Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Environ Toxicol ; 39(4): 2405-2416, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38174951

ABSTRACT

This study aims to analyze the RNA expression and alternative polyadenylation (APA) events and identify APA tuned genes with prognostic significance in lung adenocarcinoma (LUAD). Genome-wide RNA expression profile and APA events were acquired in LUAD cancer and normal samples in GSE197346. Comparative analysis screened common deregulated genes and transcripts. All 11 and 19 transcripts were up and down expressed and polyadenylated in cancer samples, respectively. Clinical analysis found eight genes with prognostic significance, such as coiled-coil domain containing 137 (CCDC137). Role of CCDC137 in LUAD was first reported in this study. The cellular and animal experiments indicated that downregulated CCDC137 suppressed the malignant tumor phenotype and tumor growth in LUAD. Then, to identify APA regulators for elevated CCDC137, we analyzed the expression of 26 APA regulators in GSE197346 and The Cancer Genome Atlas (TCGA), and found 4 differential regulators: CPSF1, CELF2, NUDT21, and ELAVL1. At last, the correlation of eight genes with four differential APA regulators was analyzed, and CPSF1 showed a strong positive correlation with CCDC137. Based on the above results, we propose an oncogenic axis of CPSF1-CCDC137 in LUAD. This study first constructed a polyadenylation tuned RNA expression map in LUAD, and the proposed oncogenic axis of CPSF1-CCDC137 would shed light on the pathogenesis of LUAD.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Animals , Polyadenylation/genetics , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , RNA
2.
Gene ; 895: 148013, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37981081

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a genetic and sporadic neurodegenerative disease considered by an archetypal cognitive impairment and a decrease in less common cognitive impairment. Notably, the discovery of goals in this paradigm is still a challenge, and understanding basic mechanisms is an important step toward improving disease management. Polyadenylation (PA) and alternative polyadenylation (APA) are two of the most critical RNA processing stages in 3'UTRs that influence various AD-related genes. METHODS: In this study, we assessed Cleavage and polyadenylation specificity factors 1 and 6 (CPSF1 and CPSF6), cleavage stimulation factor 1 (CSTF1), and WD Repeat Domain 33 (WDR33) genes expression in the periphery of 50 AD patients and 50 healthy individuals with age and gender-matched by quantitative real-time PCR. RESULTS: Comparing AD patients with healthy people using expression analysis revealed a substantial increase in CSTF1 (posterior beta = 0.773, adjusted P-value = 0.042). Significant positive correlations were found between CSTF1 and CPSF1 (r = 0.365, P < 0.001), WDR33 (r = 0.506, P < 0.001), and CPSF6 (r = 0.446, P < 0.001) expression levels. CONCLUSION: Although further research is required to determine their potential contribution to AD, our findings offer a fresh perspective on molecular regulatory pathways associated with AD pathogenic mechanisms associated with PA and APA.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Polyadenylation , Alzheimer Disease/genetics , Neurodegenerative Diseases/genetics , Gene Expression , 3' Untranslated Regions/genetics
3.
Proc Natl Acad Sci U S A ; 120(16): e2210418120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37040401

ABSTRACT

The hypoxia-inducible factor 1-α (HIF-1α) enables cells to adapt and respond to hypoxia (Hx), and the activity of this transcription factor is regulated by several oncogenic signals and cellular stressors. While the pathways controlling normoxic degradation of HIF-1α are well understood, the mechanisms supporting the sustained stabilization and activity of HIF-1α under Hx are less clear. We report that ABL kinase activity protects HIF-1α from proteasomal degradation during Hx. Using a fluorescence-activated cell sorting (FACS)-based CRISPR/Cas9 screen, we identified HIF-1α as a substrate of the cleavage and polyadenylation specificity factor-1 (CPSF1), an E3-ligase which targets HIF-1α for degradation in the presence of an ABL kinase inhibitor in Hx. We show that ABL kinases phosphorylate and interact with CUL4A, a cullin ring ligase adaptor, and compete with CPSF1 for CUL4A binding, leading to increased HIF-1α protein levels. Further, we identified the MYC proto-oncogene protein as a second CPSF1 substrate and show that active ABL kinase protects MYC from CPSF1-mediated degradation. These studies uncover a role for CPSF1 in cancer pathobiology as an E3-ligase antagonizing the expression of the oncogenic transcription factors, HIF-1α and MYC.


Subject(s)
Gene Expression Regulation , Transcription Factors , Humans , Cullin Proteins/metabolism , Hypoxia , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Genes, abl , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Cleavage And Polyadenylation Specificity Factor/metabolism
4.
Biomolecules ; 13(1)2023 01 04.
Article in English | MEDLINE | ID: mdl-36671487

ABSTRACT

Radioactive substances have been used in various aspects in daily life. However, high-energy radiation could cause environmental problems, which would damage the human body. Circular RNA (CircRNA) has great potential in the minimization of ionizing radiation damage. To find a potential diagnostic and therapeutic target for reducing the damage of ionizing radiation, we selected circRNA cleavage and polyadenylation specificity factor subunit 1 (circ-CPSF1) based on its up-regulated expression after X-ray radiation and explored its effect on response to ionizing radiation using Caenorhabditis elegans (C. elegans). Circ-CPSF1 was screened out and its up-regulated expression was verified. The measurement of lifespan and germ cell apoptosis showed that circ-CPSF1 RNAi treatment extended lifespan and reduced apoptotic germ cells. ROS levels were significantly reduced after the interference of circ-CPSF1 in C. elegans with radiation. Mitochondrial membrane potential assay showed that the suppression of circ-CPSF1 could alleviate mitochondrial damage after radiation. Relative genes expression showed the involvement of circ-CPSF1 in radiation mediated DNA damage response pathways and apoptosis pathways. In conclusion, circ-CPSF1 exerts deleterious effects on lifespan, eggs production and germ cell apoptosis of C. elegans through oxidative stress, the DNA damage response (DDR) pathway, and the core apoptotic pathway after ionizing radiation, indicating the potential of circ-CPSF1 to be an important therapeutic target of radiation damage.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Oxidative Stress , Gene Expression , Apoptosis/genetics
5.
Am J Cancer Res ; 12(10): 4566-4583, 2022.
Article in English | MEDLINE | ID: mdl-36381317

ABSTRACT

Gastric cancer (GC) is a common malignancies with unfavourable prognosis. As one of the most common RNA modifications in nature, alternative polyadenylation (APA) plays a critical role in the progression of carcinomas. CPSF1 is a critical APA-related factor and is involved in many cancers. Nevertheless, the roles and underlying mechanisms of CPSF1 remain unclear in GC. In this work, we identified that CPSF1 is significantly upregulated in GC and that high CPSF1 expression indicates an unfavourable prognosis in GC patients. Moreover, CPSF1 expression levels were closely associated with tumour size, TNM stage and lymph node metastasis. CPSF1 depletion dramatically weakened GC cell proliferation and metastasis. We then performed RNA sequencing and found numerous downstream genes involved the regulation of CPSF1 with remarkable changes in 3'UTR length, among which NSDHL was positively regulated by CPSF1 and promoted GC progression. In addition, rescue assays demonstrated that NSDHL mediated the carcinogenic effect of CPSF1, and this process potentially involved APA. Therefore, this study showed that CPSF1 promotes GC progression, at least in part, by enhancing NSDHL and offered new insights into therapeutic targets for GC.

6.
Mol Ther Nucleic Acids ; 28: 219-230, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35402071

ABSTRACT

Androgen receptor splice variant 7 (AR-v7), a constitutively active transcription factor, plays a crucial role in the progression of castration-resistant prostate cancer (CRPC). Here, we found that the cleavage and polyadenylation specificity factor 1 (CPSF1) (the largest subunit of the multi-protein cleavage and polyadenylation specificity complex), regulated by the E3 ubiquitin ligases SIAH1, promoted AR-v7 expression. The data from microarray-based analysis and clinical specimen-based analysis showed that SIAH1 expression was decreased in PCa and was negatively correlated with aggressive phenotypes of PCa. SIAH1 repressed PCa cell growth and invasion under castrate conditions. SIAH1 directly interacted with CPSF1 and promoted ubiquitination and degradation of CPSF1. CPSF1 expression was negatively correlated with SIAH1 expression, but positively with PCa progression. CPSF1 overexpression switched the AR splicing pattern and facilitated the generation of the oncogenic isoform (AR-v7) by binding to the AAUAAA polyadenylation signal contained in AR-cryptic exon CE3. Functionally, SIAH1 acted as a tumor suppressor in PCa pathogenesis by repressing CPSF1-mediated AR-v7 generation. Finally, we demonstrated that m6A methylation was concerned with the repression of SIAH1 in PCa. Our results define SIAH1/CPSF1/AR-v7 axis as a regulatory factor of PCa progression, providing a promising target for treating PCa.

7.
Arch Physiol Biochem ; 128(3): 708-715, 2022 Jun.
Article in English | MEDLINE | ID: mdl-32046510

ABSTRACT

This study investigated the expression and underlying molecular mechanism of CPSF1 in diabetic retinopathy. Streptozotocin (STZ)-induced Sprague-Dawley (SD) rats were employed as a diabetic model, and high-glucose (HG)-induced human retinal vascular endothelial cells (HRVECs)were used as an in vitro experimental model to explore the effect of CPSF1. The results showed that CPSF1 was downregulated in diabetic retinopathy (DR) tissues and HRVECs under HG conditions. Adeno-associated viral CPSF1 attenuated histological abnormalities of retinas. CPSF1 regulates the apoptosis, migration, and vascularisation of HRVECs under HG conditions in vitro. CPSF1 mediates retinal vascular dysfunction by suppressing the phosphorylation mechanism in the mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) pathway in DR. In conclusion, CPSF1 may be associated with the development of DR, and upregulated CPSF1 alleviates apoptosis and migration via MAPK/ERK pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Animals , Diabetes Mellitus, Experimental/pathology , Diabetic Retinopathy/complications , Diabetic Retinopathy/genetics , Endothelial Cells , MAP Kinase Signaling System , Rats , Rats, Sprague-Dawley
8.
Theranostics ; 10(23): 10531-10547, 2020.
Article in English | MEDLINE | ID: mdl-32929364

ABSTRACT

Background: Triple-negative breast cancer (TNBC) is an aggressive malignancy with high heterogeneity. However, the alternative polyadenylation (APA) profiles of TNBC remain unknown. Here, we aimed to define the characteristics of the APA events at post-transcription level among TNBCs. Methods: Using transcriptome microarray data, we analyzed APA profiles of 165 TNBC samples and 33 paired normal tissues. A pooled short hairpin RNA screen targeting 23 core cleavage and polyadenylation (C/P) genes was used to identify key C/P factors. Results: We established an unconventional APA subtyping system composed of four stable subtypes: 1) luminal androgen receptor (LAR), 2) mesenchymal-like immune-activated (MLIA), 3) basal-like (BL), 4) suppressed (S) subtypes. Patients in the S subtype had the worst disease-free survival comparing to other patients (log-rank p = 0.021). Enriched clinically actionable pathways and putative therapeutic APA events were analyzed among each APA subtype. Furthermore, CPSF1 and PABPN1 were identified as the master C/P factors in regulating APA events and TNBC proliferation. The depletion of CPSF1 or PABPN1 weakened cell proliferation, enhanced apoptosis, resulted in cell cycle redistribution and a reversion of APA events of genes associated with tumorigenesis, proliferation, metastasis and chemosensitivity in breast cancer. Conclusions: Our findings advance the understanding of tumor heterogeneity regulation in APA and yield new insights into therapeutic target identification in TNBC.


Subject(s)
Gene Expression Regulation, Neoplastic , Polyadenylation , Triple Negative Breast Neoplasms/genetics , 3' Untranslated Regions/genetics , Apoptosis/genetics , Breast/pathology , Carcinogenesis/genetics , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cleavage And Polyadenylation Specificity Factor/metabolism , Disease-Free Survival , Female , Genetic Heterogeneity , Humans , Middle Aged , Oligonucleotide Array Sequence Analysis , Poly(A)-Binding Protein I/metabolism , Prospective Studies , RNA-Seq , Triple Negative Breast Neoplasms/mortality , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL