Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
Aging (Albany NY) ; 16(16): 11893-11903, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39172098

ABSTRACT

OBJECTIVE: To explore the underlying molecular mechanism of Notch1/cadherin 5 (CDH5) pathway in modulating in cell malignant behaviors of gastric cancer (GC). METHODS: We performed bioinformatic analyses to screen the potential target genes of Notch1 from cadherins in GC. Western blot and RT-PCR were conducted to detect CDH5 expression in GC tissues and cells. We utilized chromatin immunoprecipitation (CHIP) assays to assess the interaction of Notch1 with CDH5 gene. The effects of Notch1/CDH5 axis on the proliferation, invasion, migration and vasculogenic mimicry in GC cells were evaluated by EdU, wound healing, transwell, and tubule formation assays. RESULTS: Significantly increased CDH5 expression was found in GC tissues compared with paracancerous tissues and associated to clinical stage and poor overall survival (OS) in patients with GC. Notch1 positively regulate the expression of CDH5 in GC cells. CHIP assays validated that CDH5 was a direct target of Notch1. In addition, Notch1 upregulation enhanced the proliferation, migration, invasion and vasculogenic mimicry capacity of GC cells, which could be attenuated by CDH5 silencing. CONCLUSIONS: These results indicated Notch1 upregulation enhanced GC malignant behaviors by triggering CDH5, suggesting that targeting Notch1/CDH5 axis could be a potential therapeutic strategy for GC progression.


Subject(s)
Antigens, CD , Cadherins , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Receptor, Notch1 , Signal Transduction , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Humans , Cadherins/metabolism , Cadherins/genetics , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Antigens, CD/metabolism , Antigens, CD/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Cell Movement/genetics , Male , Female , Neoplasm Invasiveness , Middle Aged , Neoplasm Metastasis
2.
BMC Cancer ; 24(1): 420, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580922

ABSTRACT

BACKGROUND: Clear cell carcinoma of the kidney is a common urological malignancy characterized by poor patient prognosis and treatment outcomes. Modulation of vasculogenic mimicry in tumor cells alters the tumor microenvironment and the influx of tumor-infiltrating lymphocytes, and the combination of its inducers and immune checkpoint inhibitors plays a synergistic role in enhancing antitumor effects. METHODS: We downloaded the data from renal clear cell carcinoma samples and vasculogenic mimicry-related genes to establish a new vasculogenic mimicry-related index (VMRI) using a machine learning approach. Based on VMRI, patients with renal clear cell carcinoma were divided into high VMRI and low VMRI groups, and patients' prognosis, clinical features, tumor immune microenvironment, chemotherapeutic response, and immunotherapeutic response were systematically analyzed. Finally, the function of CDH5 was explored in renal clear cell carcinoma cells. RESULTS: VMRI can be used for prognostic and immunotherapy efficacy prediction in a variety of cancers, which consists of four vasculogenic mimicry-related genes (CDH5, MMP9, MAPK1, and MMP13), is a reliable predictor of survival and grade in patients with clear cell carcinoma of the kidney and has been validated in multiple external datasets. We found that the high VMRI group presented higher levels of immune cell infiltration, which was validated by pathological sections. We performed molecular docking prediction of vasculogenic mimicry core target proteins and identified natural small molecule drugs with the highest affinity for the target protein. Knockdown of CDH5 inhibited the proliferation and migration of renal clear cell carcinoma. CONCLUSIONS: The VMRI identified in this study allows for accurate prognosis assessment of patients with renal clear cell carcinoma and identification of patient populations that will benefit from immunotherapy, providing valuable insights for future precision treatment of patients with renal clear cell carcinoma.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Molecular Docking Simulation , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Prognosis , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Kidney Neoplasms/pathology , Immunotherapy , Tumor Microenvironment/genetics
3.
J Cell Physiol ; 239(1): 212-226, 2024 01.
Article in English | MEDLINE | ID: mdl-38149479

ABSTRACT

Our study was conducted to investigate whether cadherin-5 (CDH5), a vascular endothelial cell adhesion glycoprotein, could facilitate the differentiation of human induced pluripotent stem cells (hiPSCs) into sinoatrial node-like pacemaker cells (SANLPCs), following previous findings of silk-fibroin hydrogel-induced direct conversion of quiescent cardiomyocytes into pacemaker cells in rats through the activation of CDH5. In this study, the differentiating hiPSCs were treated with CDH5 (40 ng/mL) between Day 5 and 7 during cardiomyocytes differentiation. The findings in the present study demonstrated that CDH5 stimulated the expression of pacemaker-specific markers while suppressing markers associated with working cardiomyocytes, resulting in an increased proportion of SANLPCs among hiPSCs-derived cardiomyocytes (hiPSC-CMs) population. Moreover, CDH5 induced typical electrophysiological characteristics resembling cardiac pacemaker cells in hiPSC-CMs. Further mechanistic investigations revealed that the enriched differentiation of hiPSCs into SANLPCs induced by CDH5 was partially reversed by iCRT14, an inhibitor of ß-catenin. Therefore, based on the aforementioned findings, it could be inferred that the regulation of ß-catenin by CDH5 played a crucial role in promoting the enriched differentiation of hiPSCs into SANLPCs, which presents a novel avenue for the construction of biological pacemakers in forthcoming research.


Subject(s)
Cadherins , Induced Pluripotent Stem Cells , Myocytes, Cardiac , beta Catenin , Animals , Humans , Rats , Antigens, CD , beta Catenin/metabolism , Cadherins/pharmacology , Cell Differentiation , Myocytes, Cardiac/metabolism , Sinoatrial Node
4.
Pathol Res Pract ; 252: 154923, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37948997

ABSTRACT

BACKGROUND: Vascular endothelial growth factor (VEGF) -A and -C act as multifunctional molecules and growth factors, while VE-cadherin (cadherin 5, CDH5) is the endothelial junction protein. AIM: To assess the relationship between intratumoral VEGF -A, -C and CDH5 levels and clinical outcome, in primary, early-stage, breast cancer patients. PATIENTS AND METHODS: The study included 69 node-negative (N0) breast cancer patients, all of whom had not received any prior hormonal or chemotherapeutic systemic therapy that would affect the course of disease. The median follow-up period was 144 months. Intratumoral mRNA levels of VEGF -A, -C and CDH5 were determined by RT-qPCR. Prognostic performance was evaluated by Cox proportional hazards regression, Kaplan-Meier analysis, as well as by the multivariable approach based on the least absolute shrinkage and selection operator (LASSO) logit regression. Classification of patients into the low and high subgroups was performed using the outcome-oriented cut-off point categorization approach. RESULTS: Of the measured mRNAs, only CDH5 mRNA (t = -2.17; p = 0.04) and VEGF-C mRNA (t = -2.41; p = 0.03) showed significant differences between values in patient subgroups with distant metastasis and those without recurrences, respectively. These t-test results were in agreement with the Cox regression by which CDH5 mRNA reached the most pronounced hazard ratio (HR=2.07; p = 0.05), followed by VEGF-C mRNA (HR=1.59; p = 0.005). HR values above 1.0 indicate that high levels of either CDH5 or VEGF-C mRNAs associated with a higher risk of poor clinical outcome. Distant recurrence incidence was 26% for the CDH5high and 3% for the CDH5low subgroup (Kaplan-Meier analysis). Distant recurrence incidence was 23% for the VEGF-Chigh and 0% for VEGF-Clow subgroup. The independent prognostic value of VEGF-C mRNA was confirmed by LASSO regression. CONCLUSION: Intratumoral VEGF-A levels did not associate with disease outcome in primary, early-stage, breast cancer patients, whilst raised levels of either CDH5 or VEGF-C prognosticated a high risk of distant metastasis.


Subject(s)
Breast Neoplasms , Vascular Endothelial Growth Factor A , Humans , Female , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Antigens, CD/metabolism , Vascular Endothelial Growth Factors , Prognosis , RNA, Messenger/genetics , Biomarkers, Tumor/analysis
5.
Front Immunol ; 14: 1239875, 2023.
Article in English | MEDLINE | ID: mdl-37809080

ABSTRACT

Background: Cadherin 5 (CDH5) functions critically in maintaining cell adhesion and integrity of endothelial and vascular cells. The expression of CDH5 is abnormal in tumor cells, which may have great potential to serve as a new immune checkpoint. The current pan-cancer analysis was performed to better understand the role of CDH5 in tumor. Methods: The clinical significance and immunological function of CDH5 in pan-cancers were comprehensively analyzed based on the correlations between CDH5 and clinicopathologic features, prognosis values, tumor mutation burden (TMB), microsatellite instability (MSI), immune cells infiltration and immune response genes using 33 datasets from The Cancer Genome Atlas (TCGA). We further confirmed the expression of CDH5 in bladder cancer (BCa) tissues and cell lines. The CD8+ T cells were screened from peripheral blood of healthy controls and activated. BCa cell-CD8+ T cell co-culture assay and ELISA assay were carried out to verify the immunological function of CDH5. Results: The expression of CDH5 was down-regulated in 8 types of tumors including in BCa but up-regulated in 4 types of tumors. CDH5 was significantly correlated with tumor stage in 6 types of tumors. In addition, CDH5 was positively or negatively correlated with tumor prognosis. Furthermore, CDH5 was closely associated with TMB in 15 types of tumors and with MSI in 9 types of tumors. KEGG-GSEA and Hallmarks-GSEA analyses results indicated that CDH5 was positively related to immune response in most tumor types. In many tumors, CDH5 showed a positive correlation with immune cell infiltration. Enrichment analyses demonstrated that CDH5 was significantly related to the expression of many immunomodulators and chemokines. Further experiments showed that CDH5 was low-expressed in BCa tissues and cell lines in comparison to adjacent normal tissues and normal urothelial cell line, but it was positively associated with a better prognosis of BCa patients. The results of in vitro co-culture assay and ELISA assay demonstrated that CDH5 could promote the function of CD8+ T cells in TME of BCa. Conclusion: In summary, CDH5 was positively associated with a favorable prognosis and effective immune response in tumors, showing a great potential to serve as a novel tumor biomarker and immune checkpoint.


Subject(s)
CD8-Positive T-Lymphocytes , Urinary Bladder Neoplasms , Humans , Cadherins/genetics , Antigens, CD , Urinary Bladder Neoplasms/genetics , Biomarkers, Tumor/genetics
6.
Acta Biochim Biophys Sin (Shanghai) ; 55(11): 1797-1805, 2023 11 25.
Article in English | MEDLINE | ID: mdl-37766459

ABSTRACT

LincRNA-P21 is a tumor suppressor in esophageal squamous cell carcinoma (ESCC). Cell adhesion modules play vital roles in cell-cell and cell-extracellular matrix (ECM) interactions and malignant cancer progression. In this study, we investigate whether lincRNA-P21 exerts its functions by regulating the cell adhesion molecule cadherin 5 (CDH5) in ESCC. Moreover, the RNA binding protein (RBP) mediators of lincRNA-P21 and CDH5 are further examined. Cell viability, growth and migratory ability are assessed by calcein-AM/PI double staining, CCK-8, EdU, Transwell, and wound healing assays. The expression of collagen I and fibronectin is examined by immunofluorescence (IF). LincRNA-P21 and CDH5 are quantified by RT-qPCR and western blot analysis. Potential lincRNA-P21 targets are identified by RNA sequencing. RBPs that can interact with lincRNA-P21 and CDH5 are identified by RNA immunoprecipitation (RIP) assay. LincRNA-P21 knockdown increases cell viability, growth, cell migration, and collagen I and fibronectin expression in ESCC cells. LincRNA-P21 depletion induces the dysregulation of 316 genes, including CDH5, in TE-1 cells. CDH5 is identified as a downstream molecule of lincRNA-P21 given its close correlation with cell adhesion, ECM reconstruction, and cancer progression. LincRNA-P21 exerts its functions by negatively regulating CDH5 expression. YTH domain containing 1 (YTHDC1) mediates the regulatory effect of lincRNA-P21 on CDH5. LincRNA-P21 knockdown elevates cell viability and growth, promotes cell migration, and induces ECM reorganization by upregulating CDH5 via RBP YTHDC1 in ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , RNA, Long Noncoding , Humans , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/metabolism , Fibronectins/genetics , Fibronectins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Collagen/genetics , Collagen/metabolism , Cell Proliferation , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
7.
J Neuroinflammation ; 20(1): 8, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36631780

ABSTRACT

BACKGROUND: The innate lymphoid cell (ILC) family consists of NK cells, ILC type 1, 2, 3 and lymphoid tissue inducer cells. They have been shown to play important roles in homeostasis and immune responses and are generally considered tissue resident. Not much is known about the presence of ILC members within the central nervous system and whether they are tissue resident in this organ too. Therefore, we studied the presence of all ILC members within the central nervous system and after ischemic brain insult. METHODS: We used the photothrombotic ischemic lesion method to induce ischemic lesions within the mouse brain. Using whole-mount immunofluorescence imaging, we established that the ILCs were present at the rim of the lesion. We quantified the increase of all ILC members at different time-points after the ischemic lesion induction by flow cytometry. Their migration route via chemokine CXCL12 was studied by using different genetic mouse models, in which we induced deletion of Cxcl12 within the blood-brain barrier endothelium, or its receptor, Cxcr4, in the ILCs. The functional role of the ILCs was subsequently established using the beam-walk sensorimotor test. RESULTS: Here, we report that ILCs are not resident within the mouse brain parenchyma during steady-state conditions, but are attracted towards the ischemic stroke. Specifically, we identify NK cells, ILC1s, ILC2s and ILC3s within the lesion, the highest influx being observed for NK cells and ILC1s. We further show that CXCL12 expressed at the blood-brain barrier is essential for NK cells and NKp46+ ILC3s to migrate toward the lesion. Complementary, Cxcr4-deficiency in NK cells prevents NK cells from entering the infarct area. Lack of NK cell migration results in a higher neurological deficit in the beam-walk sensorimotor test. CONCLUSIONS: This study establishes the lack of ILCs in the mouse central nervous system at steady-state and their migration towards an ischemic brain lesion. Our data show a role for blood-brain barrier-derived CXCL12 in attracting protective NK cells to ischemic brain lesions and identifies a new CXCL12/CXCR4-mediated component of the innate immune response to stroke.


Subject(s)
Chemokine CXCL12 , Ischemic Stroke , Killer Cells, Natural , Animals , Mice , Brain/metabolism , Brain/pathology , Chemokine CXCL12/metabolism , Endothelial Cells , Immunity, Innate , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Killer Cells, Natural/metabolism , Lymphocytes
8.
Angiogenesis ; 26(1): 97-105, 2023 02.
Article in English | MEDLINE | ID: mdl-35972708

ABSTRACT

Extracranial arteriovenous malformation (AVM) is a congenital vascular anomaly causing disfigurement, bleeding, ulceration, and pain. Most lesions are associated with somatic MAP2K1 activating mutations in endothelial cells (ECs). The purpose of this study was to determine if EC expression of mutant activated MAP2K1 is sufficient to produce vascular malformations in mice. We generated mice with a ROSA26 allele containing a lox-stop-lox gene trap (GT), Map2k1 cDNA with an activating p.K57N missense mutation, an internal ribosomal entry site, and green fluorescent protein cDNA (R26GT-Map2k1-GFP). We expressed mutant MAP2K1 and GFP in ECs of fetal and newborn mice using Tg-Cdh5Cre or Tg-Cdh5CreER alleles. Tg-Cdh5Cre+/-;R26GT-Map2k1-GFP/+ animals that express mutant MAP2K1 in ECs in utero developed diffuse vascular abnormalities and died by embryonic (E) day 16.5. Tg-Cdh5CreER+/-;R26GT-Map2k1-GFP/+ animals in which mutant MAP2K1 expression was induced in ECs by tamoxifen at postnatal (P) day 1 developed vascular malformations in the brain, ear, and intestines by P23. The lesions consisted of abnormal networks of blood vessels containing recombined and non-recombined ECs. In conclusion, expression of MAP2K1 p.K57N is sufficient to cause vascular malformations in mice. This model can be used to study the malformation process and for pre-clinical pharmacologic studies.


Subject(s)
Arteriovenous Malformations , Vascular Malformations , Animals , Mice , Endothelial Cells/metabolism , DNA, Complementary/metabolism , Mutation/genetics , Arteriovenous Malformations/genetics , Vascular Malformations/pathology
9.
Lymphology ; 56(4): 152-159, 2023.
Article in English | MEDLINE | ID: mdl-39207407

ABSTRACT

Genetic anomalies affecting lymphatic development and function can lead to lymphatic dysfunction, which could manifest as lymphedema. Understanding the signaling pathways governing lymphatics function is crucial for developing targeted diagnostic and therapeutic interventions. This study aims to characterize genetic variants in genes involved in the PI3K/AKT signaling pathway, which plays a critical role in lymphangiogenesis. 408 patients diagnosed with primary lymphedema were sequenced using a next-generation sequencing (NGS) gene panel composed of 28 diagnostic genes and 71 candidate genes. The analysis revealed six variants in genes RELN, ARAP3, CDH5, and KIF11. Five of these variants have never been reported in the literature. All these genes have been correlated to lymphatic activity and are involved in the PI3K/ AKT pathway. As the PI3K/AKT signaling pathway plays an essential role in lymphangiogenesis and lymphatic function, genetic variants in genes correlated to this pathway could lead to lymphedema. Our findings underscore the potential of the PI3K/AKT pathway in lymphedema pathogenesis, supporting the role of RELN, ARAP3, CDH5,, and KIF11 as diagnostic and therapeutic targets.

10.
J Ovarian Res ; 15(1): 131, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36517864

ABSTRACT

BACKGROUND: Angiopoietin-like 4 (ANGPTL4) is highly expressed in a variety of neoplasms and promotes cancer progression. Nevertheless, the mechanism of ANGPTL4 in ovarian cancer (OC) metastasis remains unclear. This study aimeds to explore whether ANGPTL4 regulates OC progression and elucidate the underlying mechanism. METHODS: ANGPTL4 expression in clinical patient tumor samples was determined by immunohistochemistry (IHC) and high-throughput sequencing. ANGPTL4 knockdown (KD) and the addition of exogeneous cANGPTL4 protein were used to investigate its function. An in vivo xenograft tumor experiment was performed by intraperitoneal injection of SKOV3 cells transfected with short hairpin RNAs (shRNAs) targeting ANGPTL4 in nude mice. Western blotting and qRT-PCR were used to detect the levels of ANGPTL4, CDH5, p-AKT, AKT, ETV5, MMP2 and MMP9 in SKOV3 and HO8910 cells transfected with sh-ANGPTL4 or shRNAs targeting ETV5. RESULTS: Increased levels of ANGPTL4 were associated with poor prognosis and metastasis in OC and induced the angiogenesis and metastasis of OC cells both in vivo and in vitro. This tumorigenic effect was dependent on CDH5, and the expression levels of ANGPTL4 and CDH5 in human OC werepositively correlated. In addition, CDH5 activated p-AKT, and upregulated the expression of MMP2 and MMP9. We also found that the expression of ETV5 was upregulated by ANGPTL4, which could bind the promoter region of CDH5, leading to increased CDH5 expression. CONCLUSION: Our data indicated that an increase in the ANGPTL4 level results in increased ETV5 expression in OC, leading to metastasis via activation of the CDH5/AKT/MMP9 signaling pathway.


Subject(s)
Ovarian Neoplasms , Animals , Female , Humans , Mice , Angiopoietin-Like Protein 4/genetics , Angiopoietin-Like Protein 4/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , DNA-Binding Proteins , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9/genetics , Mice, Nude , Oncogenes/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Proto-Oncogene Proteins c-akt , RNA, Small Interfering , Transcription Factors
11.
JTCVS Open ; 10: 222-242, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36004249

ABSTRACT

Objective: The pedicled greater omentum, when applied onto stressed hearts using omentopexy, has been shown to be protective in humans and animals. The mechanisms underlying cardioprotection using omentopexy remain elusive. This study examined whether macrophage-mediated angiogenesis accounts for the cardioprotective effect of omentopexy in mice. Methods: C57BL/6 mice were subjected to minimally invasive transverse aortic constriction for 6 weeks and subsequent cardio-omentopexy for 8 weeks. Control mice underwent the same surgical procedures without aortic constriction or cardio-omentopexy. Results: Transverse aortic constriction led to left ventricular concentric hypertrophy, reduced mitral E/A ratio, increased cardiomyocyte size, and myocardial fibrosis in the mice that underwent sham cardio-omentopexy surgery. The negative effects of transverse aortic constriction were prevented by cardio-omentopexy. Myocardial microvessel density was elevated in the mice that underwent aortic constriction and sham cardio-omentopexy surgery, and cardio-omentopexy further enhanced angiogenesis. Nanostring gene array analysis uncovered the activation of angiogenesis gene networks by cardio-omentopexy. Flow cytometric analysis revealed that cardio-omentopexy triggered the accumulation of cardiac MHCIIloLyve1+TimD4+ (Major histocompatibility complex class IIlow lymphatic vessel endothelial hyaluronan receptor 1+ T cell immunoglobulin and mucin domain conataining 4+) resident macrophages at the omental-cardiac interface. Intriguingly, the depletion of macrophages with clodronate-liposome resulted in the failure of cardio-omentopexy to protect the heart and promote angiogenesis. Conclusions: Cardio-omentopexy protects the heart from pressure overload-elicited left ventricular hypertrophy and dysfunction by promoting myocardial angiogenesis. Cardiac MHCIIloLyve1+TimD4+ resident macrophages play a critical role in the cardioprotective effect and angiogenesis of cardio-omentopexy.

12.
Nat Cardiovasc Res ; 1(11): 1006-1021, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36910472

ABSTRACT

Sinusoids are specialized, low pressure blood vessels in the liver, bone marrow, and spleen required for definitive hematopoiesis. Unlike other blood endothelial cells (ECs), sinusoidal ECs express high levels of VEGFR3. VEGFR3 and its ligand VEGF-C are known to support lymphatic growth, but their function in sinusoidal vessels is unknown. In this study, we define a reciprocal VEGF-C/VEGFR3-CDH5 (VE-cadherin) signaling axis that controls growth of both sinusoidal and lymphatic vessels. Loss of VEGF-C or VEGFR3 resulted in cutaneous edema, reduced fetal liver size, and bloodless bone marrow due to impaired lymphatic and sinusoidal vessel growth. Mice with membrane-retained VE-cadherin conferred identical lymphatic and sinusoidal defects, suggesting that VE-cadherin opposes VEGF-C/VEGFR3 signaling. In developing mice, loss of VE-cadherin rescued defects in sinusoidal and lymphatic growth caused by loss of VEGFR3 but not loss of VEGF-C, findings explained by potentiated VEGF-C/VEGFR2 signaling in VEGFR3-deficient lymphatic ECs. Mechanistically, VEGF-C/VEGFR3 signaling induces VE-cadherin endocytosis and loss of function via SRC-mediated phosphorylation, while VE-cadherin prevents VEGFR3 endocytosis required for optimal receptor signaling. These findings establish an essential role for VEGF-C/VEGFR3 signaling during sinusoidal vascular growth, identify VE-cadherin as a powerful negative regulator of VEGF-C signaling that acts through both VEGFR3 and VEGFR2 receptors, and suggest that negative regulation of VE-cadherin is required for effective VEGF-C/VEGFR3 signaling during growth of sinusoidal and lymphatic vessels. Manipulation of this reciprocal negative regulatory mechanism, e.g. by reducing VE-cadherin function, may be used to stimulate therapeutic sinusoidal or lymphatic vessel growth.

13.
Lymphat Res Biol ; 20(5): 496-506, 2022 10.
Article in English | MEDLINE | ID: mdl-34882481

ABSTRACT

Background: Expressed by endothelial cells, CDH5 is a cadherin involved in vascular morphogenesis and in the maintenance of vascular integrity and lymphatic function. The main purpose of our study was to identify distinct variants of the CDH5 gene that could be associated with lymphatic malformations and predisposition for lymphedema. Methods and Results: We performed Next Generation Sequencing of the CDH5 gene in 235 Italian patients diagnosed with lymphedema but who tested negative for variants in known lymphedema genes. We detected six different variants in CDH5 five missense and one nonsense. We also tested available family members of the probands. For family members who carried the same variant as the proband, we performed lymphoscintigraphy to detect any lymphatic system abnormalities. Variants were modeled in silico. The results showed that CDH5 variants may contribute to the onset of lymphedema, although further in vitro studies are needed to confirm this hypothesis. Conclusions: Based on our findings, we propose CDH5 as a new gene that could be screened in patients with lymphedema to gather additional evidence.


Subject(s)
Lymphatic Abnormalities , Lymphedema , Humans , Endothelial Cells , Genetic Testing , Lymphedema/diagnostic imaging , Lymphedema/genetics , Cadherins/genetics , High-Throughput Nucleotide Sequencing , Lymphatic Abnormalities/genetics
14.
Eur J Cardiothorac Surg ; 61(1): 11-18, 2021 Dec 27.
Article in English | MEDLINE | ID: mdl-34293135

ABSTRACT

OBJECTIVES: Thoracic aortic aneurysm (TAA) is characterized by the dilation of the aorta and is associated with poor prognosis if not diagnosed and treated early. In this context, the identification of biomarkers regarding the TAA diagnosis, monitoring and prognosis is crucial. The purpose of the current study was to investigate the differential gene expression profile of the cadherin 5 (CDH5 or VE-Cadherin) gene network in patients with TAA, to propose novel biomarkers. METHODS: In silico techniques were used to construct the interactome of the CDH5 network, identify the differentially expressed genes (DEGs) in TAA as compared to healthy controls, and uncover the related molecular functions and the regulating miRNAs. RESULTS: Transcriptomic data of one microarray dataset were included, incorporating 43 TAA and 43 control samples. Eight DEGs were identified; 7 were up-regulated and 1 was down-regulated. A molecular signature of 8 genes (CDH5; Calcitonin Receptor-Like Receptor-CALCRL; Activin A Receptor-Like Type 1-ACVRL1, Tryptophanyl-TRNA Synthetase 1-WARS; Junction Plakoglobin-JUP, Protein Tyrosine Phosphatase Receptor Type J-PTPRJ, Purinergic Receptor P2X 4-P2RX4, Kinase Insert Domain Receptor-KDR) were identified as biomarkers associated with TAA. PTPRJ was associated with excellent discrimination and calibration in predicting TAA presentation. Positive correlations were reported regarding the expression of CDH5-CALCRL, CDH5-ACVRL1, CDH5-WARS and CDH5-PTPRJ. Finally, gene set enrichment analysis indicated the molecular functions and miRNA families (hsa-miR-296-5p, hsa-miR-6836-5p, hsa-miR-6132, hsa-miR-27a-5p and hsa-miR-6773-5p) relevant to the 8 biomarkers. CONCLUSIONS: These outcomes propose an 8-gene molecular panel associated with TAA.


Subject(s)
Aortic Aneurysm, Thoracic , Cadherins , MicroRNAs , Antigens, CD , Aortic Aneurysm, Thoracic/diagnosis , Aortic Aneurysm, Thoracic/genetics , Biomarkers , Computational Biology , Gene Expression Profiling , Humans , MicroRNAs/genetics
15.
Toxicol Rep ; 8: 536-547, 2021.
Article in English | MEDLINE | ID: mdl-33777700

ABSTRACT

Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with non-alcoholic fatty liver disease (NAFLD). Previously, we demonstrated that the PCB mixture, Aroclor1260, exacerbated NAFLD, reflective of toxicant-associated steatohepatitis, in diet-induced obese mice, in part through pregnane-xenobiotic receptor (PXR) and constitutive androstane receptor (CAR) activation. Recent studies have also reported PCB-induced changes in the gut microbiome that consequently impact NAFLD. Therefore, the objective of this study is to examine PCB effects on the gut-liver axis and characterize the role of CAR and PXR in microbiome alterations. C57Bl/6 (wildtype, WT), CAR and PXR knockout mice were fed a high fat diet and exposed to Aroclor1260 (20 mg/kg, oral gavage, 12 weeks). Metagenomics analysis of cecal samples revealed that CAR and/or PXR ablation increased bacterial alpha diversity regardless of exposure status. CAR and PXR ablation also increased bacterial composition (beta diversity) versus WT; Aroclor1260 altered beta diversity only in WT and CAR knockouts. Distinct changes in bacterial abundance at different taxonomic levels were observed between WT and knockout groups; however Aroclor1260 had modest effects on bacterial abundance within each genotype. Notably, both knockout groups displayed increased Actinobacteria and Verrucomicrobia abundance. In spite of improved bacterial diversity, the knockout groups however failed to show protection from PCB-induced hepato- and intestinal- toxicity including decreased mRNA levels of ileal permeability markers (occludin, claudin3). In summary, CAR and PXR ablation significantly altered gut microbiome in diet-induced obesity while Aroclor1260 compromised intestinal integrity in knockout mice, implicating interactions between PCBs and CAR, PXR on the gut-liver axis.

16.
Pathol Res Pract ; 220: 153393, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33740544

ABSTRACT

BACKGROUND: Cadherin-5 (CDH5) is aberrantly expressed in a variety of human cancers and plays an important role in angiogenesis. The present study provides further insight into the role of miR-27a-3p in the regulation of CDH5 expression in renal clear cell carcinoma (ccRCC). METHODS: Thedysregulation of CDH5 expression in ccRCC and its association with clinicopathological characteristics were analyzed using the TCGA database. A meta-analysis was performed to verify the alteration of CDH5 expression in ccRCC using the GEO database. Quantitative RT-PCR and immunohistochemical staining were applied to assess the transcriptional and protein levels of CDH5. TargetScan and Tarbase were employed to predict the miRNAs with the potential to target mRNA of CDH5. RESULTS: The mRNA level of CDH5 in ccRCCwas significantly higher than in normal tissue. CDH5 mRNA expression could therefore serve as a potential diagnostic biomarker for ccRCC (AUC = 0.844). However, the reduced CDH5 transcription levels were significantly correlated with patients in the T3-4 stage, lymph node, and distant metastasis, as well as with a worse clinical outcome. We further observed that CDH5, at the protein level, was almost absent in ccRCC samples. In addition, a few databases screen showed that mir-27a-3p is a highly conserved miRNA targeting CDH5. The expression of mir-27a-3p was significantly elevated in ccRCC tissues in contrast to normal tissues. Importantly, it was positively associated with the T3-4 stage and M stage, respectively, suggesting that the expression level of mir-27a-3p could serve as a diagnostic biomarker for ccRCC (AUC = 0.775). CONCLUSION: Our data suggest that thereduced translational level of CDH5 in ccRCC was related to the overexpression of mir-27a-3p. The higher mir-27a-3p and lower CDH5 expression significantly correlated with advanced clinical stages for ccRCC patients.


Subject(s)
Antigens, CD/genetics , Biomarkers, Tumor/genetics , Cadherins/genetics , Carcinoma, Renal Cell/genetics , Cell Movement , Cell Proliferation , Kidney Neoplasms/genetics , MicroRNAs/genetics , Antigens, CD/metabolism , Biomarkers, Tumor/metabolism , Cadherins/metabolism , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/secondary , Carcinoma, Renal Cell/therapy , Databases, Genetic , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/therapy , Male , MicroRNAs/metabolism , Middle Aged , Neoplasm Invasiveness , Neoplasm Staging , Predictive Value of Tests , Risk Assessment , Risk Factors , Time Factors
17.
Genes (Basel) ; 13(1)2021 12 25.
Article in English | MEDLINE | ID: mdl-35052395

ABSTRACT

Central serous chorioretinopathy (CSC) is a chorioretinal disease that usually affects the middle-aged population and is characterised by a thickened choroid, retinal pigment epithelium detachment, and subretinal fluid with a tendency towards spontaneous resolution. We investigated 13 single-nucleotide polymorphisms (SNPs) in 50 Slovenian acute CSC patients and 71 healthy controls in Complement Factor H (CFH), Nuclear Receptor Subfamily 3 Group C Member 2 (NR3C2), Cadherin 5 (CDH5) Age-Related Maculopathy Susceptibility 2 (ARMS2), TNF Receptor Superfamily Member 10a (TNFRSF10A), collagen IV alpha 3 (COL4A3) and collagen IV alpha 4 (COL4A4) genes using high-resolution melt analysis. Statistical calculations revealed significant differences in genotype frequencies for CFH rs1329428 (p = 0.042) between investigated groups and an increased risk for CSC in patients with TC (p = 0.040) and TT (p = 0.034) genotype. Genotype-phenotype correlation analysis revealed that CSC patients with CC genotype in CFH rs3753394 showed a higher tendency for spontaneous CSC episode resolution at 3 months from the disease onset (p = 0.0078), which could indicate clinical significance of SNP testing in CSC patients. Bioinformatics analysis of the non-coding polymorphisms showed alterations in transcription factor binding motifs for CFH rs3753394, CDH5 rs7499886 and TNFRSF10A rs13278062. No association of collagen IV polymorphisms with CSC was found in this study.


Subject(s)
Antigens, CD/genetics , Biomarkers/metabolism , Cadherins/genetics , Central Serous Chorioretinopathy/pathology , Polymorphism, Single Nucleotide , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Adult , Case-Control Studies , Central Serous Chorioretinopathy/genetics , Complement Factor H/genetics , Female , Fluorescein Angiography , Follow-Up Studies , Genetic Association Studies , Humans , Male , Middle Aged , Prognosis , Prospective Studies
18.
Mol Genet Genomic Med ; 8(12): e1534, 2020 12.
Article in English | MEDLINE | ID: mdl-33108070

ABSTRACT

BACKGROUND: Familial adenomatous polyposis (FAP) is an autosomal dominant hereditary disease with colorectal adenomatous polyps as the main clinical manifestations. The objective of this study was to analyze and compare the expression levels of tumor proliferation and angiogenesis-related genes in different tissue sections of FAP patients through qPCR, western blot, and immunohistochemistry (IHC) analysis. METHODS: Seventeen patients with FAP admitted to Tianjin Union Medical Center from January 2010 to June 2015 were selected, and then, normal intestinal mucosa, polyp tissue, or cancerous polyp tissue were collected. QPCR, western blot, and IHC were used to detect the expression level of genes or proteins correlated with tumor proliferation. RESULTS: The mRNA expression of CD31 in large polyp tissue was significantly higher than that in normal tissue and small polyp tissue. Compared with normal tissue and polyp tissue, the expression level of KI67 mRNA in cancer tissue was remarkably increased. The VEGFA mRNA and CDH5 mRNA expression in both polyp and cancer tissues were prominently lower than those in normal tissue. The expression of CD31 protein in cancer tissue was lower than that in normal tissue and polyp tissue, whereas the expression levels of VEGF, CDH5, and KI67 protein were widely higher than that in normal tissue and polyp tissue. CONCLUSION: Abnormal expressions of CD31, KI67, VEGF(A), and CDH5 were associated with the carcinogenesis of FAP.


Subject(s)
Adenomatous Polyposis Coli/genetics , Biomarkers, Tumor/genetics , Neovascularization, Pathologic/genetics , Adenomatous Polyposis Coli/metabolism , Adenomatous Polyposis Coli/pathology , Antigens, CD/genetics , Antigens, CD/metabolism , Biomarkers, Tumor/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Proliferation , Humans , Ki-67 Antigen/genetics , Ki-67 Antigen/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
19.
Comput Struct Biotechnol J ; 18: 2501-2509, 2020.
Article in English | MEDLINE | ID: mdl-33005312

ABSTRACT

Changes in tissue architecture and multicellular organisation contribute to many diseases, including cancer and cardiovascular diseases. Scratch wound assay is a commonly used tool that assesses cells' migratory ability based on the area of a wound they cover over a certain time. However, analysis of changes in the organisational patterns formed by migrating cells following genetic or pharmacological perturbations are not well explored in these assays, in part because analysing the resulting imaging data is challenging. Here we present DeepScratch, a neural network that accurately detects the cells in scratch assays based on a heterogeneous set of markers. We demonstrate the utility of DeepScratch by analysing images of more than 232,000 lymphatic endothelial cells. In addition, we propose various topological measures of cell connectivity and local cell density (LCD) to characterise tissue remodelling during wound healing. We show that LCD-based metrics allow classification of CDH5 and CDC42 genetic perturbations that are known to affect cell migration through different biological mechanisms. Such differences cannot be captured when considering only the wound area. Taken together, single-cell detection using DeepScratch allows more detailed investigation of the roles of various genetic components in tissue topology and the biological mechanisms underlying their effects on collective cell migration.

20.
Cell Rep ; 32(6): 108004, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32783932

ABSTRACT

During embryogenesis, lymphoid tissue inducer (LTi) cells are essential for lymph node organogenesis. These cells are part of the innate lymphoid cell (ILC) family. Although their earliest embryonic hematopoietic origin is unclear, other innate immune cells have been shown to be derived from early hemogenic endothelium in the yolk sac as well as the aorta-gonad-mesonephros. A proper model to discriminate between these locations was unavailable. In this study, using a Cxcr4-CreERT2 lineage tracing model, we identify a major contribution from embryonic hemogenic endothelium, but not the yolk sac, toward LTi progenitors. Conversely, embryonic LTi cells are replaced by hematopoietic stem cell-derived cells in adults. We further show that, in the fetal liver, common lymphoid progenitors differentiate into highly dynamic alpha-lymphoid precursor cells that, at this embryonic stage, preferentially mature into LTi precursors and establish their functional LTi cell identity only after reaching the periphery.


Subject(s)
Hemangioblasts/metabolism , Hematopoiesis/physiology , Lymphoid Tissue/embryology , Receptors, CXCR4/metabolism , Animals , Embryonic Development/physiology , Hemangioblasts/cytology , Hematopoietic Stem Cells/metabolism , Humans , Immunity, Innate , Liver/embryology , Lymphocytes/metabolism , T-Lymphocytes, Helper-Inducer/metabolism , Yolk Sac/embryology
SELECTION OF CITATIONS
SEARCH DETAIL