Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Mol Cell ; 84(7): 1354-1364.e9, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38447580

ABSTRACT

Batten disease, the most prevalent form of neurodegeneration in children, is caused by mutations in the CLN3 gene, which encodes a lysosomal transmembrane protein. CLN3 loss leads to significant accumulation of glycerophosphodiesters (GPDs), the end products of glycerophospholipid catabolism in the lysosome. Despite GPD storage being robustly observed upon CLN3 loss, the role of GPDs in neuropathology remains unclear. Here, we demonstrate that GPDs act as potent inhibitors of glycerophospholipid catabolism in the lysosome using human cell lines and mouse models. Mechanistically, GPDs bind and competitively inhibit the lysosomal phospholipases PLA2G15 and PLBD2, which we establish to possess phospholipase B activity. GPDs effectively inhibit the rate-limiting lysophospholipase activity of these phospholipases. Consistently, lysosomes of CLN3-deficient cells and tissues accumulate toxic lysophospholipids. Our work establishes that the storage material in Batten disease directly disrupts lysosomal lipid homeostasis, suggesting GPD clearance as a potential therapeutic approach to this fatal disease.


Subject(s)
Membrane Glycoproteins , Neuronal Ceroid-Lipofuscinoses , Mice , Animals , Child , Humans , Membrane Glycoproteins/metabolism , Molecular Chaperones/metabolism , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism , Neuronal Ceroid-Lipofuscinoses/pathology , Lysosomes/metabolism , Phospholipases/metabolism , Glycerophospholipids/metabolism , Phospholipids/metabolism
2.
Ophthalmic Genet ; 45(2): 180-185, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37621118

ABSTRACT

BACKGROUND: Inherited retinal disorders (IRDs) are a complex group of heritable diseases which are characterized by rod, cone, retinal pigment epithelium, or optic nerve dysfunction. Recently, mutations in CLN3 have also been associated with isolated IRDs. Herein, a case with heterozygous CLN3 variations that had not been previously linked to a CLN3-isolated retinal degeneration (CLN3IRD) phenotype in a Hispanic female and its multimodal imaging findings across a 10-year follow-up are presented. MATERIAL AND METHODS: An observational, prospective, case report on a hispanic female with CLN3IRD is presented. Patients underwent genetic testing and color fundus photography (CFC) and autofluorescence (FAF), fluorescein angiography (FA), Spectral domain optical coherence tomography (OCT) of the macular area, electroretinogram (ERG) and 30-2 visual field examination through automated perimetry. RESULTS: A female, aged 24, affected by CLN3IRD phenotype from c.944dup and c.1305C>G compound heterozygous variants, presented with bilateral hypopigmentary changes in the macular area of OU with that corresponded to hyporautofluorescent deposits in the macular area on FAF. An atrophic maculopathy was evident on structural OCT, and FA disclosed a symmetrical macular hyperflourescence with staining in the early and late stages in OU. Humphrey visual field testing showed a marked reduction of the central visual field in OU. Electrophysiological testing revealed an ERG with markedly decreased a and b waves in OU. In ten years follow up developed of bone spiculae in the midperipheral retina. CONCLUSIONS: We reported a patient with a novel CLN3IRD severe phenotype associated with the variants c.944dup and c.1305C>G, which had previously only been associated with JCNL.


Subject(s)
Retinal Degeneration , Humans , Female , Retinal Degeneration/diagnosis , Retinal Degeneration/genetics , Prospective Studies , Membrane Glycoproteins/genetics , Mutation , Electroretinography , Heterozygote , Phenotype , Hispanic or Latino/genetics , Tomography, Optical Coherence , Fluorescein Angiography , Molecular Chaperones/genetics
3.
Front Neurol ; 14: 1216861, 2023.
Article in English | MEDLINE | ID: mdl-37771451

ABSTRACT

Background: Recurrent non-epileptic episodes of frightened facial and body expression occur in more than half of post-adolescent patients with juvenile neuronal ceroid lipofuscinosis (JNCL, CLN3 disease). Clinically, the episodes look similar to the attacks of paroxysmal sympathetic hyperactivity (PSH) commonly seen following traumatic brain injury (TBI). The episodes occur when the patients are exposed to separation, hear loud sounds or are otherwise bothered by discomfort and as in PSH following TBI, the attacks are difficult to prevent and/or treat. Aim and methods: Based on present knowledge of triggering factors, the neural anxiety/fear circuit, its afferent and efferent pathways and documented CLN3 disease-impact on these tracks, the current study discusses a rational approach how to prevent and/or treat the attacks. Results: Patients with JNCL have a disturbed somatosensory modulation leading to a reduced threshold of pain; a degeneration within the neural anxiety/fear circuit leading to an imbalance of central network inhibition and excitation pathways; and finally, an, with advancing age, increasing autonomic imbalance leading to a significant dominance of the sympathetic neural system. Discussion: Theoretically, there are three points of attack how to prevent or treat the episodes: (1) increase in threshold of discomfort impact; (2) modulation of imbalance of central network inhibition and excitation, and (3) restoring the balance between the sympathetic and parasympathetic neural systems prompted by a parasympathetic withdrawal. As to (1) and (2), prevention should have the greatest priority. As regards (3), research of transcutaneous vagal stimulation treatment in JNCL is warranted.

4.
Genetics ; 225(2)2023 10 04.
Article in English | MEDLINE | ID: mdl-37531631

ABSTRACT

Severe defects in cell size are a nearly universal feature of cancer cells. However, the underlying causes are unknown. A previous study suggested that a hyperactive mutant of yeast Ras (ras2G19V) that is analogous to the human Ras oncogene causes cell size defects, which could provide clues to how oncogenes influence cell size. However, the mechanisms by which ras2G19V influences cell size are unknown. Here, we found that ras2G19V inhibits a critical step in cell cycle entry, in which an early G1 phase cyclin induces transcription of late G1 phase cyclins. Thus, ras2G19V drives overexpression of the early G1 phase cyclin Cln3, yet Cln3 fails to induce normal transcription of late G1 phase cyclins, leading to delayed cell cycle entry and increased cell size. ras2G19V influences transcription of late G1 phase cyclins via a poorly understood step in which Cln3 inactivates the Whi5 transcriptional repressor. Previous studies found that yeast Ras relays signals via protein kinase A (PKA); however, ras2G19V appears to influence late G1 phase cyclin expression via novel PKA-independent signaling mechanisms. Together, the data define new mechanisms by which hyperactive Ras influences cell cycle entry and cell size in yeast. Hyperactive Ras also influences expression of G1 phase cyclins in mammalian cells, but the mechanisms remain unclear. Further analysis of Ras signaling in yeast could lead to discovery of new mechanisms by which Ras family members control expression of G1 phase cyclins.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomycetales , Humans , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/metabolism , Genes, ras , Cell Cycle/genetics , Cyclins/genetics , Cyclins/metabolism , Cell Size , Gene Expression Regulation, Fungal , Repressor Proteins/metabolism
5.
Mol Ther Nucleic Acids ; 33: 15-27, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37359347

ABSTRACT

Genetic mutations that disrupt open reading frames and cause translation termination are frequent causes of human disease and are difficult to treat due to protein truncation and mRNA degradation by nonsense-mediated decay, leaving few options for traditional drug targeting. Splice-switching antisense oligonucleotides offer a potential therapeutic solution for diseases caused by disrupted open reading frames by inducing exon skipping to correct the open reading frame. We have recently reported on an exon-skipping antisense oligonucleotide that has a therapeutic effect in a mouse model of CLN3 Batten disease, a fatal pediatric lysosomal storage disease. To validate this therapeutic approach, we generated a mouse model that constitutively expresses the Cln3 spliced isoform induced by the antisense molecule. Behavioral and pathological analyses of these mice demonstrate a less severe phenotype compared with the CLN3 disease mouse model, providing evidence that antisense oligonucleotide-induced exon skipping can have therapeutic efficacy in treating CLN3 Batten disease. This model highlights how protein engineering through RNA splicing modulation can be an effective therapeutic approach.

6.
EBioMedicine ; 92: 104628, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37245481

ABSTRACT

BACKGROUND: The most common form of neuronal ceroid lipofuscinosis (NCL) is juvenile CLN3 disease (JNCL), a currently incurable neurodegenerative disorder caused by mutations in the CLN3 gene. Based on our previous work and on the premise that CLN3 affects the trafficking of the cation-independent mannose-6 phosphate receptor and its ligand NPC2, we hypothesised that dysfunction of CLN3 leads to the aberrant accumulation of cholesterol in the late endosomes/lysosomes (LE/Lys) of JNCL patients' brains. METHODS: An immunopurification strategy was used to isolate intact LE/Lys from frozen autopsy brain samples. LE/Lys isolated from samples of JNCL patients were compared with age-matched unaffected controls and Niemann-Pick Type C (NPC) disease patients. Indeed, mutations in NPC1 or NPC2 result in the accumulation of cholesterol in LE/Lys of NPC disease samples, thus providing a positive control. The lipid and protein content of LE/Lys was then analysed using lipidomics and proteomics, respectively. FINDINGS: Lipid and protein profiles of LE/Lys isolated from JNCL patients were profoundly altered compared to controls. Importantly, cholesterol accumulated in LE/Lys of JNCL samples to a comparable extent than in NPC samples. Lipid profiles of LE/Lys were similar in JNCL and NPC patients, except for levels of bis(monoacylglycero)phosphate (BMP). Protein profiles detected in LE/Lys of JNCL and NPC patients appeared identical, except for levels of NPC1. INTERPRETATION: Our results support that JNCL is a lysosomal cholesterol storage disorder. Our findings also support that JNCL and NPC disease share pathogenic pathways leading to aberrant lysosomal accumulation of lipids and proteins, and thus suggest that the treatments available for NPC disease may be beneficial to JNCL patients. This work opens new avenues for further mechanistic studies in model systems of JNCL and possible therapeutic interventions for this disorder. FUNDING: San Francisco Foundation.


Subject(s)
Lysosomal Storage Diseases , Niemann-Pick Disease, Type C , Humans , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Cholesterol/metabolism , Lysosomal Storage Diseases/metabolism , Proteins/metabolism , Lysosomes/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Molecular Chaperones/genetics
7.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166756, 2023 08.
Article in English | MEDLINE | ID: mdl-37209872

ABSTRACT

• Neuronal Ceroido Lipofuscinoses (NCL) are inherited, neurodegenerative disorders associated with lysosomal storage. • Impaired autophagy plays a pathogenetic role in several NCL forms, including CLN3 disease, but study on human brains are lacking. • In post-mortem brain samples of a CLN3 patient the LC3-I to LC3-II shift was consistent with activated autophagy. However, the autophagic process seemed to be ineffective due to the presence of lysosomal storage markers. • After fractionation with buffers of increasing detergent-denaturing strength, a peculiar solubility pattern of LC3-II was observed in CLN3 patient's samples, suggesting a different lipid composition of the membranes where LC3-II is stacked.


Subject(s)
Lysosomal Storage Diseases , Neuronal Ceroid-Lipofuscinoses , Humans , Detergents/pharmacology , Membrane Glycoproteins/metabolism , Neuronal Ceroid-Lipofuscinoses/metabolism , Molecular Chaperones/metabolism , Lysosomal Storage Diseases/pathology , Brain/metabolism
8.
J Inherit Metab Dis ; 46(4): 720-734, 2023 07.
Article in English | MEDLINE | ID: mdl-37078466

ABSTRACT

Late-infantile neuronal ceroid lipofuscinosis (LINCL) and juvenile neuronal ceroid lipofuscinosis (JNCL) are inherited neurodegenerative diseases caused by mutations in the genes encoding lysosomal proteins tripeptidyl peptidase 1 (TPP1) and CLN3 protein, respectively. TPP1 is well-understood and, aided by animal models that accurately recapitulate the human disease, enzyme replacement therapy has been approved and other promising therapies are emerging. In contrast, there are no effective treatments for JNCL, partly because the function of the CLN3 protein remains unknown but also because animal models have attenuated disease and lack robust survival phenotypes. Mouse models for LINCL and JNCL, with mutations in Tpp1 and Cln3, respectively, have been thoroughly characterized but the phenotype of a double Cln3/Tpp1 mutant remains unknown. We created this double mutant and find that its phenotype is essentially indistinguishable from the single Tpp1-/- mutant in terms of survival and brain pathology. Analysis of brain proteomic changes in the single Tpp1-/- and double Cln3-/- ;Tpp1-/- mutants indicates largely overlapping sets of altered proteins and reinforces earlier studies that highlight GPNMB, LYZ2, and SERPINA3 as promising biomarker candidates in LINCL while several lysosomal proteins including SMPD1 and NPC1 appear to be altered in the Cln3-/- animals. An unexpected finding was that Tpp1 heterozygosity significantly decreased lifespan of the Cln3-/- mouse. The truncated survival of this mouse model makes it potentially useful in developing therapies for JNCL using survival as an endpoint. In addition, this model may also provide insights into CLN3 protein function and its potential functional interactions with TPP1.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Tripeptidyl-Peptidase 1 , Animals , Mice , Brain/pathology , Disease Models, Animal , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Molecular Chaperones/genetics , Mutation , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Proteomics
9.
Front Psychiatry ; 14: 1059082, 2023.
Article in English | MEDLINE | ID: mdl-37113550

ABSTRACT

Background: Juvenile neuronal ceroid lipofuscinosis (JNCL, CLN3) is a childhood-onset neurodegenerative disease with prominent symptoms comprising a pediatric dementia syndrome. As in adult dementia, behavioral symptoms like mood disturbances and anxiety are common. In contrast to in adult dementia, however, the anxious behavioral symptoms increase during the terminal phase of JNCL disease. In the present study, the current understanding of the neurobiological mechanisms of anxiety and anxious behavior in general is addressed as will a discussion of the mechanism of the anxious behavior seen in young JNCL patients. Based on developmental behavioral points of view, known neurobiological mechanisms, and the clinical presentation of the anxious behavior, a theory of its etiology is described. Result and discussion: During the terminal phase, the cognitive developmental age of JNCL patients is below 2 years. At this stage of mental development individuals act primarily from a concrete world of consciousness and do not have the cognitive ability to encounter a normal anxiety response. Instead, they experience the evolutionary basic emotion of fear, and as the episodes typically are provoked when the adolescent JNCL patient is exposed to either loud sounds, is lifted from the ground, or separated from the mother/known caregiver, the fear can best be perceived as the developmental natural fear-response that appears in children 0-2 years of age. The efferent pathways of the neural fear circuits are mediated through autonomic, neuroendocrine, and skeletal-motor responses. The autonomic activation occurs early, is mediated through the sympathetic and parasympathetic neural systems, and as JNCL patients beyond puberty have an autonomic imbalance with a significant sympathetic hyperactivity, the activation of the autonomic nervous system results in a disproportionate high sympathetic activity resulting in tachycardia, tachypnea, excessive sweating, hyperthermia, and an increased atypical muscle activity. The episodes are thus phenotypically similar to what is seen as Paroxysmal Sympathetic Hyperactivity (PSH) following an acute traumatic brain injury. As in PSH, treatment is difficult and so far, no consensus of a treatment algorithm exists. Use of sedative and analgesic medication and minimizing or avoiding provocative stimuli may partly reduce the frequency and intensity of the attacks. Transcutaneous vagal nerve stimulation might be an option worth to investigate rebalancing the sympathetic-parasympathetic disproportion.

10.
Epilepsia ; 64(7): 1833-1841, 2023 07.
Article in English | MEDLINE | ID: mdl-37039534

ABSTRACT

OBJECTIVE: This study was undertaken to analyze phenotypic features of a cohort of patients with protracted CLN3 disease to improve recognition of the disorder. METHODS: We analyzed phenotypic data of 10 patients from six families with protracted CLN3 disease. Haplotype analysis was performed in three reportedly unrelated families. RESULTS: Visual impairment was the initial symptom, with onset at 5-9 years, similar to classic CLN3 disease. Mean time from onset of visual impairment to seizures was 12 years (range = 6-41 years). Various seizure types were reported, most commonly generalized tonic-clonic seizures; focal seizures were present in four patients. Progressive myoclonus epilepsy was not seen. Interictal electroencephalogram revealed mild background slowing and 2.5-3.5-Hz spontaneous generalized spike-wave discharges. Additional interictal focal epileptiform discharges were noted in some patients. Age at death for the three deceased patients was 31, 31, and 52 years. Molecular testing revealed five individuals were homozygous for c.461-280_677 + 382del966, the "common 1-kb" CLN3 deletion. The remaining individuals were compound heterozygous for various combinations of recurrent pathogenic CLN3 variants. Haplotype analysis demonstrated evidence of a common founder for the common 1-kb deletion. Dating analysis suggested the deletion arose approximately 1500 years ago and thus did not represent cryptic familial relationship in this Australian cohort. SIGNIFICANCE: We highlight the protracted phenotype of a disease generally associated with death in adolescence, which is a combined focal and generalized epilepsy syndrome with progressive neurological deterioration. The disorder should be suspected in an adolescent or adult patient presenting with generalized or focal seizures preceded by progressive visual loss. The common 1-kb deletion has been typically associated with classic CLN3 disease, and the protracted phenotype has not previously been reported with this genotype. This suggests that modifying genetic factors may be important in determining this somewhat milder phenotype and identification of these factors should be the subject of future research.


Subject(s)
Epilepsy, Generalized , Neuronal Ceroid-Lipofuscinoses , Humans , Neuronal Ceroid-Lipofuscinoses/complications , Neuronal Ceroid-Lipofuscinoses/diagnosis , Neuronal Ceroid-Lipofuscinoses/genetics , Australia , Seizures/diagnosis , Genotype , Membrane Glycoproteins/genetics , Molecular Chaperones/genetics
11.
Doc Ophthalmol ; 146(3): 241-256, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36964447

ABSTRACT

BACKGROUND: Neuronal ceroid lipofuscinosis is a group of neurodegenerative disorders with varying visual dysfunction. CLN3 is a subtype which commonly presents with visual decline. Visual symptomatology can be indistinct making early diagnosis difficult. This study reports ocular biomarkers of CLN3 patients to assist clinicians in early diagnosis, disease monitoring, and future therapy. METHODS: Retrospective review of 5 confirmed CLN3 patients in our eye clinic. Best corrected visual acuity (BCVA), electroretinogram (ERG), ultra-widefield (UWF) fundus photography and fundus autofluorescence (FAF), and optical coherence tomography (OCT) studies were undertaken. RESULTS: Five unrelated children, 4 females and 1 male, with median age of 6.2 years (4.6-11.7) at first assessment were investigated at the clinic from 2016 to 2021. Four homozygous and one heterozygous pathogenic CLN3 variants were found. Best corrected visual acuities (BCVAs) ranged from 0.18 to 0.88 logMAR at first presentation. Electronegative ERGs were identified in all patients. Bull's eye maculopathies found in all patients. Hyper-autofluorescence ring surrounding hypo-autofluorescence fovea on FAF was found. Foveal ellipsoid zone (EZ) disruptions were found in all patients with additional inner and outer retinal microcystic changes in one patient. Neurological problems noted included autism, anxiety, motor dyspraxia, behavioural issue, and psychomotor regression. CONCLUSIONS: CLN3 patients presented at median age 6.2 years with visual decline. Early onset maculopathy with an electronegative ERG and variable cognitive and motor decline should prompt further investigations including neuropaediatric evaluation and genetic assessment for CLN3 disease. The structural parameters such as EZ and FAF will facilitate ocular monitoring.


Subject(s)
Electroretinography , Retinal Diseases , Child , Female , Humans , Male , Retina , Multimodal Imaging , Electrophysiology , Tomography, Optical Coherence/methods , Membrane Glycoproteins/genetics , Molecular Chaperones/genetics
12.
J Biol Chem ; 299(5): 104649, 2023 05.
Article in English | MEDLINE | ID: mdl-36965618

ABSTRACT

The assembly of membrane-less organelles such as stress granules (SGs) is emerging as central in helping cells rapidly respond and adapt to stress. Following stress sensing, the resulting global translational shutoff leads to the condensation of stalled mRNAs and proteins into SGs. By reorganizing cytoplasmic contents, SGs can modulate RNA translation, biochemical reactions, and signaling cascades to promote survival until the stress is resolved. While mechanisms for SG disassembly are not widely understood, the resolution of SGs is important for maintaining cell viability and protein homeostasis. Mutations that lead to persistent or aberrant SGs are increasingly associated with neuropathology and a hallmark of several neurodegenerative diseases. Mutations in CLN3 are causative of juvenile neuronal ceroid lipofuscinosis, a rare neurodegenerative disease affecting children also known as Batten disease. CLN3 encodes a transmembrane lysosomal protein implicated in autophagy, endosomal trafficking, metabolism, and response to oxidative stress. Using a HeLa cell model lacking CLN3, we now show that CLN3KO is associated with an altered metabolic profile, reduced global translation, and altered stress signaling. Furthermore, loss of CLN3 function results in perturbations in SG dynamics, resulting in assembly and disassembly defects, and altered expression of the key SG nucleating factor G3BP1. With a growing interest in SG-modulating drugs for the treatment of neurodegenerative diseases, novel insights into the molecular basis of CLN3 Batten disease may reveal avenues for disease-modifying treatments for this debilitating childhood disease.


Subject(s)
Gene Expression , Molecular Chaperones , Neuronal Ceroid-Lipofuscinoses , Stress Granules , Humans , HeLa Cells , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/physiopathology , Stress Granules/genetics , Stress Granules/pathology , Stress, Physiological/genetics , Signal Transduction/genetics , Gene Expression/genetics , Cell Line
13.
Mol Syndromol ; 14(1): 30-34, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36777709

ABSTRACT

Introduction: Neuronal ceroid lipofuscinoses (NCLs) are a broad class of inherited lysosomal storage disorders. Known mutations in at least 13 different genes can result in NCL with variable ages of onset, symptoms, and pathologic findings. Generally, these patients experience cognitive and motor decline, seizures, visual impairment, and premature death. Pathologically, NCL patients display heterogeneous histologic abnormalities, but consistently exhibit neuronal loss, reactive gliosis, and lysosomal accumulation of autofluorescent storage material or lipopigment. Juvenile-onset NCL has been classically referred to as Batten disease. By far the most prevalent NCL is CLN3-associated disease. It is an autosomal recessive condition that is usually caused by mutations in the ceroid-lipofuscinosis, neuronal 3 (CLN3) gene. CLN3 encodes battenin, a ubiquitously expressed transmembrane protein of unknown function that is associated with cellular homeostasis and neuronal survival. The initial clinical symptom of CLN3-associated NCL is central vision loss, which is usually detected between 4 and 9 years of age. Seizures typically begin early in the second decade of life, and affected individuals rarely live beyond their mid-20ies. Case Presentation: Herein, we describe a 16-year-old patient with CLN3-related juvenile NCL with a preliminary diagnosis of Niemann Pick Type C disease. The proband showed characteristic clinical signs, including epilepsy, ataxia, psychomotor regression, dementia, and visual impairment with an unusual elevation of lyso-sphingomyelin-509 (Lyso-SM-509; 812 nmol/L, normal 1-33 nmol/L). A homozygous NM_001042432.2(CLN3):c.233dup (p.Thr80fs) variant was detected at exon 4 of CLN3. Diagnosis of NCL was difficult due to the pronounced elevation of LysoSM-509. Discussion: LysoSM-509 is a biomarker which is elevated especially in Niemann Pick Type C. We can consider that a high LysoSM-509 level might be also an indicator of NCL, especially NCL type 3.

14.
Neural Regen Res ; 18(7): 1463-1471, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36571343

ABSTRACT

Evidence from genetics and from analyzing cellular and animal models have converged to suggest links between neurodegenerative disorders of early and late life. Here, we summarize emerging links between the most common late life neurodegenerative disease, Alzheimer's disease, and the most common early life neurodegenerative diseases, neuronal ceroid lipofuscinoses. Genetic studies reported an overlap of clinically diagnosed Alzheimer's disease and mutations in genes known to cause neuronal ceroid lipofuscinoses. Accumulating data strongly suggest dysfunction of intracellular trafficking mechanisms and the autophagy-endolysosome system in both types of neurodegenerative disorders. This suggests shared cytopathological processes underlying these different types of neurodegenerative diseases. A better understanding of the common mechanisms underlying the different diseases is important as this might lead to the identification of novel targets for therapeutic concepts, the transfer of therapeutic strategies from one disease to the other and therapeutic approaches tailored to patients with specific mutations. Here, we review dysfunctions of the endolysosomal autophagy pathway in Alzheimer's disease and neuronal ceroid lipofuscinoses and summarize emerging etiologic and genetic overlaps.

15.
Metab Brain Dis ; 38(2): 709-715, 2023 02.
Article in English | MEDLINE | ID: mdl-36576693

ABSTRACT

Ceroid lipofuscinosis type 3 (CLN3) is an autosomal recessive, neurodegenerative metabolic disease. Typical clinical symptoms include progressive visual loss, epilepsy of unknown etiology and dementia. Presence of lipofuscin deposits with typical pattern of 'fingerprints' and vacuolized lymphocytes suggest the diagnosis of CLN3. Cause of CLN3 are mutations in the CLN3 gene, among which the most frequently found is the large deletion 1.02 kb spreading on exons 7 and 8. We present 4 patients from 2 families, in whom the deterioration of visual quality and acuity was observed as first clinical sign, when they were a few years old and it was successively accompanied by symptoms of neurologic deterioration (like generalized convulsions with consciousness impairment). In all patients the 1.02 kb deletion in the CLN3 gene was detected in homo- or heterozygosity with other CLN3 pathogenic variant. Ultrastructural studies revealed abnormal structures corresponding to 'fingerprint' profiles (FPPs) in conjunctival endothelial cells. It should be emphasized that in patients with blindness of unknown cause the diagnosis of ceroid lipofuscinosis should be considered and in older children-especially CLN3. The facility of the analysis for the presence of 1.02 kb deletion and economic costs are a solid argument for intensive use of this test in the diagnostic procedure of CLN3.


Subject(s)
Endothelial Cells , Neuronal Ceroid-Lipofuscinoses , Child , Humans , Endothelial Cells/pathology , Molecular Chaperones/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/diagnosis , Neuronal Ceroid-Lipofuscinoses/pathology , Mutation , Exons , Membrane Glycoproteins/genetics
16.
Front Neurol ; 13: 1061363, 2022.
Article in English | MEDLINE | ID: mdl-36438942

ABSTRACT

Background: The Neuronal Ceroid Lipofuscinoses (NCLs) may be considered distinct neurodegenerative disorders with separate underlying molecular causes resulting from monogenetic mutations. An alternative hypothesis is to consider the NCLs as related diseases that share lipofuscin pathobiology as the common core feature, but otherwise distinguished by different a) initial anatomic location, and b) disease propagation. Methods: We have tested this hypothesis by comparing known differences in symptomatology and pathology of the CLN1 phenotype caused by complete loss of PPT1 function (i.e., the classical infantile form) and of the classical juvenile CLN3 phenotype. These two forms of NCL represent early onset and rapidly progressing vs. late onset and slowly progressing disease modalities respectively. Results: Despite displaying similar pathological endpoints, the clinical phenotypes and the evidence of imaging and postmortem studies reveal strikingly different time courses and distributions of disease propagation. Data from CLN1 disease are indicative of disease propagation from the body, with early effects within the spinal cord and subsequently within the brainstem, the cerebral hemispheres, cerebellum and retina. In contrast, the retina appears to be the most vulnerable organ in CLN3, and the site where pathology is first present. Pathology subsequently is present in the occipital connectome of the CLN3 brain, followed by a top-down propagation in which cerebral and cerebellar atrophy in early adolescence is followed by involvement of the peripheral nerves in later adolescence/early twenties, with the extrapyramidal system also affected during this time course. Discussion: The propagation of disease in these two NCLs therefore has much in common with the "Brain-first" vs. "Body-first" models of alpha-synuclein propagation in Parkinson's disease. CLN1 disease represents a "Body-first" or bottom-up disease propagation and CLN3 disease having a "Brain-first" and top-down propagation. It is noteworthy that the varied phenotypes of CLN1 disease, whether it starts in infancy (infantile form) or later in childhood (juvenile form), still fit with our proposed hypothesis of a bottom-up disease propagation in CLN1. Likewise, in protracted CLN3 disease, where both cognitive and motor declines are delayed, the initial manifestations of disease are also seen in the outer retinal layers, i.e., identical to classical Juvenile NCL disease.

17.
Front Neurol ; 13: 942667, 2022.
Article in English | MEDLINE | ID: mdl-36071899

ABSTRACT

Cardiac magnetic resonance imaging (MRI) is an essential tool for the study of hypertrophic cardiomyopathies (HCM) and for differentiating HCM from conditions with increased ventricular wall thickness, such as cardiac storage diseases. Although cardiac MRI is already used for the diagnosis and characterization of some forms of storage diseases involving the myocardium, it has not yet been used to study myocardial involvement in neuronal ceroid lipofuscinosis (NCL). Here, we describe comprehensive cardiac MRI findings in a patient with the CLN3 form of NCL showing basal inferior interventricular septal hypertrophy with maintained indexed LV mass within reference values and low T1-native values. MRI findings support a finding of abnormal storage material within the myocardium in CLN3 disease. We recommend the possible routine use of cardiac MRI for early diagnosis of cardiac involvement in CLN3 disease (also termed juvenile NCL) and to monitor the effects of emerging CLN3 therapies on the myocardium as well.

18.
Eur J Paediatr Neurol ; 39: 74-78, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35716526

ABSTRACT

CLN3 disease (MIM# 204200), the most prevalent of the neuronal ceroid lipofuscinoses (NCL), is an autosomal recessive disorder with juvenile onset characterized by blindness, epilepsy, dementia, psychiatric manifestations, and motor deterioration. Problems related to behavior, emotions and thought are among the main features. Antidepressant and antipsychotic drugs have been employed with variable results. Neuroleptic malignant syndrome (NMS) has previously been described in two patients with NCL, one with CLN3 disease and one with adult onset NCL of unclear genetic origin. Our aims were to describe the occurrence of drug-induced hyperthermia in pediatric patients with CLN3 disease from West and South Sweden and to delineate the range of associated clinical features. Our study identified four patients presenting with seven episodes of severe drug-induced hyperthermia and either NMS-like or Serotonin syndrome (SS)-like features. Possibly provoking drugs were risperidone, clozapine, olanzapine, haloperidol, quetiapine, and sertraline. The course was atypical, frequently prolonged, associated with rhabdomyolysis and status dystonicus, and resulted in the death of three of the patients. Our study points to a vulnerability to drug-induced hyperthermia in patients with CLN3 disease which we believe could be underreported. Interestingly the proposed pathophysiological mechanisms behind NMS and SS on one hand and CLN3 on the other hand seem to converge in a common mechanism involving dysregulation of the sympathetic nervous system.


Subject(s)
Hyperthermia, Induced , Neuronal Ceroid-Lipofuscinoses , Rhabdomyolysis , Adult , Child , Humans , Membrane Glycoproteins/genetics , Molecular Chaperones/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Rhabdomyolysis/chemically induced , Rhabdomyolysis/complications
19.
Microbiol Spectr ; 10(3): e0276521, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35670600

ABSTRACT

Biofilm-immobilized continuous fermentation is a novel fermentation strategy that has been utilized in ethanol fermentation. Continuous fermentation contributes to the self-proliferation of Saccharomyces cerevisiae biofilms. Previously, we successfully described the cell cycle differences between biofilm-immobilized fermentation and calcium alginate-immobilized fermentation. In the present study, we investigated the relationship between biofilm formation and the cell cycle. We knocked down CLN3, SIC1, and ACE2 and found that Δcln3 and Δsic1 exhibited a predominance of G2/M phase cells, increased biofilm formation, and significantly increased extracellular polysaccharide formation and expression of genes in the FLO gene family during immobilisation fermentation. Δace2 exhibited a contrasting performance. These findings suggest that the increase in the proportion of cells in the G2/M phase of the cell cycle facilitates biofilm formation and that the cell cycle influences biofilm formation by regulating cell adhesion and polysaccharide formation. This opens new avenues for basic research and may also help to provide new ideas for biofilm prevention and optimization. IMPORTANCE Immobilised fermentation can be achieved using biofilm resistance, resulting in improved fermentation efficiency and yield. The link between the cell cycle and biofilms deserves further study since reports are lacking in this area. This study showed that the ability of Saccharomyces cerevisiae to produce biofilm differed when cell cycle progression was altered. Further studies suggested that cell cycle regulatory genes influenced biofilm formation by regulating cell adhesion and polysaccharide formation. Findings related to cell cycle regulation of biofilm formation set the stage for biofilm in Saccharomyces cerevisiae and provide a theoretical basis for the development of a new method to improve biofilm-based industrial fermentation.


Subject(s)
Ethanol , Saccharomyces cerevisiae , Biofilms , Cell Division , Ethanol/metabolism , Fermentation , Polysaccharides
20.
Neuroradiology ; 64(10): 2059-2067, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35699772

ABSTRACT

PURPOSE: Grey matter (GM) atrophy due to neuronal loss is a striking feature of patients with CLN3 disease. A precise and quantitative description of disease progression is needed in order to establish an evaluation tool for current and future experimental treatments. In order to develop a quantitative marker to measure brain volume outcome, we analysed the longitudinal volumetric development of GM, white matter (WM) and lateral ventricles and correlated those with the clinical course. METHODS: One hundred twenty-two MRI scans of 35 patients (21 females; 14 males; age 15.3 ± 4.8 years) with genetically confirmed CLN3 disease were performed. A three-dimensional T1-weighted sequence was acquired with whole brain coverage. Volumetric segmentation of the brain was performed with the FreeSurfer image analysis suite. The clinical severity was assessed by the Hamburg jNCL score, a disease-specific scoring system. RESULTS: The volumes of supratentorial cortical GM and supratentorial WM, cerebellar GM, basal ganglia/thalamus and hippocampus significantly (r = - 0.86 to - 0.69, p < 0.0001) decreased with age, while the lateral ventricle volume increased (r = 0.68, p < 0.0001). Supratentorial WM volume correlated poorer with age (r = - 0.56, p = 0.0001). Supratentorial cortical GM volume showed the steepest (4.6% (± 0.2%)) and most uniform decrease with strongest correlation with age (r = - 0.86, p < 0.0001). In addition, a strong correlation with disease specific clinical scoring existed for the supratentorial cortical GM volume (r = 0.85, p = < 0.0001). CONCLUSION: Supratentorial cortical GM volume is a sensitive parameter for assessment of disease progression even in early and late disease stages and represents a potential reliable outcome measure for evaluation of experimental therapies.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Adolescent , Atrophy/pathology , Biomarkers , Brain/diagnostic imaging , Brain/pathology , Child , Disease Progression , Female , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Magnetic Resonance Imaging/methods , Male , Membrane Glycoproteins , Molecular Chaperones , Neuronal Ceroid-Lipofuscinoses/diagnostic imaging , Neuronal Ceroid-Lipofuscinoses/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL