS: We identified the CCoAOMT gene family in Camellia sinensis and conducted a comprehensive analysis of their classifications, phylogenetic and synteny relationships, gene structures, protein interactions, tissue-specific expression patterns, and responses to various stresses. Our findings shed light on the evolution and composition of CsCCoAOMT. Notably, the observed interaction among CCoAOMT proteins suggests the potential formation of the O-methyltransferase (OMT) complex during the methylation modification process, expanding our understanding of the functional roles of this gene family in diverse biological processes.


Subject(s)
Camellia sinensis , Camellia sinensis/genetics , Phylogeny , Methyltransferases/genetics , Tea
5.
Front Plant Sci ; 14: 1216702, 2023.
Article in English | MEDLINE | ID: mdl-37868314

ABSTRACT

Background: Nicotiana tabacum is an important economic crop, which is widely planted in the world. Lignin is very important for maintaining the physiological and stress-resistant functions of tobacco. However, higher lignin content will produce lignin gas, which is not conducive to the formation of tobacco quality. To date, how to precisely fine-tune lignin content or composition remains unclear. Results: Here, we annotated and screened 14 CCoAOMTs in Nicotiana tabacum and obtained homozygous double mutants of CCoAOMT6 and CCoAOMT6L through CRSIPR/Cas9 technology. The phenotype showed that the double mutants have better growth than the wild type whereas the S/G ratio increased and the total sugar decreased. Resistance against the pathogen test and the extract inhibition test showed that the transgenic tobacco has stronger resistance to tobacco bacterial wilt and brown spot disease, which are infected by Ralstonia solanacearum and Alternaria alternata, respectively. The combined analysis of metabolome and transcriptome in the leaves and roots suggested that the changes of phenylpropane and terpene metabolism are mainly responsible for these phenotypes. Furthermore, the molecular docking indicated that the upregulated metabolites, such as soyasaponin Bb, improve the disease resistance due to highly stable binding with tyrosyl-tRNA synthetase targets in Ralstonia solanacearum and Alternaria alternata. Conclusions: CAFFEOYL-COA 3-O-METHYLTRANSFERASE 6/6L can regulate the S/G ratio of lignin monomers and may affect tobacco bacterial wilt and brown spot disease resistance by disturbing phenylpropane and terpene metabolism in leaves and roots of Nicotiana tabacum, such as soyasaponin Bb.

6.
Int J Mol Sci ; 24(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37240316

ABSTRACT

As the main component of plant cell walls, lignin can not only provide mechanical strength and physical defense for plants, but can also be an important indicator affecting the properties and quality of wood and bamboo. Dendrocalamus farinosus is an important economic bamboo species for both shoots and timber in southwest China, with the advantages of fast growth, high yield and slender fiber. Caffeoyl-coenzyme A-O-methyltransferase (CCoAOMT) is a key rate-limiting enzyme in the lignin biosynthesis pathway, but little is known about it in D. farinosus. Here, a total of 17 DfCCoAOMT genes were identified based on the D. farinosus whole genome. DfCCoAOMT1/14/15/16 were homologs of AtCCoAOMT1. DfCCoAOMT6/9/14/15/16 were highly expressed in stems of D. farinosus; this is consistent with the trend of lignin accumulation during bamboo shoot elongation, especially DfCCoAOMT14. The analysis of promoter cis-acting elements suggested that DfCCoAOMTs might be important for photosynthesis, ABA/MeJA responses, drought stress and lignin synthesis. We then confirmed that the expression levels of DfCCoAOMT2/5/6/8/9/14/15 were regulated by ABA/MeJA signaling. In addition, overexpression of DfCCoAOMT14 in transgenic plants significantly increased the lignin content, xylem thickness and drought resistance of plants. Our findings revealed that DfCCoAOMT14 can be a candidate gene that is involved in the drought response and lignin synthesis pathway in plants, which could contribute to the genetic improvement of many important traits in D. farinosus and other species.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Lignin , Methyltransferases , Plants, Genetically Modified , Poaceae , Poaceae/genetics , Methyltransferases/genetics , Lignin/biosynthesis , Lignin/genetics , Plants, Genetically Modified/genetics , Drought Resistance/genetics , Genome-Wide Association Study , Gene Expression Regulation, Plant/genetics
7.
BMC Genomics ; 24(1): 204, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069498

ABSTRACT

BACKGROUND: Jute is considered one of the most important crops for fiber production and multipurpose usages. Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is a crucial enzyme involved in lignin biosynthesis in plants. The potential functions of CCoAOMT in lignin biosynthesis of jute have been reported in several studies. However, little is known about the evolution of the CCoAOMT gene family, and either their expression level at different developing stages in different jute cultivars, as well as under abiotic stresses including salt and drought stress. RESULTS: In the present study, 66 CCoAOMT genes from 12 species including 12 and eight CCoAOMTs in Corchorus olitorius and C. capsularis were identified. Phylogenetic analysis revealed that CCoAOMTs could be divided into six groups, and gene expansion was observed in C. olitorius. Furthermore, gene expression analysis of developing jute fibers was conducted at different developmental stages (15, 30, 45, 60, and 90 days after sowing [DAS]) in six varieties (Jute-179 [J179], Lubinyuanguo [LB], and Qiongyueqing [QY] for C. capsularis; Funong No.5 [F5], Kuanyechangguo [KY], and Cvlv [CL] for C. olitorius). The results showed that CCoAOMT1 and CCoAOMT2 were the dominant genes in the CCoAOMT family. Of these two dominant CCoAOMTs, CCoAOMT2 showed a constitutive expression level during the entire growth stages, while CCoAOMT1 exhibited differential expression patterns. These two genes showed higher expression levels in C. olitorius than in C. capsularis. The correlation between lignin content and CCoAOMT gene expression levels indicated that this gene family influences the lignin content of jute. Using real-time quantitative reverse transcription PCR (qRT-PCR), a substantial up-regulation of CCoAOMTs was detected in stem tissues of jute 24 h after drought treatment, with an up to 17-fold increase in expression compared to that of untreated plants. CONCLUSIONS: This study provides a basis for comprehensive genomic studies of the entire CCoAOMT gene family in C. capsularis and C. olitorius. Comparative genomics analysis among the CCoAOMT gene families of 12 species revealed the close evolutionary relationship among Corchorus, Theobroma cacao and Gossypium raimondii. This study also shows that CCoAOMTs are not only involved in lignin biosynthesis, but also are associated with the abiotic stress response in jute, and suggests the potential use of these lignin-related genes to genetically improve the fiber quality of jute.


Subject(s)
Corchorus , Methyltransferases , Corchorus/enzymology , Corchorus/genetics , Lignin/metabolism , Methyltransferases/genetics , Phylogeny
8.
Genes (Basel) ; 13(11)2022 10 31.
Article in English | MEDLINE | ID: mdl-36360230

ABSTRACT

Scopoletin, the main component of clinical drugs and the functional component of health products, is highly abundant in noni fruit (Morinda citrifolia). Multiple enzyme genes regulate scopoletin accumulation. In the present study, differentially expressed genes of noni were analyzed by RNA sequencing (RNA-Seq) and the full-length genes by isoform-sequencing (Iso-Seq) to find the critical genes in the scopoletin accumulation mechanism pathway. A total of 32,682 full-length nonchimeric reads (FLNC) were obtained, out of which 16,620 non-redundant transcripts were validated. Based on KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation and differential expression analysis, two differentially expressed genes, caffeic acid 3-O-methyltransferase (COMT) and caffeoyl-CoA O-methyltransferase (CCoAOMT), were found in the scopoletin accumulation pathway of noni. Real-time quantitative polymerase chain reaction (q-PCR), phylogenetic tree analysis, gene expression analysis, and the change in scopoletin content confirmed that these two proteins are important in this pathway. Based on these results, the current study supposed that COMT and CCoAOMT play a significant role in the accumulation of scopoletin in noni fruit, and COMT (gene number: gene 7446, gene 8422, and gene 6794) and CCoAOMT (gene number: gene 12,084) were more significant. These results provide the importance of COMT and CCoAOMT and a basis for further understanding the accumulation mechanism of scopoletin in noni.


Subject(s)
Morinda , Morinda/genetics , Scopoletin , Phylogeny , RNA-Seq , Fruit/genetics , Protein Isoforms
9.
Int J Mol Sci ; 23(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35743217

ABSTRACT

Bambusa pervariabilis × Dendrocalamopsis grandis shoot blight caused by Arthrinium phaeospermum is a fungal disease that has affected a large area in China in recent years. However, it is not clear which genes are responsible for the disease resistance of B. pervariabilis × D. grandis. Based on the analysis of transcriptome and proteome data, two genes, CCoAOMT2 and CAD5, which may be involved in disease resistance, were screened. Two gene expression-interfering varieties, COF RNAi and CAD RNAi were successfully obtained using RNAi technology. Quantitative real-time fluorescence (qRT-PCR) results showed that CCoAOMT2 gene, CAD5 gene and seven related genes expression was down-regulated in the transformed varieties. After inoculating pathogen spore suspension, the incidence and disease index of cof-RNAi and cad-RNAi transformed plants increased significantly. At the same time, it was found that the content of total lignin and flavonoids in the two transformed varieties were significantly lower than that of the wild-type. The subcellular localization results showed that both CCoAOMT2 and CAD5 were localized in the nucleus and cytoplasm. The above results confirm that the CCoAOMT2 and CAD5 genes are involved in the resistance of B. pervariabilis × D.grandis to shoot blight through regulating the synthesis of lignin and flavonoids.


Subject(s)
Bambusa , Disease Resistance/genetics , Flavonoids/metabolism , Gene Expression Regulation, Plant , Lignin/metabolism , Transcriptome
10.
Planta ; 255(5): 107, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35445881

ABSTRACT

MAIN CONCLUSION: Panax notoginseng PnMYB2 is a transcriptional activator of primary and secondary cell wall formation by promoting the PCW-specific gene CesA3 and key lignin biosynthetic gene CCoAOMT1, respectively. R2R3-MYB transcription factors play important roles in regulation secondary cell wall (SCW) formation. However, there are few reports on the functions of MYB transcription factors which involved in both primary cell wall (PCW) and SCW formation. Here, we isolated an R2R3-MYB transcription factor, PnMYB2, from Panax notoginseng roots which are widely used in Chinese traditional medicines and contain abundant cellulose and lignin. The expression pattern of PnMYB2 was similar to the accumulation pattern of cellulose and lignin contents in different organs. PnMYB2 localized in the nucleus and may function as a transcriptional activator. Overexpression of PnMYB2 in Arabidopsis thaliana enhanced cellulose and lignin biosynthesis, and remarkably increased thickness of PCW and SCW in the stem of transgenic plants compared with wild-type plants. The expression levels of genes associated with PCW-specific cellulose synthase (CesA) genes and key SCW-specific lignin biosynthetic genes were significantly increased in PnMYB2-overexpressing plants compared to the wild type plants. Furthermore, yeast one-hybrid, dual-luciferase reporter assays and electrophoretic mobility shift assays (EMSA) results verified that PnMYB2 could bind and activate the promoters of AtCesA3 and PnCesA3, which are the PCW-specific cellulose biosynthetic genes, and AtCCoAOMT1 and PnCCoAOMT1, which are the key lignin biosynthetic genes. These results demonstrated the central role of PnMYB2 in PCW-specific cellulose formation and SCW-specific lignin biosynthesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Panax notoginseng , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Wall/metabolism , Cellulose/metabolism , Gene Expression Regulation, Plant , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Lignin/metabolism , Panax notoginseng/genetics , Panax notoginseng/metabolism , Plants, Genetically Modified/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Int J Mol Sci ; 23(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35216196

ABSTRACT

In vascular plants, the importance of R2R3-myeloblastosis (R2R3-MYB) transcription factors (TFs) in the formation of secondary cell walls (SCWs) has long been a controversial topic due to the lack of empirical evidence of an association between TFs and downstream target genes. Here, we found that the transcription factor PmMYB7, which belongs to the R2R3-MYB subfamily, is involved in lignin biosynthesis in Pinus massoniana. PmMYB7 was highly expressed in lignified tissues and upon abiotic stress. As a bait carrier, the PmMYB7 protein had no toxicity or autoactivation in the nucleus. Forty-seven proteins were screened from the P. massoniana yeast library. These proteins were predicted to be mainly involved in resistance, abiotic stress, cell wall biosynthesis, and cell development. We found that the PmMYB7 protein interacted with caffeoyl CoA 3-O-methyltransferase-2 (PmCCoAOMT2)-which is involved in lignin biosynthesis-but not with beta-1, 2-xylosyltransferase (PmXYXT1) yeast two-hybrid (Y2H) studies. Our in vivo coimmunoprecipitation (Co-IP) assay further showed that the PmMYB7 and PmCCoAOMT2 proteins could interact. Therefore, we concluded that PmMYB7 is an upstream TF that can interact with PmCCoAOMT2 in plant cells. These findings lay a foundation for further research on the function of PmMYB7, lignin biosynthesis and molecular breeding in P. massoniana.


Subject(s)
Cell Wall/genetics , Pinus/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Amino Acid Sequence , Gene Expression Regulation, Plant/genetics , Lignin/genetics
12.
Front Plant Sci ; 13: 1035383, 2022.
Article in English | MEDLINE | ID: mdl-36589126

ABSTRACT

Jute (Corchorus sp.), is a versatile, naturally occurring, biodegradable material that holds the promising possibility of diminishing the extensive use of plastic bags. One of the major components of the cell wall, lignin plays both positive and negative roles in fiber fineness and quality. Although it gives mechanical strength to plants, an excess amount of it is responsible for the diminution of fiber quality. Among various gene families involved in the lignin biosynthesis, Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is the most significant and has remained mostly unexplored. In this study, an extensive in-silico characterization of the CCoAOMT gene family was carried out in two jute species (C. capsularis L. and C. olitoroius L.) by analyzing their structural, functional, molecular and evolutionary characteristics. A total of 6 CCoAOMT gene members were identified in each of the two species using published reference genomes. These two jute species showed high syntenic conservation and the identified CCoAOMT genes formed four clusters in the phylogenetic tree. Histochemical assay of lignin in both jute species could shed light on the deposition pattern in stems and how it changes in response to abiotic stresses. Furthermore, expression profiling using qPCR showed considerable alteration of CCoAOMT transcripts under various abiotic stresses and hormonal treatment. This study will lay a base for further analysis and exploration of target candidates for overexpression of gene silencing using modern biotechnological techniques to enhance the quality of this economically important fiber crop.

13.
Biochem Genet ; 60(2): 656-675, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34410559

ABSTRACT

Lignin is essential for the characteristics and quality of timber. Nitrogen has significant effects on lignin contents in plants. Nitrogen has been found to affect wood quality in plantations and lignin content in plants. Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is an important methyltransferase in lignin biosynthesis. However, the classification of woody plant CCoAOMT gene family members and the regulation mechanism of nitrogen are not clear. Bioinformatics methods were used to predict the members, classification, and transcriptional distribution of the CCoAOMT gene family in Populus trichocarpa. The results showed that there were five PtCCoAOMTs identified, and they could be divided into three sub-groups according to their structural and phylogenetic features. The results of tissue expression specificity analysis showed that: PtCCoAOMT1 was highly expressed in roots and internodes; PtCCoAOMT2 was highly expressed in roots, nodes, and internodes, PtCCoAOMT3 was highly expressed in stems; PtCCoAOMT4 was highly expressed in young leaves, and, PtCCoAOMT5 was highly expressed in roots. Different forms and concentrations of nitrogen had varying effects on the expression patterns of genes in different plant tissue types. The results of real-time PCR showed that the expression levels of PtCCoAOMT1 and PtCCoAOMT2 in stems increased significantly under different forms of nitrogen. PtCCoAOMT3 and PtCCoAOMT4 were induced by nitrate nitrogen in upper stems and lower leaves, respectively. PtCCoAOMT4 and PtCCoAOMT5 were induced by different concentrations of nitrate nitrogen in lower stems and roots, respectively. These results could provide valuable information for revealing the differences between functions and expression patterns of the various CCoAOMT gene family members under different forms and concentrations of exogenous nitrogen in poplar.


Subject(s)
Populus , Gene Expression Regulation, Plant , Methyltransferases/genetics , Nitrogen/metabolism , Phylogeny , Populus/genetics , Populus/metabolism
14.
BMC Genomics ; 22(1): 504, 2021 Jul 04.
Article in English | MEDLINE | ID: mdl-34218810

ABSTRACT

BACKGROUND: Lignin is one of the main components of the cell wall and is directly associated with plant development and defence mechanisms in plants, especially in response to Fusarium graminearum (Fg) infection. Caffeoyl-coenzyme A O-methyltransferase (CCoAOMT) is the main regulator determining the efficiency of lignin synthesis and composition. Although it has been characterized in many plants, to date, the importance of the CCoAOMT family in wheat is not well understood. RESULTS: Here, a total of 21 wheat CCoAOMT genes (TaCCoAOMT) were identified through an in silico genome search method and they were classified into four groups based on phylogenetic analysis, with the members of the same group sharing similar gene structures and conserved motif compositions. Furthermore, the expression patterns and co-expression network in which TaCCoAOMT is involved were comprehensively investigated using 48 RNA-seq samples from Fg infected and mock samples of 4 wheat genotypes. Combined with qRT-PCR validation of 11 Fg-responsive TaCCoAOMT genes, potential candidates involved in the FHB response and their regulation modules were preliminarily suggested. Additionally, we investigated the genetic diversity and main haplotypes of these CCoAOMT genes in bread wheat and its relative populations based on resequencing data. CONCLUSIONS: This study identified and characterized the CCoAOMT family in wheat, which not only provided potential targets for further functional analysis, but also contributed to uncovering the mechanism of lignin biosynthesis and its role in FHB tolerance in wheat and beyond.


Subject(s)
Fusarium , Acyl Coenzyme A , Methyltransferases/genetics , Phylogeny , Plant Diseases , Triticum
15.
Plants (Basel) ; 10(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919418

ABSTRACT

Plants possess adaptive reprogramed modules to prolonged environmental stresses, including adjustment of metabolism and gene expression for physiological and morphological adaptation. CCoAOMT1 encodes a caffeoyl CoA O-methyltransferase and is known to play an important role in adaptation of Arabidopsis plants to prolonged saline stress. In this study, we showed that the CCoAOMT1 gene plays a role in drought stress response. Transcript of CCoAOMT1 was induced by salt, dehydration (drought), and methyl viologen (MV), and loss of function mutants of CCoAOMT1, ccoaomt1-1, and ccoaomt1-2 exhibit hypersensitive phenotypes to drought and MV stresses. The ccoaomt1 mutants accumulated higher level of H2O2 in the leaves and expressed lower levels of drought-responsive genes including RD29B, RD20, RD29A, and ERD1, as well as ABA3 3 and NCED3 encoding ABA biosynthesis enzymes during drought stress compared to wild-type plants. A seed germination assay of ccoaomt1 mutants in the presence of ABA also revealed that CCoAOMT1 functions in ABA response. Our data suggests that CCoAOMT1 plays a positive role in response to drought stress response by regulating H2O2 accumulation and ABA signaling.

16.
Protoplasma ; 258(1): 115-127, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32929631

ABSTRACT

Tea plant, an economically important crop, is used in producing tea, which is a non-alcoholic beverage. Lignin, the second most abundant component of the cell wall, reduces the tenderness of tea leaves and affects tea quality. Caffeoyl-coenzyme A O-methyltransferase (CCoAOMT) involved in lignin biosynthesis affects the efficiency of lignin synthesis and lignin composition. A total of 10 CsCCoAOMTs were identified based on tea plant genome. Systematic analysis of CCoAOMTs was conducted for its physicochemical properties, phylogenetic relationships, conserved motifs, gene structure, and promoter cis-element prediction. Phylogenetic analysis suggested that all the CsCCoAOMT proteins can be categorized into three clades. The promoters of six CsCCoAOMT genes possessed lignin-specific cis-elements, indicating they are possibly essential for lignin biosynthesis. According to the distinct tempo-spatial expression profiles, five genes were substantially expressed in eight tested tissues. Most CsCCoAOMT genes were expressed in stems and leaves in three tea plant cultivars 'Longjing 43,' 'Anjibaicha,' and 'Fudingdabai' by RT-qPCR detection and analysis. The expression levels of two genes (CsCCoAOMT5 and CsCCoAOMT6) were higher than those of the other genes. The expression levels of most CsCCoAOMT genes in 'Longjing 43' were significantly higher than that those in 'Anjibaicha' and 'Fudingdabai.' Correlation analysis revealed that only the expression levels of CsCCoAOMT6 were positively correlated with lignin content in the leaves and stems. These results lay a foundation for the future exploration of the roles of CsCCoAOMTs in lignin biosynthesis in tea plant.


Subject(s)
Camellia sinensis/chemistry , Lignin/biosynthesis , Methyltransferases/metabolism
17.
Biochem Biophys Res Commun ; 524(4): 977-982, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32059845

ABSTRACT

We previously found that VAMP721/722 SNARE proteins guide secretory vesicles to pathogen-attacking sites during immune responses in Arabidopsis, which suggests that these vesicles should deliver immune molecules. However, the lethality of vamp721 vamp722 double null mutant makes it difficult to understand the nature of cargo transported via VAMP721/722 vesicles. Since VAMP721/722-depleted (VAMP721+/-VAMP722-/- and VAMP721-/-VAMP722+/-) plants show compromised resistance to extracellular pathogens, we assume that an immune protein secreted through the VAMP721/722-engaged exocytosis would be remained more in VAMP721/722-depleted plants than WT. By comparing intracellular proteins between WT and VAMP721/722-depleted plants, we found caffeoyl-CoA O-methyltransferase 1 (CCOAOMT1) involved in the lignin biosynthesis was more abundantly detected in both VAMP721/722-depleted lines than WT. Plants are well-known to deposit secondary cell walls as physical barriers at pathogen-attempting sites. Therefore, extracellular detection of CCOAOMT1 and impaired resistance to Pseudomonas syringae DC3000 in ccoaomt1 plants suggest that plants secrete cell wall-modifying enzymes at least including CCOAOMT1 to reinforce the secondary cell walls for immunity.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Methyltransferases/metabolism , R-SNARE Proteins/metabolism , Arabidopsis/cytology , Cell Wall/metabolism , Lignin/metabolism , Secretory Vesicles/metabolism
18.
Plant Signal Behav ; 14(8): 1625697, 2019.
Article in English | MEDLINE | ID: mdl-31156026

ABSTRACT

Salinity is a major abiotic stressor that limits the growth, development, and reproduction of plants. Our previous metabolic analysis of high salt-adapted callus suspension cell cultures from Arabidopsis roots indicated that physical reinforcement of the cell wall is an important step in adaptation to saline conditions. Compared to normal cells, salt-adapted cells exhibit an increased lignin content and thickened cell wall. In this study, we investigated not only the lignin biosynthesis gene expression patterns in salt-adapted cells, but also the effects of a loss-of-function of CCoAOMT1, which plays a critical role in the lignin biosynthesis pathway, on plant responses to high-salt stress. Quantitative real-time PCR analysis revealed higher mRNA levels of genes involved in lignin biosynthesis, including CCoAOMT1, 4CL1, 4CL2, COMT, PAL1, PAL2, and AtPrx52, in salt-adapted cells relative to normal cells, which suggests activation of the lignin biosynthesis pathway in salt-adapted cells. Moreover, plants harboring the CCoAOMT1 mutants, ccoaomt1-1 and ccoaomt1-2, were phenotypically hypersensitive to salt stress. Our study has provided molecular and genetic evidence indicating the importance of enhanced lignin accumulation in the plant cell wall during the responses to salt stress.


Subject(s)
Arabidopsis/metabolism , Lignin/metabolism , Arabidopsis/genetics , Cell Wall/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
19.
Comput Struct Biotechnol J ; 17: 599-610, 2019.
Article in English | MEDLINE | ID: mdl-31080566

ABSTRACT

Genetic engineering is a powerful tool to steer bio-oil composition towards the production of speciality chemicals such as guaiacols, syringols, phenols, and vanillin through well-defined biomass feedstocks. Our previous work demonstrated the effects of lignin biosynthesis gene modification on the pyrolysis vapour compositions obtained from wood derived from greenhouse-grown poplars. In this study, field-grown poplars downregulated in the genes encoding CINNAMYL ALCOHOL DEHYDROGENASE (CAD), CAFFEIC ACID O-METHYLTRANSFERASE (COMT) and CAFFEOYL-CoA O-METHYLTRANSFERASE (CCoAOMT), and their corresponding wild type were pyrolysed in a Py-GC/MS. This work aims at capturing the effects of downregulation of the three enzymes on bio-oil composition using principal component analysis (PCA). 3,5-methoxytoluene, vanillin, coniferyl alcohol, 4-vinyl guaiacol, syringol, syringaldehyde, and guaiacol are the determining factors in the PCA analysis that are the substantially affected by COMT, CAD and CCoAOMT enzyme downregulation. COMT and CAD downregulated transgenic lines proved to be statistically different from the wild type because of a substantial difference in S and G lignin units. The sCAD line lead to a significant drop (nearly 51%) in S-lignin derived compounds, while CCoAOMT downregulation affected the least (7-11%). Further, removal of extractives via pretreatment enhanced the statistical differences among the CAD transgenic lines and its wild type. On the other hand, COMT downregulation caused 2-fold reduction in S-derived compounds compared to G-derived compounds. This study manifests the applicability of PCA analysis in tracking the biological changes in biomass (poplar in this case) and their effects on pyrolysis-oil compositions.

20.
Biotechnol Biofuels ; 12: 108, 2019.
Article in English | MEDLINE | ID: mdl-31073332

ABSTRACT

BACKGROUND: Downregulation of genes involved in lignin biosynthesis and related biochemical pathways has been used as a strategy to improve biofuel production. Plant C1 metabolism provides the methyl units used for the methylation reactions carried out by two methyltransferases in the lignin biosynthetic pathway: caffeic acid 3-O-methyltransferase (COMT) and caffeoyl-CoA 3-O-methyltransferase (CCoAOMT). Mutations in these genes resulted in lower lignin levels and altered lignin compositions. Reduced lignin levels can also be achieved by mutations in the C1 pathway gene, folylpolyglutamate synthetase1 (FPGS1), in both monocotyledons and dicotyledons, indicating a link between the C1 and lignin biosynthetic pathways. To test if lignin content can be further reduced by combining genetic mutations in C1 metabolism and the lignin biosynthetic pathway, fpgs1ccoaomt1 double mutants were generated and functionally characterized. RESULTS: Double fpgs1ccoaomt1 mutants had lower thioacidolysis lignin monomer yield and acetyl bromide lignin content than the ccoaomt1 or fpgs1 mutants and the plants themselves displayed no obvious long-term negative growth phenotypes. Moreover, extracts from the double mutants had dramatically improved enzymatic polysaccharide hydrolysis efficiencies than the single mutants: 15.1% and 20.7% higher than ccoaomt1 and fpgs1, respectively. The reduced lignin and improved sugar release of fpgs1ccoaomt1 was coupled with changes in cell-wall composition, metabolite profiles, and changes in expression of genes involved in cell-wall and lignin biosynthesis. CONCLUSION: Our observations demonstrate that additional reduction in lignin content and improved sugar release can be achieved by simultaneous downregulation of a gene in the C1 (FPGS1) and lignin biosynthetic (CCOAOMT) pathways. These improvements in sugar accessibility were achieved without introducing unwanted long-term plant growth and developmental defects.

SELECTION OF CITATIONS
SEARCH DETAIL