Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 22639, 2024 09 30.
Article in English | MEDLINE | ID: mdl-39349594

ABSTRACT

Molecular dynamics (MD) simulations produce a substantial volume of high-dimensional data, and traditional methods for analyzing these data pose significant computational demands. Advances in MD simulation analysis combined with deep learning-based approaches have led to the understanding of specific structural changes observed in MD trajectories, including those induced by mutations. In this study, we model the trajectories resulting from MD simulations of the SARS-CoV-2 spike protein-ACE2, specifically the receptor-binding domain (RBD), as interresidue distance maps, and use deep convolutional neural networks to predict the functional impact of point mutations, related to the virus's infectivity and immunogenicity. Our model was successful in predicting mutant types that increase the affinity of the S protein for human receptors and reduce its immunogenicity, both based on MD trajectories (precision = 0.718; recall = 0.800; [Formula: see text] = 0.757; MCC = 0.488; AUC = 0.800) and their centroids. In an additional analysis, we also obtained a strong positive Pearson's correlation coefficient equal to 0.776, indicating a significant relationship between the average sigmoid probability for the MD trajectories and binding free energy (BFE) changes. Furthermore, we obtained a coefficient of determination of 0.602. Our 2D-RMSD analysis also corroborated predictions for more infectious and immune-evading mutants and revealed fluctuating regions within the receptor-binding motif (RBM), especially in the [Formula: see text] loop. This region presented a significant standard deviation for mutations that enable SARS-CoV-2 to evade the immune response, with RMSD values of 5Å in the simulation. This methodology offers an efficient alternative to identify potential strains of SARS-CoV-2, which may be potentially linked to more infectious and immune-evading mutations. Using clustering and deep learning techniques, our approach leverages information from the ensemble of MD trajectories to recognize a broad spectrum of multiple conformational patterns characteristic of mutant types. This represents a strategic advantage in identifying emerging variants, bypassing the need for long MD simulations. Furthermore, the present work tends to contribute substantially to the field of computational biology and virology, particularly to accelerate the design and optimization of new therapeutic agents and vaccines, offering a proactive stance against the constantly evolving threat of COVID-19 and potential future pandemics.


Subject(s)
Angiotensin-Converting Enzyme 2 , Deep Learning , Molecular Dynamics Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Protein Binding , Protein Conformation , Mutation , Binding Sites , Protein Domains
2.
Diagnostics (Basel) ; 14(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39125567

ABSTRACT

Breast cancer is a prevalent malignancy characterized by the uncontrolled growth of glandular epithelial cells, which can metastasize through the blood and lymphatic systems. Microcalcifications, small calcium deposits within breast tissue, are critical markers for early detection of breast cancer, especially in non-palpable carcinomas. These microcalcifications, appearing as small white spots on mammograms, are challenging to identify due to potential confusion with other tissues. This study hypothesizes that a hybrid feature extraction approach combined with Convolutional Neural Networks (CNNs) can significantly enhance the detection and localization of microcalcifications in mammograms. The proposed algorithm employs Gabor, Prewitt, and Gray Level Co-occurrence Matrix (GLCM) kernels for feature extraction. These features are input to a CNN architecture designed with maxpooling layers, Rectified Linear Unit (ReLU) activation functions, and a sigmoid response for binary classification. Additionally, the Top Hat filter is used for precise localization of microcalcifications. The preprocessing stage includes enhancing contrast using the Volume of Interest Look-Up Table (VOI LUT) technique and segmenting regions of interest. The CNN architecture comprises three convolutional layers, three ReLU layers, and three maxpooling layers. The training was conducted using a balanced dataset of digital mammograms, with the Adam optimizer and binary cross-entropy loss function. Our method achieved an accuracy of 89.56%, a sensitivity of 82.14%, and a specificity of 91.47%, outperforming related works, which typically report accuracies around 85-87% and sensitivities between 76 and 81%. These results underscore the potential of combining traditional feature extraction techniques with deep learning models to improve the detection and localization of microcalcifications. This system may serve as an auxiliary tool for radiologists, enhancing early detection capabilities and potentially reducing diagnostic errors in mass screening programs.

3.
Heliyon ; 10(9): e30590, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726185

ABSTRACT

The quality of welds is critical to the safety of structures in construction, so early detection of irregularities is crucial. Advances in machine vision inspection technologies, such as deep learning models, have improved the detection of weld defects. This paper presents a new CNN model based on ResNet50 to classify four types of weld defects in radiographic images: crack, pore, non-penetration, and no defect. Stratified cross-validation, data augmentation, and regularization were used to improve generalization and avoid over-fitting. The model was tested on three datasets, RIAWELC, GDXray, and a private dataset of low image quality, obtaining an accuracy of 98.75 %, 90.255 %, and 75.83 %, respectively. The model proposed in this paper achieves high accuracies on different datasets and constitutes a valuable tool to improve the efficiency and effectiveness of quality control processes in the welding industry. Moreover, experimental tests show that the proposed approach performs well on even low-resolution images.

4.
Sci Rep ; 14(1): 9031, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38641688

ABSTRACT

Microscopy is integral to medical research, facilitating the exploration of various biological questions, notably cell quantification. However, this process's time-consuming and error-prone nature, attributed to human intervention or automated methods usually applied to fluorescent images, presents challenges. In response, machine learning algorithms have been integrated into microscopy, automating tasks and constructing predictive models from vast datasets. These models adeptly learn representations for object detection, image segmentation, and target classification. An advantageous strategy involves utilizing unstained images, preserving cell integrity and enabling morphology-based classification-something hindered when fluorescent markers are used. The aim is to introduce a model proficient in classifying distinct cell lineages in digital contrast microscopy images. Additionally, the goal is to create a predictive model identifying lineage and determining optimal quantification of cell numbers. Employing a CNN machine learning algorithm, a classification model predicting cellular lineage achieved a remarkable accuracy of 93%, with ROC curve results nearing 1.0, showcasing robust performance. However, some lineages, namely SH-SY5Y (78%), HUH7_mayv (85%), and A549 (88%), exhibited slightly lower accuracies. These outcomes not only underscore the model's quality but also emphasize CNNs' potential in addressing the inherent complexities of microscopic images.


Subject(s)
Microscopy , Neuroblastoma , Humans , Neural Networks, Computer , Algorithms , Machine Learning
5.
Diagnostics (Basel) ; 14(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38396492

ABSTRACT

In recent years, there has been growing interest in the use of computer-assisted technology for early detection of skin cancer through the analysis of dermatoscopic images. However, the accuracy illustrated behind the state-of-the-art approaches depends on several factors, such as the quality of the images and the interpretation of the results by medical experts. This systematic review aims to critically assess the efficacy and challenges of this research field in order to explain the usability and limitations and highlight potential future lines of work for the scientific and clinical community. In this study, the analysis was carried out over 45 contemporary studies extracted from databases such as Web of Science and Scopus. Several computer vision techniques related to image and video processing for early skin cancer diagnosis were identified. In this context, the focus behind the process included the algorithms employed, result accuracy, and validation metrics. Thus, the results yielded significant advancements in cancer detection using deep learning and machine learning algorithms. Lastly, this review establishes a foundation for future research, highlighting potential contributions and opportunities to improve the effectiveness of skin cancer detection through machine learning.

6.
Front Med (Lausanne) ; 9: 894430, 2022.
Article in English | MEDLINE | ID: mdl-35712087

ABSTRACT

Background: Deep learning methods have demonstrated remarkable performance in pathology image analysis, but they are computationally very demanding. The aim of our study is to reduce their computational cost to enable their use with large tissue image datasets. Methods: We propose a method called Network Auto-Reduction (NAR) that simplifies a Convolutional Neural Network (CNN) by reducing the network to minimize the computational cost of doing a prediction. NAR performs a compound scaling in which the width, depth, and resolution dimensions of the network are reduced together to maintain a balance among them in the resulting simplified network. We compare our method with a state-of-the-art solution called ResRep. The evaluation is carried out with popular CNN architectures and a real-world application that identifies distributions of tumor-infiltrating lymphocytes in tissue images. Results: The experimental results show that both ResRep and NAR are able to generate simplified, more efficient versions of ResNet50 V2. The simplified versions by ResRep and NAR require 1.32× and 3.26× fewer floating-point operations (FLOPs), respectively, than the original network without a loss in classification power as measured by the Area under the Curve (AUC) metric. When applied to a deeper and more computationally expensive network, Inception V4, NAR is able to generate a version that requires 4× lower than the original version with the same AUC performance. Conclusions: NAR is able to achieve substantial reductions in the execution cost of two popular CNN architectures, while resulting in small or no loss in model accuracy. Such cost savings can significantly improve the use of deep learning methods in digital pathology. They can enable studies with larger tissue image datasets and facilitate the use of less expensive and more accessible graphics processing units (GPUs), thus reducing the computing costs of a study.

SELECTION OF CITATIONS
SEARCH DETAIL