Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Int Immunopharmacol ; 141: 112958, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39159564

ABSTRACT

Acute myeloid leukemia (AML) is one of the most common types of blood cancer in adults and is associated with a poor survival rate. NK cells play a crucial role in combating AML, and alterations in immune checkpoint expression can impair NK cell function against AML. Targeting certain checkpoints may restore this function. CD96, an inhibitory immune checkpoint, has unclear expression and roles on NK cells in AML patients. In this study, we initially evaluated CD96 expression and compared CD96+ NK with the inhibitory receptor and stimulatory receptors on NK cells from AML patients at initial diagnosis. We observed increased CD96 expression on NK cells with dysfunctional phenotype. Further analysis revealed that CD96+ NK cells had lower IFN-γ production than CD96- NK cells. Blocking CD96 enhanced the cytotoxicity of primary NK and cord blood-derived NK (CB-NK) cells against leukemia cells. Notably, patients with a high frequency of CD96+ NK cells at initial diagnosis exhibited poorer clinical outcomes. Additionally, TGF-ß1 was found to enhance CD96 expression on NK cells via SMAD3 signaling. These findings suggest that CD96 is invovled in NK dysfunction against AML blast, and might be a potential target for restoring NK cell function in the fight against AML.

2.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928307

ABSTRACT

In oral squamous cell carcinoma (OSCC) tissues, an immunotolerant situation triggered by immune checkpoints (ICPs) can be observed. Immune checkpoint inhibitors (ICIs) against the PD1/PD-L axis are used with impressive success. However, the response rate is low and the development of acquired resistance to ICI treatment can be observed. Therefore, new treatment strategies especially involving immunological combination therapies need to be developed. The novel negative immune checkpoint BTLA has been suggested as a potential biomarker and target for antibody-based immunotherapy. Moreover, improved response rates could be displayed for tumor patients when antibodies directed against BTLA were used in combination with anti-PD1/PD-L1 therapies. The aim of the study was to check whether the immune checkpoint BTLA is overexpressed in OSCC tissues compared to healthy oral mucosa (NOM) and could be a potential diagnostic biomarker and immunological target in OSCC. In addition, correlation analyses with the expression of other checkpoints should clarify more precisely whether combination therapies are potentially useful for the treatment of OSCC. A total of 207 tissue samples divided into 2 groups were included in the study. The test group comprised 102 tissue samples of OSCC. Oral mucosal tissue from 105 healthy volunteers (NOM) served as the control group. The expression of two isoforms of BTLA (BTLA-1/2), as well as PD1, PD-L1/2 and CD96 was analyzed by RT-qPCR. Additionally, BTLA and CD96 proteins were detected by IHC. Expression levels were compared between the two groups, the relative differences were calculated, and statistical relevance was determined. Furthermore, the expression rates of the immune checkpoints were correlated to each other. BTLA expression was significantly increased in OSCC compared to NOM (pBTLA_1 = 0.003; pBTLA_2 = 0.0001, pIHC = 0.003). The expression of PD1, its ligands PD-L1 and PD-L2, as well as CD96, were also significantly increased in OSCC (p ≤ 0.001). There was a strong positive correlation between BTLA expression and that of the other checkpoints (p < 0.001; ρ ≥ 0.5). BTLA is overexpressed in OSCC and appears to be a relevant local immune checkpoint in OSCC. Thus, antibodies directed against BTLA could be potential candidates for immunotherapies, especially in combination with ICI against the PD1/PD-L axis and CD96.


Subject(s)
Biomarkers, Tumor , Mouth Neoplasms , Receptors, Immunologic , Humans , Mouth Neoplasms/immunology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Male , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Female , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Aged , Adult , Gene Expression Regulation, Neoplastic , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/drug therapy , Immune Checkpoint Proteins/metabolism , Immune Checkpoint Proteins/genetics
3.
Best Pract Res Clin Rheumatol ; : 101943, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599937

ABSTRACT

Giant cell arteritis (GCA) is a prototypic autoimmune disease with a highly selective tissue tropism for medium and large arteries. Extravascular GCA manifests with intense systemic inflammation and polymyalgia rheumatica; vascular GCA results in vessel wall damage and stenosis, causing tissue ischemia. Typical granulomatous infiltrates in affected arteries are composed of CD4+ T cells and hyperactivated macrophages, signifying the involvement of the innate and adaptive immune system. Lesional CD4+ T cells undergo antigen-dependent clonal expansion, but antigen-nonspecific pathways ultimately control the intensity and duration of pathogenic immunity. Patient-derived CD4+ T cells receive strong co-stimulatory signals through the NOTCH1 receptor and the CD28/CD80-CD86 pathway. In parallel, co-inhibitory signals, designed to dampen overshooting T cell immunity, are defective, leaving CD4+ T cells unopposed and capable of supporting long-lasting and inappropriate immune responses. Based on recent data, two inhibitory checkpoints are defective in GCA: the Programmed death-1 (PD-1)/Programmed cell death ligand 1 (PD-L1) checkpoint and the CD96/CD155 checkpoint, giving rise to the "lost inhibition concept". Subcellular and molecular analysis has demonstrated trapping of the checkpoint ligands in the endoplasmic reticulum, creating PD-L1low CD155low antigen-presenting cells. Uninhibited CD4+ T cells expand, release copious amounts of the cytokine Interleukin (IL)-9, and differentiate into long-lived effector memory cells. These data place GCA and cancer on opposite ends of the co-inhibition spectrum, with cancer patients developing immune paralysis due to excessive inhibitory checkpoints and GCA patients developing autoimmunity due to nonfunctional inhibitory checkpoints.

4.
Int J Mol Sci ; 24(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003255

ABSTRACT

Natural killer (NK) cell immunotherapy has emerged as a novel treatment modality for various cancer types, including leukemia. The modulation of inhibitory signaling pathways in T cells and NK cells has been the subject of extensive investigation in both preclinical and clinical settings in recent years. Nonetheless, further research is imperative to optimize antileukemic activities, especially regarding NK-cell-based immunotherapies. The central scientific question of this study pertains to the potential for boosting cytotoxicity in expanded and activated NK cells through the inhibition of inhibitory receptors. To address this question, we employed the CRISPR-Cas9 system to target three distinct inhibitory signaling pathways in NK cells. Specifically, we examined the roles of A2AR within the metabolic purinergic signaling pathway, CBLB as an intracellular regulator in NK cells, and the surface receptors NKG2A and CD96 in enhancing the antileukemic efficacy of NK cells. Following the successful expansion of NK cells, they were transfected with Cas9+sgRNA RNP to knockout A2AR, CBLB, NKG2A, and CD96. The analysis of indel frequencies for all four targets revealed good knockout efficiencies in expanded NK cells, resulting in diminished protein expression as confirmed by flow cytometry and Western blot analysis. Our in vitro killing assays demonstrated that NKG2A and CBLB knockout led to only a marginal improvement in the cytotoxicity of NK cells against AML and B-ALL cells. Furthermore, the antileukemic activity of CD96 knockout NK cells did not yield significant enhancements, and the blockade of A2AR did not result in significant improvement in killing efficiency. In conclusion, our findings suggest that CRISPR-Cas9-based knockout strategies for immune checkpoints might not be sufficient to efficiently boost the antileukemic functions of expanded (and activated) NK cells and, at the same time, point to the need for strong cellular activating signals, as this can be achieved, for example, via transgenic chimeric antigen receptor expression.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , CRISPR-Cas Systems/genetics , Gene Knockout Techniques , Killer Cells, Natural , Antigens, CD/metabolism
5.
Stem Cell Res Ther ; 14(1): 329, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37964351

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) have immunomodulatory properties and therapeutic effects on autoimmune diseases through their secreted factors, referred to as the secretome. However, the specific key factors of the MSC secretome and their mechanisms of action in immune cells have not been fully determined. Most in vitro experiments are being performed using immune cells, but experiments using natural killer (NK) cells have been neglected, and a few studies using NK cells have shown discrepancies in results. NK cells are crucial elements of the immune system, and adjustment of their activity is essential for controlling various pathological conditions. The aim of this study was to elucidate the role of the adipose tissue-derived stem cell (ADSC) secretome on NK cell activity. METHODS: To obtain the ADSC secretome, we cultured ADSCs in medium and concentrated the culture medium using tangential flow filtration (TFF) capsules. We assessed NK cell viability and proliferation using CCK-8 and CFSE assays, respectively. We analyzed the effects of the ADSC secretome on NK cell activity and pathway-related proteins using a combination of flow cytometry, ELISA, cytotoxicity assay, CD107a assay, western blotting, and quantitative real-time PCR. To identify the composition of the ADSC secretome, we performed LC-MS/MS profiling and bioinformatics analysis. To elucidate the molecular mechanisms involved, we used mRNA sequencing to profile the transcriptional expression of human blood NK cells. RESULTS: The ADSC secretome was found to restrict IL-2-mediated effector function of NK cells while maintaining proliferative potency. This effect was achieved through the upregulation of the inhibitory receptor CD96, as well as downregulation of activating receptors and IL-2 receptor subunits IL-2Rα and IL-2Rγ. These changes were associated with attenuated JAK-STAT and AKT pathways in NK cells, which were achieved through the upregulation of cytokine-inducible SH2-containing protein (CIS, encoded by Cish) and dual specificity protein phosphatase 4 (DUSP4). Furthermore, proteomic analysis revealed twelve novel candidates associated with the immunomodulatory effects of MSCs. CONCLUSIONS: Our findings reveal a detailed cellular outcome and regulatory mechanism of NK cell activity by the ADSC secretome and suggest a therapeutic tool for treating NK-mediated inflammatory and autoimmune diseases using the MSC secretome.


Subject(s)
Autoimmune Diseases , Proto-Oncogene Proteins c-akt , Humans , Interleukin-2/pharmacology , Up-Regulation , Chromatography, Liquid , Proteomics , Secretome , Tandem Mass Spectrometry , Stem Cells , Signal Transduction , Killer Cells, Natural , Adipose Tissue , Dual-Specificity Phosphatases , Mitogen-Activated Protein Kinase Phosphatases
6.
Bioengineering (Basel) ; 10(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37760110

ABSTRACT

Decidual natural killer cells (dNK cells) are an essential component of the immune cells present at the maternal-foetal interface during early pregnancy, and they play a vital role in various physiological processes. Abnormalities in the ratio or function of dNK cells have been linked to recurrent miscarriages. CD96 has been previously shown to regulate NK cell function in the tumour microenvironment; however, its role and mechanism at the maternal-foetal interface remains unclear. The present study aimed to investigate the immunomodulatory role of CD96 in dNK cells and its function at the maternal-foetal interface. Immunofluorescence staining and flow cytometry were used to detect the expression of cellular markers such as CD96. Furthermore, the secretory function, adhesion-function-related molecules, and cell proliferation markers of CD96+ and CD96- dNK cells were detected using flow cytometry. In addition, we performed cell culture experiments via the magnetic bead sorting of NK cells to detect changes in the expression of the aforementioned functional molecules in dNK cells after the CD96 blockade. Furthermore, we examined the functional characteristics of dNK cells after palmitic acid treatment at a concentration of 10 µM. We also examined the changes in dNK cell function when subjected to the combined effect of palmitic acid and CD96 antagonists. The results indicated that CD96, TIGIT, CD155, and CD112 were highly expressed at the maternal-foetal interface, with dNK cells predominantly expressing CD96, whereas TIGIT was mainly expressed on T cells, and CD155 and CD112 were mainly present in metaphase stromal and trophoblast cells. CD96+ dNK cells displayed low cytotoxic activity and a high adhesion phenotype, which mediated the immunosuppressive effect on dNK cells at the maternal-foetal interface. Palmitic acid upregulated CD96 expression on the surface of dNK cells in the coculture system, inhibiting dNK cell activity and increasing their adhesion molecule expression. CD96 antagonist treatment blocked the inhibitory effect of trophoblasts on dNK cells, resulting in enhanced cytokine secretion and reduced adhesion. The results of this study provide valuable insight into the immunomodulatory role of CD96 in dNK cells and its mechanism at the maternal-foetal interface, particularly in metaphase NK cells. This study sheds light on the mechanisms of immune regulation at the maternal-foetal interface and their implications for the study of recurrent miscarriages of unknown origin.

7.
Cancer Lett ; 573: 216381, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37660884

ABSTRACT

In recent years, there have been multiple breakthroughs in cancer immunotherapy, with immune checkpoint inhibitors becoming the most promising treatment strategy. However, available drugs are not always effective. As an emerging immune checkpoint molecule, CD155 has become an important target for immunotherapy. This review describes the structure and function of CD155, its receptors TIGIT, CD96, and CD226, and summarizes that CD155 expressed by tumor cells can upregulate its expression through the DNA damage response pathway and Ras-Raf-MEK-ERK signaling pathway. This review also elaborates the mechanism of immune escape after binding CD155 to its receptors TIGIT, CD96, and CD226, and summarizes the current progress of immunotherapy research regarding CD155 and its receptors. Besides, it also discusses the future direction of checkpoint immunotherapy.


Subject(s)
Immunotherapy , Neoplasms , Humans , Neoplasms/therapy , Immune Checkpoint Inhibitors , MAP Kinase Signaling System , Antigens, CD
8.
Open Med (Wars) ; 18(1): 20230745, 2023.
Article in English | MEDLINE | ID: mdl-37533738

ABSTRACT

Full spectrum flow cytometry brings a breakthrough for minimal residual disease (MRD) detection in acute myeloid leukemia (AML). We aimed to explore the role of a new panel in MRD detection. We established a 24-color full-spectrum flow cytometry panel. A tube of 24-color antibodies included CD45, CD117, CD34, HLA-DR, CD15, CD64, CD14, CD11c, CD11b, CD13, CD33, CD371, CD7, CD56, CD19, CD4, CD2, CD123, CD200, CD38, CD96, CD71, CD36, and CD9. We discovered that when a tube meets 26 parameters (24 colors), these markers were not only limited to the observation of MRD in AML, but also could be used for fine clustering of bone marrow cells. Mast cells, basophils, myeloid dendritic cells, and plasmacoid dendritic cells were more clearly observed. In addition, immune checkpoint CD96 had the higher expression in CD117+ myeloid naive cells and CD56dimNK cells, while had the lower expression in CD56briNK cells in AML-MRD samples than in normal bone marrow samples. CD200 expression was remarkably enhanced in CD117+ myeloid naive cells, CD4+ T cells, T cells, activated T cells, CD56dimNK cells, and CD56briNK cells in AML-MRD samples. Our results can be used as important basis for auxiliary diagnosis, prognosis judgment, treatment guidance, and immune regulation in AML.

9.
Discov Oncol ; 14(1): 96, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37306828

ABSTRACT

BACKGROUND: It is of great concern to identify prognostic signatures for the prediction and prediction of esophageal squamous cell carcinoma (ESCC), which is the lethal pathological type of malignancy. METHOD: Bulk RNA sequencing and scRNA-seq data were retrieved from GSE53624, GSE53622, and GSE188900. Disulfidptosis-related differentially expressed genes (DEGs) were identified between disulfidptosis-high score and disulfidptosis-low score groups. Functional annotation of DEGs were analyzed by Gene Ontology (GO). Consistent clustering and co-expression modules were analyzed, and then constructed a risk score model via multivariate Cox regression analysis. Immune infiltration and immunotherapy response analyses were conducted based on risk score. qRT-PCR, colony formation assay, and flow cytometry analysis were conducted in KYSE-150 and TE-1 cell lines. RESULTS: Seven genes (CD96, CXCL13, IL2RG, LY96, TPK1, ACAP1, and SOX17) were selected as marker genes. CD96 and SOX17 are independent prognostic signatures for ESCC patients, with a significant correlation with infiltrated immune cells. ESCC patients had worse response to nivolumab in the high-risk group. Through cellular experiments, we found that CD96 expression was associated with apoptosis and cell cycle ESCC cells. CONCLUSION: In a word, the risk score based on disulfidptosis is associated with prognosis and the immune microenvironment, which may direct immunotherapy of ESCC. The key gene of risk score, namely CD96, plays a role in proliferation and apoptosis in ESCC. We offer an insight into the exploration of the genomic etiology of ESCC for its clinical management.

10.
Cell Rep Med ; 4(4): 101012, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37075705

ABSTRACT

Loss of function of inhibitory immune checkpoints, unleashing pathogenic immune responses, is a potential risk factor for autoimmune disease. Here, we report that patients with the autoimmune vasculitis giant cell arteritis (GCA) have a defective CD155-CD96 immune checkpoint. Macrophages from patients with GCA retain the checkpoint ligand CD155 in the endoplasmic reticulum (ER) and fail to bring it to the cell surface. CD155low antigen-presenting cells induce expansion of CD4+CD96+ T cells, which become tissue invasive, accumulate in the blood vessel wall, and release the effector cytokine interleukin-9 (IL-9). In a humanized mouse model of GCA, recombinant human IL-9 causes vessel wall destruction, whereas anti-IL-9 antibodies efficiently suppress innate and adaptive immunity in the vasculitic lesions. Thus, defective surface translocation of CD155 creates antigen-presenting cells that deviate T cell differentiation toward Th9 lineage commitment and results in the expansion of vasculitogenic effector T cells.


Subject(s)
Giant Cell Arteritis , Mice , Animals , Humans , Giant Cell Arteritis/metabolism , Giant Cell Arteritis/pathology , Cytokines/metabolism , T-Lymphocytes , Adaptive Immunity , Antigens, CD/metabolism
11.
J Immunoassay Immunochem ; 44(4): 326-337, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-36949573

ABSTRACT

Studying the expression of hematopoietic stem cell markers from different sources might be useful in understanding stem cell biology in different niche conditions. The study aimed to assess the difference in cell surface markers (CD44, CD90, CD96) on hematopoietic stem cells in three different niche conditions; umbilical cord blood (UCB), normal bone marrow (NBM) and bone marrow samples from idiopathic (immune) thrombocytopenic purpura (IBM). This study was conducted on 300 cases divided into three study groups; 100 umbilical cord blood units collected from mothers undergoing cesarian section in gynecology and obstetrics department, 100 bone marrow samples from idiopathic (immune) thrombocytopenic purpura patients collected from university children hospital and 100 normal bone marrow samples with no evidence of disease in bone marrow tissue. CD44 was significantly elevated in UCB and NBM groups compared to IBM group (<0.001). There was also a significant elevation of CD90 and CD96 in IBM group compared to NBM group and UCB (<0.001). CD90 and CD96 play a role in the pathogenesis of ITP disorder and could be applied as a targeted therapy to improve the outcome of this disease.


Subject(s)
Purpura, Thrombocytopenic, Idiopathic , Humans , Antigens, CD , Hyaluronan Receptors , Purpura, Thrombocytopenic, Idiopathic/pathology , Thy-1 Antigens/genetics
12.
Cells ; 12(2)2023 01 13.
Article in English | MEDLINE | ID: mdl-36672244

ABSTRACT

Immune checkpoint blockade (ICB) therapy involves the inhibition of immune checkpoint regulators which reverses their limitation of T cell anti-tumor responses and results in long-lasting tumor regression. However, poor clinical response or tumor relapse was observed in some patients receiving such therapy administered via antibodies blocking the cytotoxic T lymphocyte-associated protein 4 (CTLA-4) or the programmed cell death 1 (PD-1) pathway alone or in combination, suggesting the involvement of additional immune checkpoints. CD96, a possible immune checkpoint, was previously shown to suppress natural killer (NK) cell anti-tumor activity but its role in human T cells remains controversial. Here, we demonstrate that CRISPR/Cas9-based deletion of CD96 in human T cells enhanced their killing of leukemia cells in vitro. T cells engineered with a chimeric antigen receptor (CAR) comprising human epidermal growth factor receptor 2 (EGFR2/HER2)-binding extracellular region and intracellular regions of CD96 and CD3ζ (4D5-96z CAR-T cells) were less effective in suppressing the growth of HER2-expressing tumor cells in vitro and in vivo compared with counterparts bearing CAR that lacked CD96 endodomain (4D5-z CAR-T cells). Together, our findings implicate a role for CD96 endodomain in attenuating T cell cytotoxicity and support combination tumor immunotherapy targeting multiple rather than single immune checkpoints.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , T-Lymphocytes , Neoplasms/metabolism , Killer Cells, Natural , Immunotherapy/methods , Receptors, Chimeric Antigen/metabolism , Antigens, CD/metabolism
13.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674817

ABSTRACT

The discovery of CTLA-4 and PD-1 checkpoints has prompted scientific researchers and the pharmaceutical industry to develop and conduct extensive research on tumor-specific inhibitors. As a result, the list of potential immune checkpoint molecules is growing over time. Receptors for nectin and nectin-like proteins have recently emerged as promising targets for cancer immunotherapy. Potential immune checkpoints, including CD226, TIGIT, and CD96, belong to this receptor class. Among them, CD96 has received little attention. In this mini-review, we aim to discuss the basic biology of CD96 as well as the most recent relevant research on this as a promising candidate for cancer immunotherapy.


Subject(s)
Antigens, CD , Neoplasms , Humans , Antigens, CD/metabolism , Immunotherapy , Killer Cells, Natural , Nectins/metabolism , Neoplasms/metabolism
14.
Adv Sci (Weinh) ; 10(7): e2202956, 2023 03.
Article in English | MEDLINE | ID: mdl-36581470

ABSTRACT

Targeting CD96 that originates in immune cells has shown potential for cancer therapy. However, the role of intrinsic CD96 in solid tumor cells remains unknown. Here, it is found that CD96 is frequently expressed in tumor cells from clinical breast cancer samples and is correlated with poor long-term prognosis in these patients. The CD96+ cancer cell subpopulations exhibit features of both breast cancer stem cells and chemoresistance. In vivo inhibition of cancer cell-intrinsic CD96 enhances the chemotherapeutic response in a patient-derived tumor xenograft model. Mechanistically, CD96 enhances mitochondrial fatty acid ß-oxidation via the CD155-CD96-Src-Stat3-Opa1 pathway, which subsequently promotes chemoresistance in breast cancer stem cells. A previously unknown role is identified for tumor cell-intrinsic CD96 and an attractive target in improving the chemotherapeutic response.


Subject(s)
Drug Resistance, Neoplasm , Fatty Acids , Mitochondria , Neoplasms , Neoplastic Stem Cells , Animals , Humans , Antigens, CD/metabolism , Disease Models, Animal , Drug Resistance, Neoplasm/physiology , Fatty Acids/metabolism , Mitochondria/metabolism , Neoplasms/metabolism , Neoplastic Stem Cells/metabolism
15.
Clin Exp Med ; 23(2): 165-174, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35419661

ABSTRACT

Hematologic malignancy evades immune-mediated recognition through upregulating various checkpoint inhibitory receptors (IRs) on several types of lymphocytes. Immunotherapies targeting IRs have provided ample evidence supporting regulating innate and adaptive immunity and obtaining clinical benefits. Newly described IRs have received considerable attention and are under investigation in cancer immunotherapy. Specifically, T cell immunoglobulin and ITIM domain is a novel inhibitory checkpoint receptor, and its immune checkpoint axis includes additional receptors such as CD96 and CD226, which are very promising targets. However, how the dynamics and functions of these receptor networks remain unknown, this review addresses the recent findings of the relevance of this complex receptor-ligand system and discusses their potential approaches in translating these preclinical findings into novel clinical agents in anti-leukemia immunotherapy.


Subject(s)
Antigens, Differentiation, T-Lymphocyte , Neoplasms , Humans , Receptors, Immunologic , Neoplasms/therapy , Immunotherapy
16.
Biomedicines ; 10(9)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36140247

ABSTRACT

One important prerequisite for developing a therapeutic monoclonal antibody is to evaluate its in vivo efficacy. We tested the therapeutic potential of an anti-CD96 antibody alone or in combination with an anti-PD-1 antibody in a mouse colon cancer model. Early anti-PD-1 treatment significantly decreased tumor growth and the combination with anti-CD96 further increased the therapeutic benefit, while anti-CD96 treatment alone had no effect. In late therapeutic settings, the treatment combination resulted in enhanced CD8+ T cell infiltration of tumors and an increased CD8/Treg ratio. Measured anti-PD-1 concentrations were as expected in animals treated with anti-PD-1 alone, but lower at later time points in animals receiving combination treatment. Moreover, anti-CD96 concentrations dropped dramatically after 10 days and were undetectable thereafter in most animals due to the occurrence of anti-drug antibodies that were increasing antibody clearance. Comparison of the anti-PD-1 concentrations with tumor growth showed that higher antibody concentrations in plasma correlated with better therapeutic efficacy. The therapeutic effect of anti-CD96 treatment could not be evaluated, because plasma concentrations were too low. Our findings strongly support the notion of measuring both plasma concentration and anti-drug antibody formation throughout in vivo studies, in order to interpret pharmacodynamic data correctly.

17.
Expert Rev Clin Immunol ; 18(12): 1217-1237, 2022 12.
Article in English | MEDLINE | ID: mdl-36154551

ABSTRACT

INTRODUCTION: The development of therapeutic antibodies targeting immune checkpoint molecules (ICMs) that induce long-term remissions in cancer patients has revolutionized cancer immunotherapy. However, a major drawback is that relapse after an initial response may be attributed to innate and acquired resistance. Additionally, these treatments are not beneficial to all patients. Therefore, the discovery and targeting of novel ICMs and their combination with other immunotherapeutics are urgently needed. AREAS COVERED: There has been increasing evidence of the CD96-TIGIT axis as ICMs in cancer immunotherapy in the last five years. This review will highlight and discuss the current knowledge about the role of CD96 and TIGIT in hematological and solid tumor immunotherapy in the context of empirical studies and clinical trials, and provide a comprehensive list of ongoing cancer clinical trials on the blockade of these ICMs, as well as the rationale behind combinational therapies with anti-PD-1/PD-L1 agents, chemotherapy drugs, and radiotherapy. Moreover, we share our perspectives on anti-CD96/TIGIT-related combination therapies. EXPERT OPINION: CD96-TIGIT axis regulates anti-tumor immune responses. Thus, the receptors within this axis are the potential candidates for cancer immunotherapy. Combining the inhibition of CD96-TIGIT with anti-PD-1/PD-L1 mAbs and chemotherapy drugs has shown relatively effective results in the context of preclinical studies and tumor models.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , Receptors, Immunologic , Immunotherapy/methods , Antibodies, Monoclonal/therapeutic use
18.
Cancer Sci ; 113(12): 4070-4081, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35997524

ABSTRACT

CD96 was identified as a novel immune checkpoint. However, the role of CD96 in the gastric cancer (GC) microenvironment remains fragmentary. This study aimed to probe the clinical significance of CD96 to predict prognosis and therapeutic responsiveness, and to reveal the immune contexture and genomic features correlated to CD96 in GC patients. We enrolled 496 tumor microarray specimens of GC patients from Zhongshan Hospital (ZSHS) for immunohistochemical analyses. Four hundred and twelve GC patients from the Cancer Genome Atlas (TCGA) and 61 GC patients treated with pembrolizumab from ERP107734 published in the European Nucleotide Archive (ENA) were gathered for further analysis of the association between CD96+ cell infiltration and immune contexture, molecular characteristics, and genomic features by CIBERSORT and gene set enrichment analysis. Clinical outcomes were analyzed by Kaplan-Meier curves, the Cox model, interaction testing, and receiver operating characteristic analysis. High CD96+ cell infiltration predicted poor prognosis and inferior survival benefits from fluorouracil-based adjuvant chemotherapy in the ZSHS cohort whereas superior therapeutic responsiveness to pembrolizumab was shown in the ENA cohort. CD96-enriched tumors showed an immunosuppressive tumor microenvironment featured by exhausted CD8+ T-cell infiltration in both the ZSHS and TCGA cohorts. Moreover, in silico analysis for the TCGA cohort revealed that several biomarker-targeted pathways displayed significantly elevated enrichment levels in the CD96 high subgroup. This study elucidated that CD96 might drive an immunosuppressive contexture with CD8+ T-cell exhaustion and represent an independent adverse prognosticator in GC. CD96 could potentially be a novel biomarker for precision medicine of adjuvant chemotherapy, immunotherapy, and targeted therapies in GC.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Chemotherapy, Adjuvant , Fluorouracil , Immunotherapy , Tumor Microenvironment/genetics , Prognosis
19.
Clin Respir J ; 16(8): 546-554, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35866671

ABSTRACT

Natural killer (NK) cells are regarded as the host's first line of defense against viral infection. Moreover, the involvement of NK cells in chronic obstructive pulmonary disease (COPD) has been documented. However, the specific mechanism and biological changes of NK cells in COPD development have not been determined. In this study, we extracted NK cells from the peripheral blood of 18 COPD patients who were recovering from an acute exacerbation and 45 healthy donors (HDs), then we labeled NK cells with different antibodies and analyzed with flow cytometry. The data showed that the frequencies of total NK cells in the peripheral blood of COPD patients were lower compared with HDs. Moreover, the inhibitory receptors on NK cells expressed higher levels and the expression of activating receptors were generally low. Importantly, both the expression levels of CD96 in NK cells and the frequencies of CD96+ NK cells were significantly upregulated in COPD patients. These findings suggest that surface receptor CD96 from NK cells may be a risk factor in the evolution of COPD.


Subject(s)
Killer Cells, Natural , Pulmonary Disease, Chronic Obstructive , Antigens, CD/metabolism , Flow Cytometry , Humans , Killer Cells, Natural/metabolism
20.
Int J Surg Pathol ; 30(3): 335-338, 2022 May.
Article in English | MEDLINE | ID: mdl-34657489

ABSTRACT

Tenosynovial giant cell tumors typically arise in the synovium of joints, bursae, or tendon sheaths. They may occur in an intra- or extra-articular location and can be divided into localized and diffuse types. The neoplastic nature of the lesion has been supported by a recurrent CSF1 gene rearrangement in a small subset of lesional cells, of which the most common fusion partner is COL6A3. Herein, we report a case of intramuscular localized tenosynovial giant cell tumor harboring a novel CSF1-CD96 fusion transcript, thus expanding the molecular profile of this tumor.


Subject(s)
Giant Cell Tumor of Tendon Sheath , Giant Cell Tumors , Antigens, CD , Giant Cell Tumor of Tendon Sheath/diagnosis , Giant Cell Tumor of Tendon Sheath/genetics , Giant Cell Tumors/diagnosis , Giant Cell Tumors/genetics , Giant Cell Tumors/metabolism , Humans , Macrophage Colony-Stimulating Factor/genetics , Synovial Membrane/pathology
SELECTION OF CITATIONS
SEARCH DETAIL