Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.382
Filter
1.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-39027992

ABSTRACT

Triple­negative breast cancer (TNBC) is a highly aggressive and heterogeneous subtype of breast cancer that lacks expression of estrogen receptor, progesterone receptor, and HER2, making it more challenging to treat with targeted therapies. The present study aimed to identify CD8+ T cell­associated genes, which could provide insight into the mechanisms underlying TNBC to facilitate developing novel immunotherapies. TNBC datasets were downloaded from public databases including The Cancer Genome Atlas, Molecular Taxonomy of Breast Cancer International Consortium, and Gene Expression Omnibus. Candidate genes were identified integrating weighted gene co­expression network analysis (WGCNA), differential gene expression, protein­protein­interaction network construction and univariate Cox regression analysis. Kaplan­Meier survival, multivariate Cox regression and receiver operating characteristic analysis were performed to evaluate the prognostic value of hub genes. Knockdown experiments, alongside wound healing, Cell Counting Kit­8 and Transwell migration and invasion assays were performed. In total, seven gene modules were associated with CD8+ T cells using WGCNA, among which potassium channel tetramerization domain 5 (KCTD5) was significantly upregulated in TNBC samples and was associated with poor prognosis. KCTD5 expression inversely associated with infiltration ratios of 'Macrophages M1', 'Plasma cells', and 'γδ T cells', but positively with 'activated Mast cells', 'Macrophages M0', and 'Macrophages M2'. As an independent prognostic indicator for TNBC, KCTD5 was also associated with drug sensitivity and the expression of programmed cell death protein 1, Cytotoxic T­Lymphocyte­Associated Protein 4 (CTLA4), CD274), Cluster of Differentiation 86 (CD86), Lymphocyte­Activation Gene 3 (LAG3), T Cell Immunoreceptor with Ig and ITIM Domains (TIGIT). Knockdown of KCTD5 significantly inhibited viability, migration and invasion of TNBC cells in vitro. KCTD5 was suggested to impact the tumor immune microenvironment by influencing the infiltration of immune cells and may serve as a potential therapeutic target for TNBC.


Subject(s)
CD8-Positive T-Lymphocytes , Gene Expression Regulation, Neoplastic , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/mortality , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Female , Prognosis , Cell Line, Tumor , Potassium Channels/genetics , Potassium Channels/metabolism , Middle Aged , Biomarkers, Tumor/genetics , Disease Progression , Kaplan-Meier Estimate , Protein Interaction Maps , Cell Movement/genetics , Gene Regulatory Networks , Cell Proliferation
2.
J Ethnopharmacol ; 334: 118540, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992397

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Babaodan (BBD) is a unique Chinese medication utilized in traditional Chinese medicine. It can eliminate toxins, induce diuresis, and eliminate yellowish hue. In addition to treating acute and chronic viral hepatitis, cholecystitis, cholangitis, and urinary tract infections, BBD has garnered popularity as a substitution treatment for several malignant cancers, particularly hepatocellular carcinoma (HCC). AIM OF THE STUDY: To elucidate the efficacy and mechanism of BBD alone and combined with camrelizumab (CLM) for treating HCC. METHODS: We investigated the effects of BBD on the HCC tumor microenvironment in vivo. Furthermore, we evaluated its effects on tumor growth and metastasis induced by M2 macrophages in vitro. RESULTS: In a mouse model of orthotopic HCC, BBD decreased tumor growth. Furthermore, it increased the M1/M2 macrophage ratio and CD8+ T-cell abundance in mice. In addition, BBD reversed HCC cell proliferation and metastasis induced by M2 macrophages, increased the anti-HCC effect of low-dose CLM, and attenuated organ damage induced by high-dose CLM. Lastly, BBD enhanced the efficacy of CLM via the PI3K/AKT/mTOR signaling pathway. CONCLUSION: BBD increases the antitumor effect of CLM by modulating the tumor immune microenvironment and attenuating its the toxic side effects of CLM.

3.
Curr Issues Mol Biol ; 46(7): 6472-6488, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39057028

ABSTRACT

ß-Casomorphin-7 (BCM), a breakdown product of milk ß-casein, exhibits opioid activity. Opioids are known to affect the immune system, but the effects of BCM on ulcerative colitis (UC) are not clear. We examined the effects of BCM on mucosal immunity using a mouse dextran sulfate sodium-induced colitis model and an in vitro CD8+ T cell activation model. Human UC patients were examined to reveal the relationship between CD10 and mucosal immunity. Combined treatment of the colitis model with thiorphan (TOP) inhibited BCM degradation by suppressing CD10 in the intestinal mucosa, activating mouse mucosal CD8, and suppressing CD4 and Treg. In the CD8+ T cell in vitro activation assay using mouse splenocytes, BCM inhibited the oxidative phosphorylation (OXPHOS) of CD8+ T cells and induced the glycolytic pathway, promoting their activation. Conversely, in a culture system, BCM suppressed OXPHOS and decreased defensin α production in IEC6 mouse intestinal epithelial cells. In the mouse model, BCM reduced defensin α and butyrate levels in the colonic mucosa. During the active phase of human ulcerative colitis, the downward regulation of ileal CD10 expression by CpG methylation of the gene promoter was observed, resulting in increased CD8 activation and decreased defensin α and butyrate levels. BCM is a potential aggravating factor for UC and should be considered in the design of dietary therapy. In addition, decreased CD10 expression may serve as an indicator of UC activity and recurrence, but further clinical studies are needed.

4.
Cell Commun Signal ; 22(1): 378, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39061097

ABSTRACT

Artesunate (ART), a natural product isolated from traditional Chinese plant Artemisia annua, has not been extensively explored for its anti-melanoma properties. In our study, we found that ART inhibited melanoma cell proliferation and induced melanoma cell ferroptosis. Mechanistic study revealed that ART directly targets Ido1, thereby suppressing Hic1-mediated transcription suppression of Hmox1, resulting in melanoma cell ferroptosis. In CD8+ T cells, ART does not cause cell ferroptosis due to the low expression of Hmox1. It also targets Ido1, elevating tryptophan levels, which inhibits NFATc1-mediated PD1 transcription, consequently activating CD8+ T cells. Our study uncovered a potent and synergistic anti-melanoma efficacy arising from ART-induced melanoma cell ferroptosis and concurrently enhancing CD8+ T cell-mediated immune response both in vivo and in vitro through directly targeting Ido1. Our study provides a novel mechanistic basis for the utilization of ART as an Ido1 inhibitor and application in clinical melanoma treatment.


Subject(s)
Artesunate , Ferroptosis , Indoleamine-Pyrrole 2,3,-Dioxygenase , Melanoma , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Ferroptosis/drug effects , Animals , Artesunate/pharmacology , Artesunate/therapeutic use , Melanoma/drug therapy , Melanoma/pathology , Mice , Cell Line, Tumor , Humans , Mice, Inbred C57BL , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation/drug effects , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics
5.
Biomolecules ; 14(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39062523

ABSTRACT

Microglia, the resident macrophages of the central nervous system, exhibit altered gene expression in response to various neurological conditions. This study investigates the relationship between West Nile Virus infection and microglial senescence, focusing on the role of LGALS3BP, a protein implicated in both antiviral responses and aging. Using spatial transcriptomics, RNA sequencing and flow cytometry, we characterized changes in microglial gene signatures in adult and aged mice following recovery from WNV encephalitis. Additionally, we analyzed Lgals3bp expression and generated Lgals3bp-deficient mice to assess the impact on neuroinflammation and microglial phenotypes. Our results show that WNV-activated microglia share transcriptional signatures with aged microglia, including upregulation of genes involved in interferon response and inflammation. Lgals3bp was broadly expressed in the CNS and robustly upregulated during WNV infection and aging. Lgals3bp-deficient mice exhibited reduced neuroinflammation, increased homeostatic microglial numbers, and altered T cell populations without differences in virologic control or survival. These data indicate that LGALS3BP has a role in regulating neuroinflammation and microglial activation and suggest that targeting LGALS3BP might provide a potential route for mitigating neuroinflammation-related cognitive decline in aging and post-viral infections.


Subject(s)
Cerebral Cortex , Microglia , West Nile Fever , West Nile virus , Animals , Microglia/metabolism , Microglia/virology , Microglia/pathology , West Nile virus/physiology , Mice , West Nile Fever/genetics , West Nile Fever/virology , West Nile Fever/pathology , West Nile Fever/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Mice, Inbred C57BL , Mice, Knockout , Cellular Senescence/genetics , Phenotype , Aging/genetics , Aging/metabolism , Male , Carrier Proteins/genetics , Carrier Proteins/metabolism , Antigens, Neoplasm , Biomarkers, Tumor
6.
Mol Biotechnol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026041

ABSTRACT

Colorectal cancer (CRC) is a highly prevalent cancer worldwide, but treatment outcomes can vary significantly among patients with similar clinical or historical stages. This study aimed to investigate the differences in immune cell abundance associated with malignant progression in CRC patients. We utilized data from patients with CRC obtained from The Cancer Genome Atlas as our training set. To assess immune cell infiltration levels, an immune cell risk score (ICRS) was calculated. Furthermore, we performed network analysis to identify effective T cell-related genes (ETRGs) and subsequently constructed an effective T cell prognostic index (ETPI). The performance of the ETPI was evaluated through external validation using four Gene Expression Omnibus datasets. Additionally, a nomogram analysis and drug sensitivity analysis were conducted to explore the clinical utility of the ETRGs. We also examined the expression of ETRGs in clinical samples. Based on the ICRS, we identified activated CD4+ and CD8+ T cells as protective factors in terms of prognosis. Six ETRGs were identified to develop the ETPI, which exhibited remarkable prognostic performance. In the external validation of immunotherapy, the low ETPI group demonstrated a significantly lower recurrence rate. To optimize therapeutic strategies, we developed a nomogram. Notably, patients with different ETPI values exhibited varying responses to tumor pathway inhibitors. Finally, we observed higher protein expression of certain ETRGs in normal tissues compared to tumors. Our findings suggest that the ETPI may contribute to the precise selection of patients based on tumor microenvironment and key genomic landscape interactions, thereby optimizing drug benefits and informing clinical strategies in future.

7.
Int Cancer Conf J ; 13(3): 268-274, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962048

ABSTRACT

Skin toxicity is the most common adverse event of treatment with immune check point inhibitors. Among them, erythema multiforme is a rare occurrence with a frequency of 4%, with most of the cases developing grade 1/2 disease. We experienced high grade erythema multiforme major developing with pembrolizumab treatment for anal canal cancer with extensive skin metastases. Steroid ointment was ineffective, and the skin lesions with blisters expanded to > 45% of the body surface area. The patient was at risk for symptom aggravation, and a pulse therapy with methylprednisolone and increasing the dose of oral prednisolone (1 mg/kg) were started. The skin lesions improved in 1.8 months. Unless urgent and appropriate treatments such as high dose steroid administration were conducted, the skin toxicities could not be controlled. The presence of CD4+ T cells and PD-L1+ keratinocytes in the skin biopsy might be a predictive marker of erythema multiforme major resistant to standard steroid treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s13691-024-00676-4.

8.
Vaccine ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964950

ABSTRACT

For the rational design of epitope-specific vaccines, identifying epitopes that can be processed and presented is essential. As algorithm-based epitope prediction is frequently discordant with actually recognized CD8+ T-cell epitopes, we developed an in vitro CD8 T-cell priming protocol to enable the identification of truly and functionally expressed HLA class I epitopes. The assay was established and validated to identify epitopes presented by hepatitis C virus (HCV)-infected cells. In vitro priming of naïve CD8 T cells was achieved by culturing unfractionated PBMCs in the presence of a specific cocktail of growth factors and cytokines, and next exposing the cells to hepatic cells expressing the NS3 protein of HCV. After a 10-day co-culture, HCV-specific T-cell responses were identified based on IFN-γ ELISpot analysis. For this, the T cells were restimulated with long synthetic peptides (SLPs) spanning the whole NS3 protein sequence allowing the identification of HCV-specificity. We demonstrated that this protocol resulted in the in vitro priming of naïve precursors to antigen-experienced T-cells specific for 11 out of 98 SLPs tested. These 11 SLPs contain 12 different HLA-A*02:01-restricted epitopes, as predicted by a combination of three epitope prediction algorithms. Furthermore, we identified responses against 3 peptides that were not predicted to contain any immunogenic HLA class I epitopes, yet showed HCV-specific responses in vitro. Separation of CD8+ and CD8- T cells from PBMCs primed in vitro showed responses only upon restimulation with short peptides. We established an in vitro method that enables the identification of HLA class I epitopes resulting from cross-presented antigens and that can cross-prime T cells and allows the effective selection of functional immunogenic epitopes, but also less immunogenic ones, for the design of tailored therapeutic vaccines against persistent viral infections and tumor antigens.

9.
Hum Vaccin Immunother ; 20(1): 2370085, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38967227

ABSTRACT

Small cell carcinoma of the esophagus (SCCE) is a rare and highly malignant type of esophageal cancer with no standard treatment, facing challenges of resistance to conventional therapies. This study presents the cases of one extensive-stage and two limited-stage SCCE patients treated with chemoimmunotherapy. The two limited-stage patients underwent surgery post-treatment and experienced notable and enduring positive responses. This represents the first documented application of neoadjuvant chemoimmunotherapy in limited-stage SCCE patients. Additionally, comprehensive immunohistochemical analysis and whole exome sequencing were performed on the case patients. The findings revealed that infiltration of CD8+ T cells and PD-L1 expression in the SCCE tumor were key factors for favorable responses in SCCE patients receiving chemoimmunotherapy.


Subject(s)
Carcinoma, Small Cell , Esophageal Neoplasms , Immunotherapy , Neoadjuvant Therapy , Humans , Esophageal Neoplasms/therapy , Esophageal Neoplasms/drug therapy , Neoadjuvant Therapy/methods , Carcinoma, Small Cell/therapy , Carcinoma, Small Cell/drug therapy , Male , Immunotherapy/methods , Middle Aged , B7-H1 Antigen/metabolism , Treatment Outcome , Aged , Biomarkers, Tumor , CD8-Positive T-Lymphocytes/immunology , Female , Exome Sequencing
10.
CNS Neurosci Ther ; 30(7): e14747, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973085

ABSTRACT

AIM: To explore the regulatory mechanisms of microglia-mediated cytotoxic CD8+ T-cell infiltration in the white matter injury of perioperative stroke (PIS). METHODS: Adult male C57BL/6 mice were subjected to ileocolic bowel resection (ICR) 24 h prior to permanent distant middle cerebral artery occlusion (dMCAO) to establish model PIS. White matter injury, functional outcomes, peripheral immune cell infiltration, and microglia phenotype were assessed up to 28 days after dMCAO using behavioral phenotyping, immunofluorescence staining, transmission electron microscopy, western blot, and FACS analysis. RESULTS: We found surgery aggravated white matter injury and deteriorated sensorimotor deficits up to 28 days following PIS. The PIS mice exhibited significantly increased activation of peripheral and central CD8+ T cells, while significantly reduced numbers of mature oligodendrocytes compared to IS mice. Neutralizing CD8+ T cells partly reversed the aggravated demyelination following PIS. Pharmacological blockage or genetic deletion of receptor-interacting protein kinase 1 (RIPK1) activity could alleviate CD8+ T-cell infiltration and demyelination in PIS mice. CONCLUSION: Surgery exacerbates demyelination and worsens neurological function by promoting infiltration of CD8+ T cells and microglia necroptosis, suggesting that modulating interactions of CD8+ T cells and microglia could be a novel therapeutic target of long-term neurological deficits of PIS.


Subject(s)
CD8-Positive T-Lymphocytes , Infarction, Middle Cerebral Artery , Mice, Inbred C57BL , White Matter , Animals , Male , Mice , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/immunology , White Matter/pathology , White Matter/immunology , Stroke/pathology , Stroke/immunology , Microglia/pathology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Lymphocyte Activation , Disease Models, Animal
11.
Front Immunol ; 15: 1427859, 2024.
Article in English | MEDLINE | ID: mdl-39026685

ABSTRACT

Endoplasmic reticulum stress occurs due to large amounts of misfolded proteins, hypoxia, nutrient deprivation, and more. The unfolded protein is a complex intracellular signaling network designed to operate under this stress. Composed of three individual arms, inositol-requiring enzyme 1, protein kinase RNA-like ER kinase, and activating transcription factor-6, the unfolded protein response looks to resolve stress and return to proteostasis. The CD8+ T cell is a critical cell type for the adaptive immune system. The unfolded protein response has been shown to have a wide-ranging spectrum of effects on CD8+ T cells. CD8+ T cells undergo cellular stress during activation and due to environmental insults. However, the magnitude of the effects this response has on CD8+ T cells is still understudied. Thus, studying these pathways is important to unraveling the inner machinations of these powerful cells. In this review, we will highlight the recent literature in this field, summarize the three pathways of the unfolded protein response, and discuss their roles in CD8+ T cell biology and functionality.


Subject(s)
CD8-Positive T-Lymphocytes , Endoplasmic Reticulum Stress , Signal Transduction , Unfolded Protein Response , Unfolded Protein Response/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , Animals , Endoplasmic Reticulum Stress/immunology , Protein Serine-Threonine Kinases/metabolism , Activating Transcription Factor 6/metabolism , Endoribonucleases/metabolism , Endoribonucleases/immunology , Lymphocyte Activation/immunology
12.
Oncoimmunology ; 13(1): 2376782, 2024.
Article in English | MEDLINE | ID: mdl-38983599

ABSTRACT

Immune checkpoint (IC) blockade and adoptive transfer of tumor-specific T-cells (ACT) are two major strategies to treat metastatic melanoma. Their combination can potentiate T-cell activation in the suppressive tumor microenvironment, but the autoimmune adverse effects associated with systemic injection of IC blockers persist with this strategy. ACT of tumor-reactive T-cells defective for IC expression would overcome this issue. For this purpose, PD-1 and TIGIT appear to be relevant candidates, because their co-expression on highly tumor-reactive lymphocytes limits their therapeutic efficacy within the tumor microenvironme,nt. Our study compares the consequences of PDCD1 or TIGIT genetic deletion on anti-tumor properties and T-cell fitness of melanoma-specific T lymphocytes. Transcriptomic analyses revealed down-regulation of cell cycle-related genes in PD-1KO T-cells, consistent with biological observations, whereas proliferative pathways were preserved in TIGITKO T-cells. Functional analyses showed that PD-1KO and TIGITKO T-cells displayed superior antitumor reactivity than their wild-type counterpart in vitro and in a preclinical melanoma model using immunodeficient mice. Interestingly, it appears that TIGITKO T-cells were more effective at inhibiting tumor cell proliferation in vivo, and persist longer within tumors than PD-1KO T-cells, consistent with the absence of impact of TIGIT deletion on T-cell fitness. Taken together, these results suggest that TIGIT deletion, over PD-1 deletion, in melanoma-specific T-cells is a compelling option for future immunotherapeutic strategies.


Subject(s)
Melanoma , Programmed Cell Death 1 Receptor , Receptors, Immunologic , Animals , Mice , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Melanoma/immunology , Melanoma/genetics , Melanoma/pathology , Melanoma/therapy , Gene Deletion , Tumor Microenvironment/immunology , Mice, Knockout , Mice, Inbred C57BL , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor , Humans , Lymphocyte Activation/immunology
13.
EMBO Rep ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956225

ABSTRACT

Signals emanating from the T-cell receptor (TCR), co-stimulatory receptors, and cytokine receptors each influence CD8 T-cell fate. Understanding how these signals respond to homeostatic and microenvironmental cues can reveal new ways to therapeutically direct T-cell function. Through forward genetic screening in mice, we discover that loss-of-function mutations in LDL receptor-related protein 10 (Lrp10) cause naive and central memory CD8 T cells to accumulate in peripheral lymphoid organs. Lrp10 encodes a conserved cell surface protein of unknown immunological function. T-cell activation induces Lrp10 expression, which post-translationally suppresses IL7 receptor (IL7R) levels. Accordingly, Lrp10 deletion enhances T-cell homeostatic expansion through IL7R signaling. Lrp10-deficient mice are also intrinsically resistant to syngeneic tumors. This phenotype depends on dense tumor infiltration of CD8 T cells, which display increased memory cell characteristics, reduced terminal exhaustion, and augmented responses to immune checkpoint inhibition. Here, we present Lrp10 as a new negative regulator of CD8 T-cell homeostasis and a host factor that controls tumor resistance with implications for immunotherapy.

14.
Cancer Immunol Immunother ; 73(9): 176, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954030

ABSTRACT

BACKGROUND: Tissue-resident memory CD103+CD8+ T cells (CD103+CD8+ TRMs) are important components of anti-tumor immunity. However, the significance of CD103+CD8+ TRMs in colorectal cancer (CRC) and their advantages remain unclear. METHODS: Clinical data and specimens were used to evaluate the significance of CD103+CD8+ TRMs in CRC. A mouse subcutaneous tumorigenesis model and colony-formation assay were conducted to evaluate the anti-tumor effects of CD103+CD8+ TRMs. Finally, the infiltration density and function of CD103+CD8+ TRMs in the tumors were evaluated using flow cytometry. RESULTS: In this study, we showed that highly infiltrated CD103+CD8+ TRMs were associated with earlier clinical stage and negative VEGF expression in CRC patients and predicted a favorable prognosis for CRC/CRC liver metastases patients. Interestingly, we also found that CD103+CD8+ TRMs may have predictive potential for whether CRC develops liver metastasis in CRC. In addition, we found a positive correlation between the ratio of the number of α-SMA+ vessels to the sum of the number of α-SMA+ and CD31+ vessels in CRC, and the infiltration level of CD103+CD8+ TRMs. In addition, anti-angiogenic therapy promoted infiltration of CD103+CD8+ TRMs and enhanced their ability to secrete interferon (IFN)-γ, thus further improving the anti-tumor effect. Moreover, in vivo experiments showed that compared with peripheral blood CD8+ T cells, CD103+CD8+ TRMs infused back into the body could also further promote CD8+ T cells to infiltrate the tumor, and they had a stronger ability to secrete IFN-γ, which resulted in better anti-tumor effects. CONCLUSION: We demonstrated that CD103+CD8+ TRMs have the potential for clinical applications and provide new ideas for combined anti-tumor therapeutic strategies, such as anti-tumor angiogenesis therapy and CAR-T combined immunotherapy.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Immunologic Memory , Integrin alpha Chains , Liver Neoplasms , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Integrin alpha Chains/metabolism , Integrin alpha Chains/immunology , Animals , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Liver Neoplasms/immunology , Liver Neoplasms/secondary , Antigens, CD/metabolism , Prognosis , Female , Male , Biomarkers, Tumor/metabolism , Memory T Cells/immunology , Memory T Cells/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Middle Aged
16.
Theranostics ; 14(10): 3793-3809, 2024.
Article in English | MEDLINE | ID: mdl-38994031

ABSTRACT

Rationale: CD8+ T cells undergo a series of metabolic reprogramming processes during their activation and proliferation, including increased glycolysis, decreased aerobic oxidation of sugars, increased amino acid metabolism and increased protein synthesis. However, it is still unclear what factors regulate these metabolic reprogramming processes in CD8+ T cells in the tumor immune microenvironment. Methods: T cell chromobox protein 4 (CBX4) knock-out mice models were used to determine the role of CBX4 in CD8+ T cells on the tumor immune microenvironment and tumor progression. Flow cytometry, Cut-Tag qPCR, Chip-seq, immunoprecipitation, metabolite detection, lentivirus infection and adoptive T cells transfer were performed to explore the underlying mechanisms of CBX4 knock-out in promoting CD8+ T cell activation and inhibiting tumor growth. Results: We found that CBX4 expression was induced in tumor-infiltrating CD8+ T cells and inhibited CD8+ T cell function by regulating glucose metabolism in tumor tissue. Mechanistically, CBX4 increases the expression of the metabolism-associated molecule aldolase B (Aldob) through sumoylation of trans-acting transcription factor 1 (SP1) and Krüppel-like factor 3 (KLF3). In addition, Aldob inhibits glycolysis and ATP synthesis in T cells by reducing the phosphorylation of the serine/threonine protein kinase (Akt) and ultimately suppresses CD8+ T cell function. Significantly, knocking out CBX4 may improve the efficacy of anti-PD-1 therapy by enhancing the function of CD8+ T cells in the tumor microenvironment. Conclusion: CBX4 is involved in CD8+ T cell metabolic reprogramming and functional persistence in tumor tissues, and serves as an inhibitor in CD8+ T cells' glycolysis and effector function.


Subject(s)
CD8-Positive T-Lymphocytes , Glycolysis , Mice, Knockout , Tumor Microenvironment , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice , Tumor Microenvironment/immunology , Cell Line, Tumor , Mice, Inbred C57BL , Fructose-Bisphosphate Aldolase/metabolism , Fructose-Bisphosphate Aldolase/genetics , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Humans , Cellular Reprogramming
17.
Mol Immunol ; 173: 40-52, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39053388

ABSTRACT

HIV-1 chronically infects host CD4+ T lymphocytes and further affects a variety of immune cells, including CD8+ T cells. In our previous study, by analyzing unbiased high-dimensional single-cell RNA-seq data (scRNA-seq), we found that the frequency of GZMK+CD8+ T cells expressing granzyme K (GZMK) was increased in people living with HIV-1 (PLWHs). However, the phenotypic and functional characteristics of these cells in chronic HIV-1 infection and their correlation with disease are not well understood. In this study, we conducted a comprehensive analysis of scRNA-seq and matched T-cell receptor repertoire (TCR) sequencing data to delve into the characterizations of GZMK+CD8+ T cells, which was further validated by flow cytometry. We observed heterogeneity within the GZMK+CD8+ T cells, which could be further subdivided into a GZMK+GZMB- subset and a GZMK+GZMB+ subset, with the latter being significantly enriched in PLWHs. The GZMK+GZMB+ cells are a unique subset within CD8+ T cells, characterized by high proliferation, activation, inflammatory response, clone transition, etc., and are one of the differentiation endpoints by pseudotemporal analysis of CD8+αß T cells. Despite being predominantly composed of effector memory T cells (Tem), similar to the GZMK+GZMB- subset, the GZMK+GZMB+ subset exhibits differentiation at a later stage than the GZMK+GZMB- subset. We also observed that the frequency/count of GZMK+GZMB+CD8+ T cells was negatively correlated with CD4/CD8 ratio, and positively correlated with HIV DNA, IP-10, and MIG levels in PLWHs. In vitro experiments demonstrate that GZMK can potentiate the stimulatory effects of lipopolysaccharide (LPS) on THP-1 macrophages via the TLR-4 pathway, significantly enhancing the secretion of IP-10, MIG, and MCP-1, as well as increasing the proportion of TNF-α+ cells. In conclusion, in PLWHs, GZMK+GZMB+CD8+ T cells are a highly reactive and inflammatory-inducing subset that may be associated with systemic inflammation.

18.
Front Cell Infect Microbiol ; 14: 1410015, 2024.
Article in English | MEDLINE | ID: mdl-38957797

ABSTRACT

Background: Tuberculosis (TB) persists as a global health challenge, with its treatment hampered by the side effects of long-term combination drug therapies and the growing issue of drug resistance. Therefore, the development of novel therapeutic strategies is critical. This study focuses on the role of immune checkpoint molecules (ICs) and functions of CD8+ T cells in the search for new potential targets against TB. Methods: We conducted differential expression genes analysis and CD8+ T cell functional gene analysis on 92 TB samples and 61 healthy individual (HI) samples from TB database GSE83456, which contains data on 34,603 genes. The GSE54992 dataset was used to validated the findings. Additionally, a cluster analysis on single-cell data from primates infected with mycobacterium tuberculosis and those vaccinated with BCG was performed. Results: The overexpression of LAG-3 gene was found as a potentially important characteristic of both pulmonary TB (PTB) and extrapulmonary TB (EPTB). Further correlation analysis showed that LAG-3 gene was correlated with GZMB, perforin, IL-2 and IL-12. A significant temporal and spatial variation in LAG-3 expression was observed in T cells and macrophages during TB infection and after BCG vaccination. Conclusion: LAG-3 was overexpressed in TB samples. Targeting LAG-3 may represent a potential therapeutic target for tuberculosis.


Subject(s)
Antigens, CD , CD8-Positive T-Lymphocytes , Lymphocyte Activation Gene 3 Protein , Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/genetics , CD8-Positive T-Lymphocytes/immunology , Tuberculosis/immunology , Tuberculosis/microbiology , Animals , Antigens, CD/genetics , BCG Vaccine/immunology , Macrophages/immunology , Macrophages/microbiology , Interleukin-2/metabolism , Interleukin-2/genetics , Gene Expression Profiling , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Interleukin-12/genetics , Interleukin-12/metabolism , Perforin/genetics , Perforin/metabolism , Male
19.
Mol Cell Proteomics ; 23(7): 100801, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880243

ABSTRACT

T cell activation is a complex biological process of naive cells maturing into effector cells. Proteomic and phospho-proteomic approaches have provided critical insights into this process, yet it is not always clear how changes in individual proteins or phosphorylation sites have functional significance. Here, we developed the Phosphorylation Integrated Thermal Shift Assay (PITSA) that combines the measurement of protein or phosphorylation site abundance and thermal stability into a single tandem mass tags experiment and apply this method to study T cell activation. We quantified the abundance and thermal stability of over 7500 proteins and 5000 phosphorylation sites and identified significant differences in chromatin-related, TCR signaling, DNA repair, and proliferative phosphoproteins. PITSA may be applied to a wide range of biological contexts to generate hypotheses as to which proteins or phosphorylation sites are functionally regulated in a given system as well as the mechanisms by which this regulation may occur.


Subject(s)
Lymphocyte Activation , Proteomics , T-Lymphocytes , Phosphorylation , T-Lymphocytes/metabolism , Proteomics/methods , Phosphoproteins/metabolism , Animals , Humans , Protein Stability , Signal Transduction , Tandem Mass Spectrometry , Mice
20.
Gene ; 927: 148711, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38906393

ABSTRACT

BACKGROUND: There is growing evidence indicating immune inflammation is a key factor in the progression of chronic obstructive pulmonary disease (COPD). Immune checkpoints (ICs) are crucial targets for modulating the functional activation and differentiation of immune cells, particularly in relation to immune inflammation and the regulation of T cell activation and exhaustion. However, the precise mechanisms of ICs in COPD remain understood. METHODS: COPD datasets were obtained from the Gene Expression Omnibus (GEO) and analyzed using GEO2R and Limma to identify differentially expressed genes. LASSO regression was then applied to screen ICs closely associated with COPD. Finally, target genes were selected based on gene expression profiles. Gene ontology (GO), immune infiltration analysis, and gene set enrichment analysis (GSEA) were utilized to assess the relationship between IC genes (ICGs) and immune cells. Subsequently, tobacco-exposed mice, anti-Tim3-treated mice, and HAVCR2-knockout mice were generated, with flow cytometry being used to confirm the results. RESULTS: Through the analysis of GSE38974 and LASSO regression, five ICGs were identified. Subsequent validation using GSE20257 and GSE76925 confirmed these findings. Gene expression profiling highlighted HAVCR2 as having the strongest correlation with COPD. Further investigation through immune infiltration analysis, GO, and GSEA indicated a link between HAVCR2 and CD8+ T cells in COPD. Flow cytometry experiments demonstrated high Tim3 expression in CD8+ T cells of mice exposed to tobacco, promoting Tc1 and inhibiting Tc17, thus affecting CD8+ Tem activation and CD8+ Tcm formation, leading to an immune imbalance within CD8+ T cells. CONCLUSION: Prolonged exposure to tobacco upregulates Tim3 in CD8+ T cells, triggering its regulatory effects on Tc1/Tc17. Knocking out HAVCR2 further upregulated the expression of CD8+ Tem while suppressing the expression of CD8+ Tcm, indicating that Tim3 plays a role in the activation and differentiation of CD8+ T cells in the context of tobacco exposure.


Subject(s)
Computational Biology , Hepatitis A Virus Cellular Receptor 2 , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/immunology , Animals , Humans , Mice , Computational Biology/methods , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/metabolism , Gene Expression Profiling/methods , Mice, Knockout , Immune Checkpoint Proteins/genetics , Immune Checkpoint Proteins/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mice, Inbred C57BL , Male
SELECTION OF CITATIONS
SEARCH DETAIL