Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Front Immunol ; 15: 1431303, 2024.
Article in English | MEDLINE | ID: mdl-39267736

ABSTRACT

The role of Erythroid cells in immune regulation and immunosuppression is one of the emerging topics in modern immunology that still requires further clarification as Erythroid cells from different tissues and different species express different immunoregulatory molecules. In this study, we performed a thorough investigation of human bone marrow Erythroid cells from adult healthy donors and adult acute lymphoblastic leukemia patients using the state-of-the-art single-cell targeted proteomics and transcriptomics via BD Rhapsody and cancer-related gene copy number variation analysis via NanoString Sprint Profiler. We found that human bone marrow Erythroid cells express the ARG1, LGALS1, LGALS3, LGALS9, and C10orf54 (VISTA) immunosuppressive genes, CXCL5, CXCL8, and VEGFA cytokine genes, as well as the genes involved in antimicrobial immunity and MHC Class II antigen presentation. We also found that ARG1 gene expression was restricted to the single erythroid cell cluster that we termed ARG1-positive Orthochromatic erythroblasts and that late Erythroid cells lose S100A9 and gain MZB1 gene expression in case of acute lymphoblastic leukemia. These findings show that steady-state erythropoiesis bone marrow Erythroid cells express myeloid signature genes even without any transdifferentiating stimulus like cancer.


Subject(s)
Erythroid Cells , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Single-Cell Analysis , Humans , Erythroid Cells/metabolism , Erythroid Cells/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Differentiation/immunology , Proteomics/methods , Transcriptome , Gene Expression Profiling , Adult , Multiomics
2.
Cell Syst ; 15(9): 869-884.e6, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39243755

ABSTRACT

Cell surface proteins serve as primary drug targets and cell identity markers. Techniques such as CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) have enabled the simultaneous quantification of surface protein abundance and transcript expression within individual cells. The published data have been utilized to train machine learning models for predicting surface protein abundance solely from transcript expression. However, the small scale of proteins predicted and the poor generalization ability of these computational approaches across diverse contexts (e.g., different tissues/disease states) impede their widespread adoption. Here, we propose SPIDER (surface protein prediction using deep ensembles from single-cell RNA sequencing), a context-agnostic zero-shot deep ensemble model, which enables large-scale protein abundance prediction and generalizes better to various contexts. Comprehensive benchmarking shows that SPIDER outperforms other state-of-the-art methods. Using the predicted surface abundance of >2,500 proteins from single-cell transcriptomes, we demonstrate the broad applications of SPIDER, including cell type annotation, biomarker/target identification, and cell-cell interaction analysis in hepatocellular carcinoma and colorectal cancer. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Membrane Proteins , Single-Cell Analysis , Transcriptome , Humans , Single-Cell Analysis/methods , Transcriptome/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Computational Biology/methods , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods
3.
Res Sq ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39315268

ABSTRACT

Hidradenitis suppurativa (HS) is a chronic inflammatory skin condition characterized by painful nodules, abscesses, and scarring, predominantly affecting intertriginous regions and it is often underdiagnosed. This study aimed to utilize single cell RNA and cell-surface protein sequencing (CITE-Seq) to delineate the immune composition of circulating cells in Hidradenitis suppurativa (HS) peripheral blood compared to healthy controls. CITE-Seq was used to analyze the gene and protein expression profiles of peripheral blood mononuclear cells (PBMCs) from 9 HS and 29 healthy controls. The study identified significant differences cell composition between HS patients and healthy controls, including increased proportions of CD14+ and CD16+ monocytes, cDC2, plasmablasts, and proliferating CD4+ T cells in HS patients. Differential expression analysis revealed upregulation of inflammatory markers such as TNF, IL1B, and NF-κB in monocytes, as well as chemokines and cell adhesion molecules involved in immune cell recruitment and tissue infiltration. Pathway enrichment analysis highlighted the involvement of IL-17, IL-26 and TNF signaling pathways in HS pathogenesis. Machine learning identified key markers for diagnostics and therapeutic development. The findings also support the potential for machine learning models to aid in the diagnosis of HS based on immune cell markers. These insights may inform future therapeutic strategies targeting specific immune pathways in HS.

4.
Aging Cell ; : e14297, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143693

ABSTRACT

Cellular senescence, a state of persistent growth arrest, is closely associated with aging and age-related diseases. Deciphering the heterogeneity within senescent cell populations and identifying therapeutic targets are paramount for mitigating senescence-associated pathologies. In this study, proteins on the surface of cells rendered senescent by replicative exhaustion and by exposure to ionizing radiation (IR) were identified using mass spectrometry analysis, and a subset of them was further studied using single-cell CITE-seq (Cellular Indexing of Transcriptomes and Epitopes by Sequencing) analysis. Based on the presence of proteins on the cell surface, we identified two distinct IR-induced senescent cell populations: one characterized by high levels of CD109 and CD112 (cluster 3), the other characterized by high levels of CD112, CD26, CD73, HLA-ABC, CD54, CD49A, and CD44 (cluster 0). We further found that cluster 0 represented proliferating and senescent cells in the G1 phase of the division cycle, and CITE-seq detection of cell surface proteins selectively discerned those in the senescence group. Our study highlights the heterogeneity of senescent cells and underscores the value of cell surface proteins as tools for distinguishing senescent cell programs and subclasses, paving the way for targeted therapeutic strategies in disorders exacerbated by senescence.

5.
Yonsei Med J ; 65(9): 544-555, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39193763

ABSTRACT

PURPOSE: By utilizing both protein and mRNA expression patterns, we can identify more detailed and diverse immune cells, providing insights into understanding the complex immune landscape in cancer ecosystems. MATERIALS AND METHODS: This study was performed by obtaining publicly available Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) data of peripheral blood mononuclear cells (PBMCs) from the Gene Expression Omnibus database. A total of 94674 total cells were analyzed, of which 32412 were T cells. There were 228 protein features and 16262 mRNA features in the data. The Seurat package was used for quality control and preprocessing, principal component analysis was performed, and Uniform Manifold Approximation and Projection was used to visualize the clusters. Protein and mRNA levels in the CITE-seq were analyzed. RESULTS: We observed that a subset of T cells in the clusters generated at the protein level divided better. By identifying mRNA markers that were highly correlated with the CD4 and CD8 proteins and cross-validating CD26 and CD99 markers using flow cytometry, we found that CD4+ and CD8+ T cells were better discriminated in PBMCs. Weighted Nearest Neighbor clustering results identified a previously unobserved T cell subset. CONCLUSION: In this study, we used CITE-seq data to confirm that protein expression patterns could be used to identify cells more precisely. These findings will improve our understanding of the heterogeneity of immune cells in the future and provide valuable insights into the complexity of the immune response in health and disease.


Subject(s)
Transcriptome , Humans , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Leukocytes, Mononuclear/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , CD4-Positive T-Lymphocytes/metabolism , Gene Expression Profiling/methods , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Epitopes/genetics , Epitopes/immunology
7.
Front Immunol ; 15: 1380386, 2024.
Article in English | MEDLINE | ID: mdl-38707902

ABSTRACT

Introduction: B cells play a pivotal role in adaptive immunity which has been extensively characterised primarily via flow cytometry-based gating strategies. This study addresses the discrepancies between flow cytometry-defined B cell subsets and their high-confidence molecular signatures using single-cell multi-omics approaches. Methods: By analysing multi-omics single-cell data from healthy individuals and patients across diseases, we characterised the level and nature of cellular contamination within standard flow cytometric-based gating, resolved some of the ambiguities in the literature surrounding unconventional B cell subsets, and demonstrated the variable effects of flow cytometric-based gating cellular heterogeneity across diseases. Results: We showed that flow cytometric-defined B cell populations are heterogenous, and the composition varies significantly between disease states thus affecting the implications of functional studies performed on these populations. Importantly, this paper draws caution on findings about B cell selection and function of flow cytometric-sorted populations, and their roles in disease. As a solution, we developed a simple tool to identify additional markers that can be used to increase the purity of flow-cytometric gated immune cell populations based on multi-omics data (AlliGateR). Here, we demonstrate that additional non-linear CD20, CD21 and CD24 gating can increase the purity of both naïve and memory populations. Discussion: These findings underscore the need to reconsider B cell subset definitions within the literature and propose leveraging single-cell multi-omics data for refined characterisation. We show that single-cell multi-omics technologies represent a powerful tool to bridge the gap between surface marker-based annotations and the intricate molecular characteristics of B cell subsets.


Subject(s)
B-Lymphocyte Subsets , Flow Cytometry , Single-Cell Analysis , Humans , Flow Cytometry/methods , Single-Cell Analysis/methods , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Immunophenotyping/methods , Biomarkers , Multiomics
8.
J Mol Biol ; 436(12): 168610, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38754773

ABSTRACT

The executors of organismal functions are proteins, and the transition from RNA to protein is subject to post-transcriptional regulation; therefore, considering both RNA and surface protein expression simultaneously can provide additional evidence of biological processes. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) technology can measure both RNA and protein expression in single cells, but these experiments are expensive and time-consuming. Due to the lack of computational tools for predicting surface proteins, we used datasets obtained with CITE-seq technology to design a deep generative prediction method based on diffusion models and to find biological discoveries through the prediction results. In our method, the scDM, which predicts protein expression values from RNA expression values of individual cells, uses a novel way of encoding the data into a model and generates predicted samples by introducing Gaussian noise to gradually remove the noise to learn the data distribution during the modelling process. Comprehensive evaluation across different datasets demonstrated that our predictions yielded satisfactory results and further demonstrated the effectiveness of incorporating information from single-cell multiomics data into diffusion models for biological studies. We also found that new directions for discovering therapeutic drug targets could be provided by jointly analysing the predictive value of surface protein expression and cancer cell drug scores.


Subject(s)
Computational Biology , Membrane Proteins , Single-Cell Analysis , Humans , Algorithms , Computational Biology/methods , Gene Expression Profiling/methods , Membrane Proteins/metabolism , Membrane Proteins/genetics , Single-Cell Analysis/methods , Transcriptome
9.
BMC Bioinformatics ; 25(1): 164, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664601

ABSTRACT

Multimodal integration combines information from different sources or modalities to gain a more comprehensive understanding of a phenomenon. The challenges in multi-omics data analysis lie in the complexity, high dimensionality, and heterogeneity of the data, which demands sophisticated computational tools and visualization methods for proper interpretation and visualization of multi-omics data. In this paper, we propose a novel method, termed Orthogonal Multimodality Integration and Clustering (OMIC), for analyzing CITE-seq. Our approach enables researchers to integrate multiple sources of information while accounting for the dependence among them. We demonstrate the effectiveness of our approach using CITE-seq data sets for cell clustering. Our results show that our approach outperforms existing methods in terms of accuracy, computational efficiency, and interpretability. We conclude that our proposed OMIC method provides a powerful tool for multimodal data analysis that greatly improves the feasibility and reliability of integrated data.


Subject(s)
Single-Cell Analysis , Cluster Analysis , Single-Cell Analysis/methods , Computational Biology/methods , Humans , Algorithms
10.
BMC Bioinformatics ; 25(1): 142, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566005

ABSTRACT

BACKGROUND: The rapid advancement of new genomic sequencing technology has enabled the development of multi-omic single-cell sequencing assays. These assays profile multiple modalities in the same cell and can often yield new insights not revealed with a single modality. For example, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) simultaneously profiles the RNA transcriptome and the surface protein expression. The surface protein markers in CITE-Seq can be used to identify cell populations similar to the iterative filtration process in flow cytometry, also called "gating", and is an essential step for downstream analyses and data interpretation. While several packages allow users to interactively gate cells, they often do not process multi-omic sequencing datasets and may require writing redundant code to specify gate boundaries. To streamline the gating process, we developed CITEViz which allows users to interactively gate cells in Seurat-processed CITE-Seq data. CITEViz can also visualize basic quality control (QC) metrics allowing for a rapid and holistic evaluation of CITE-Seq data. RESULTS: We applied CITEViz to a peripheral blood mononuclear cell CITE-Seq dataset and gated for several major blood cell populations (CD14 monocytes, CD4 T cells, CD8 T cells, NK cells, B cells, and platelets) using canonical surface protein markers. The visualization features of CITEViz were used to investigate cellular heterogeneity in CD14 and CD16-expressing monocytes and to detect differential numbers of detected antibodies per patient donor. These results highlight the utility of CITEViz to enable the robust classification of single cell populations. CONCLUSIONS: CITEViz is an R-Shiny app that standardizes the gating workflow in CITE-Seq data for efficient classification of cell populations. Its secondary function is to generate basic feature plots and QC figures specific to multi-omic data. The user interface and internal workflow of CITEViz uniquely work together to produce an organized workflow and sensible data structures for easy data retrieval. This package leverages the strengths of biologists and computational scientists to assess and analyze multi-omic single-cell datasets. In conclusion, CITEViz streamlines the flow cytometry gating workflow in CITE-Seq data to help facilitate novel hypothesis generation.


Subject(s)
Leukocytes, Mononuclear , Software , Humans , Sequence Analysis, RNA/methods , Workflow , Flow Cytometry , Membrane Proteins , Single-Cell Analysis/methods , Gene Expression Profiling/methods
11.
Methods Mol Biol ; 2779: 287-303, 2024.
Article in English | MEDLINE | ID: mdl-38526791

ABSTRACT

The paired detection of the transcriptome and proteome at single-cell resolution provides exquisite insight to immune mechanisms in health and disease. Here, we describe a detailed protocol wherein we combine cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq), a technique utilizing antibody-derived tags (ADTs) to profile mRNA and proteins simultaneously via sequencing, with fluorescence-activated cell sorting to enrich cell populations. Our protocol provides step-by-step guidance on co-staining cells with both fluorescent antibodies and ADTs simultaneously, instructions on cell sorting and an overview of the single-cell capture workflow using the BD Rhapsody™ system. This method is useful for in-depth single-cell characterization on sorted rare cell populations.


Subject(s)
Gene Expression Profiling , Transcriptome , Gene Expression Profiling/methods , Epitopes , Cell Separation , Antibodies , Single-Cell Analysis/methods
12.
Aging Cell ; 23(5): e14120, 2024 05.
Article in English | MEDLINE | ID: mdl-38403918

ABSTRACT

Long considered to fluctuate between pro- and anti-inflammatory states, it has now become evident that microglia occupy a variegated phenotypic landscape with relevance to aging and neurodegeneration. However, whether specific microglial subsets converge in or contribute to both processes that eventually affect brain function is less clear. To investigate this, we analyzed microglial heterogeneity in a tauopathy mouse model (K18-seeded P301L) and an accelerated aging model (Senescence-Accelerated Mouse-Prone 8, SAMP8) using cellular indexing of transcriptomes and epitopes by sequencing. We found that widespread tau pathology in K18-seeded P301L mice caused a significant change in the number and morphology of microglia, but only a mild overrepresentation of disease-associated microglia. At the cell population-level, we observed a marked upregulation of the calprotectin-encoding genes S100a8 and S100a9. In 9-month-old SAMP8 mice, we identified a unique microglial subpopulation that showed partial similarity with the disease-associated microglia phenotype and was additionally characterized by a high expression of the same calprotectin gene set. Immunostaining for S100A8 revealed that this population was enriched in the hippocampus, correlating with the cognitive impairment observed in this model. However, incomplete colocalization between their residence and markers of neuronal loss suggests regional specificity. Importantly, S100A8-positive microglia were also retrieved in brain biopsies of human AD and tauopathy patients as well as in a biopsy of an aged individual without reported pathology. Thus, the emergence of S100A8-positive microglia portrays a conspicuous commonality between accelerated aging and tauopathy progression, which may have relevance for ensuing brain dysfunction.


Subject(s)
Aging , Brain , Calgranulin A , Microglia , Animals , Microglia/metabolism , Mice , Brain/metabolism , Brain/pathology , Calgranulin A/metabolism , Calgranulin A/genetics , Aging/metabolism , tau Proteins/metabolism , tau Proteins/genetics , Humans , Disease Models, Animal , Tauopathies/metabolism , Tauopathies/pathology , Male , Mice, Transgenic
13.
Cytometry A ; 105(1): 62-73, 2024 01.
Article in English | MEDLINE | ID: mdl-37772953

ABSTRACT

Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) is a single-cell phenotyping method that uses antibody-derived tags (ADTs) to quantitatively detect cell surface protein expression and generate transcriptomic data at the single-cell level. Despite the increased popularity of this technique to study cellular heterogeneity and dynamics, detailed methods on how to choose ADT markers and ensuring reagent performance in biological relevant systems prior to sequencing is not available. Here we describe a novel and easy-to-use multiplex flow proxy assay in which multiple protein markers can be measured simultaneously using a combination of ADT reagents and dye-oligo conjugates by flow cytometry. Using dye-oligo conjugates with sequences complementary to the ADT reagents, we can achieve specific binding and evaluate protein marker expression in a multiplex way. This quality control assay is useful for guiding ADT marker choice and confirming protein expression prior to sequencing. Importantly, the labeled cells can be directly isolated based on the specific fluorescence from dye-oligo conjugates using a flow cytometry cell sorter and processed for downstream single-cell multiomics. Using this streamlined workflow, we sorted natural killer cells and T cells efficiently using only ADT and dye-oligo reagents, avoiding the possibility of decreased marker resolution from co-staining cells with ADT and fluorescent antibodies. This novel workflow provides a viable option for improving ADT marker choice and cell sorting efficiency, allowing subsequent CITE-Seq.


Subject(s)
Antibodies , T-Lymphocytes , Flow Cytometry/methods , Epitopes , Cell Separation/methods , Antigens , Single-Cell Analysis
14.
J Leukoc Biol ; 115(4): 620-632, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38095415

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are pathologically activated immature myeloid cells with immunosuppressive activity that expand during chronic inflammation, such as cancer and prosthetic joint infection (PJI). Myeloid-derived suppressor cells can be broadly separated into 2 populations based on surface marker expression and function: monocytic myeloid-derived suppressor cells (M-MDSCs) and granulocytic myeloid-derived suppressor cells (G-MDSCs). Granulocytic myeloid-derived suppressor cells are the most abundant leukocyte infiltrate during PJI; however, how this population is maintained in vivo and cellular heterogeneity is currently unknown. In this study, we identified a previously unknown population of Ly6G+Ly6C+F4/80+MHCII+ MDSCs during PJI that displayed immunosuppressive properties ex vivo. We leveraged F4/80 and MHCII expression by these cells for further characterization using cellular indexing of transcriptomes and epitopes by sequencing, which revealed a distinct transcriptomic signature of this population. F4/80+MHCII+ MDSCs displayed gene signatures resembling G-MDSCs, neutrophils, and monocytes but had significantly increased expression of pathways involved in cytokine response/production, inflammatory cell death, and mononuclear cell differentiation. To determine whether F4/80+MHCII+ MDSCs represented an alternate phenotypic state of G-MDSCs, Ly6G+Ly6C+F4/80-MHCII- G-MDSCs from CD45.1 mice were adoptively transferred into CD45.2 recipients using a mouse model of PJI. A small percentage of transferred G-MDSCs acquired F4/80 and MHCII expression in vivo, suggesting some degree of plasticity in this population. Collectively, these results demonstrate a previously unappreciated phenotype of F4/80+MHCII+ MDSCs during PJI, revealing that a granulocytic-to-monocytic transition can occur during biofilm infection.


Subject(s)
Myeloid-Derived Suppressor Cells , Myeloid-Derived Suppressor Cells/metabolism , Staphylococcus aureus , Myeloid Cells , Monocytes , Biofilms
15.
Front Immunol ; 14: 1239148, 2023.
Article in English | MEDLINE | ID: mdl-37828989

ABSTRACT

Coronary artery disease (CAD) is a major cause of death worldwide. The role of CD8+ T cells in CAD is unknown. Recent studies suggest a breakdown of tolerance in atherosclerosis, resulting in active T cell receptor (TCR) engagement with self-antigens. We hypothesized that TCR engagement would leave characteristic gene expression signatures. In a single cell RNA-sequencing analysis of CD8+ T cells from 30 patients with CAD and 30 controls we found significant enrichment of TCR signaling pathways in CAD+ subjects, suggesting recent TCR engagement. We also found significant enrichment of cytotoxic and exhaustion pathways in CAD cases compared to controls. Highly significant upregulation of TCR signaling in CAD indicates that CD8 T cells reactive to atherosclerosis antigens are prominent in the blood of CAD cases compared to controls.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Humans , Transcriptome , CD8-Positive T-Lymphocytes , Receptors, Antigen, T-Cell , Atherosclerosis/metabolism
16.
Proc Natl Acad Sci U S A ; 120(43): e2308658120, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37844234

ABSTRACT

Dysregulated apoptosis and proliferation are fundamental properties of cancer, and microRNAs (miRNA) are critical regulators of these processes. Loss of miR-15a/16-1 at chromosome 13q14 is the most common genomic aberration in chronic lymphocytic leukemia (CLL). Correspondingly, the deletion of either murine miR-15a/16-1 or miR-15b/16-2 locus in mice is linked to B cell lymphoproliferative malignancies. However, unexpectedly, when both miR-15/16 clusters are eliminated, most double knockout (DKO) mice develop acute myeloid leukemia (AML). Moreover, in patients with CLL, significantly reduced expression of miR-15a, miR-15b, and miR-16 associates with progression of myelodysplastic syndrome to AML, as well as blast crisis in chronic myeloid leukemia. Thus, the miR-15/16 clusters have a biological relevance for myeloid neoplasms. Here, we demonstrate that the myeloproliferative phenotype in DKO mice correlates with an increase of hematopoietic stem and progenitor cells (HSPC) early in life. Using single-cell transcriptomic analyses, we presented the molecular underpinning of increased myeloid output in the HSPC of DKO mice with gene signatures suggestive of dysregulated hematopoiesis, metabolic activities, and cell cycle stages. Functionally, we found that multipotent progenitors (MPP) of DKO mice have increased self-renewing capacities and give rise to significantly more progeny in the granulocytic compartment. Moreover, a unique transcriptomic signature of DKO MPP correlates with poor outcome in patients with AML. Together, these data point to a unique regulatory role for miR-15/16 during the early stages of hematopoiesis and to a potentially useful biomarker for the pathogenesis of myeloid neoplasms.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Leukemia, Myeloid, Acute , MicroRNAs , Myeloproliferative Disorders , Humans , Animals , Mice , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , MicroRNAs/metabolism , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/metabolism , Cell Division , Myeloproliferative Disorders/genetics
17.
Cell Rep ; 42(10): 113250, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37837618

ABSTRACT

Following viral infection, the human immune system generates CD8+ T cell responses to virus antigens that differ in specificity, abundance, and phenotype. A characterization of virus-specific T cell responses allows one to assess infection history and to understand its contribution to protective immunity. Here, we perform in-depth profiling of CD8+ T cells binding to CMV-, EBV-, influenza-, and SARS-CoV-2-derived antigens in peripheral blood samples from 114 healthy donors and 55 cancer patients using high-dimensional mass cytometry and single-cell RNA sequencing. We analyze over 500 antigen-specific T cell responses across six different HLA alleles and observed unique phenotypes of T cells specific for antigens from different virus categories. Using machine learning, we extract phenotypic signatures of antigen-specific T cells, predict virus specificity for bulk CD8+ T cells, and validate these predictions, suggesting that machine learning can be used to accurately predict antigen specificity from T cell phenotypes.


Subject(s)
CD8-Positive T-Lymphocytes , Herpesvirus 4, Human , Humans , T-Cell Antigen Receptor Specificity , Antigens, Viral , Phenotype
18.
Front Mol Biosci ; 10: 1184748, 2023.
Article in English | MEDLINE | ID: mdl-37293552

ABSTRACT

Multi-omics studies have enabled us to understand the mechanistic drivers behind complex disease states and progressions, thereby providing novel and actionable biological insights into health status. However, integrating data from multiple modalities is challenging due to high dimensionality and diverse nature of data, and noise associated with each platform. Sparsity in data, non-overlapping features and technical batch effects make the task of learning more complicated. Conventional machine learning (ML) tools are not quite effective against such data integration hazards due to their simplistic nature with less capacity. In addition, existing methods for single cell multi-omics integration are computationally expensive. Therefore, in this work, we have introduced a novel Unsupervised neural network for single cell Multi-omics INTegration (UMINT). UMINT serves as a promising model for integrating variable number of single cell omics layers with high dimensions. It has a light-weight architecture with substantially reduced number of parameters. The proposed model is capable of learning a latent low-dimensional embedding that can extract useful features from the data facilitating further downstream analyses. UMINT has been applied to integrate healthy and disease CITE-seq (paired RNA and surface proteins) datasets including a rare disease Mucosa-Associated Lymphoid Tissue (MALT) tumor. It has been benchmarked against existing state-of-the-art methods for single cell multi-omics integration. Furthermore, UMINT is capable of integrating paired single cell gene expression and ATAC-seq (Transposase-Accessible Chromatin) assays as well.

19.
Methods Mol Biol ; 2660: 149-169, 2023.
Article in English | MEDLINE | ID: mdl-37191796

ABSTRACT

Complex signaling and transcriptional programs control the development and physiology of specialized cell types. Genetic perturbations in these programs cause human cancers to arise from a diverse set of specialized cell types and developmental states. Understanding these complex systems and their potential to drive cancer is critical for the development of immunotherapies and druggable targets. Pioneering single-cell multi-omics technologies that analyze transcriptional states have been coupled with the expression of cell-surface receptors. This chapter describes SPaRTAN (Single-cell Proteomic and RNA-based Transcription factor Activity Network), a computational framework, to link transcription factors with cell-surface protein expression. SPaRTAN uses CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) data and cis-regulatory sites to model the effect of interactions between transcription factors and cell-surface receptors on gene expression. We demonstrate the pipeline for SPaRTAN using CITE-seq data from peripheral blood mononuclear cells.


Subject(s)
Proteome , Transcriptome , Humans , Transcription Factors/genetics , Leukocytes, Mononuclear , Proteomics , Single-Cell Analysis
20.
Cell Rep ; 42(4): 112304, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36961818

ABSTRACT

Aging negatively affects hematopoiesis, with consequences for immunity and acquired blood cell disorders. Although impairments in hematopoietic stem cell (HSC) function contribute to this, the in vivo dynamics of such changes remain obscure. Here, we integrate extensive longitudinal functional assessments of HSC-specific lineage tracing with single-cell transcriptome and epitope profiling. In contrast to recent suggestions from single-cell RNA sequencing alone, our data favor a defined structure of HSC/progenitor differentiation that deviates substantially from HSC-derived hematopoiesis following transplantation. Native age-dependent attrition in HSC differentiation manifests as drastically reduced lymphoid output through an early lymphoid-primed progenitor (MPP Ly-I). While in vitro activation fails to rescue lymphoid differentiation from most aged HSCs, robust lymphopoiesis can be achieved by culturing elevated numbers of candidate HSCs. Therefore, our data position rare chronologically aged HSC clones, fully competent at producing lymphoid offspring, as a prime target for approaches aimed to improve lymphopoiesis in the elderly.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells , Humans , Aged , Cell Lineage/genetics , Cell Differentiation , Hematopoiesis/genetics , Aging/genetics
SELECTION OF CITATIONS
SEARCH DETAIL