Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Fish Shellfish Immunol ; 151: 109679, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844185

ABSTRACT

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) typically composing of eight subunits (CSN1-8) mediates the process of deneddylation and deubiquitination. The fifth subunit of COP9 signalosome, CSN5, has special characteristics compared with the other seven subunits, and plays vital roles in the deneddylation activity and diverse cellular processes. However, the role of CSN5 in antiviral immunity is not clear. In this study, we identified 8 subunits (CSN1-8) of COP9 signalosome in shrimp Marsupenaeus japonicus. CSN1-6 were existed in all tested tissues, but CSN7-CSN8 were not detected in hepatopancreas. After WSSV challenged, the expression level of Csn1 to Csn4, and Csn6 to Csn8 were highly decreased, but the expression level of Csn5 was conspicuously increased in shrimp challenged by white spot syndrome virus (WSSV). The CSN5 was recombinantly expressed in Escherichia coli and its polyclonal antibody was prepared. The expression level of CSN5 was conspicuously increased at RNA and protein levels in the shrimp challenged by WSSV. After knockdown of Csn5 by RNA interference, the WSSV replication was obviously increased in shrimp. When injected the recombinant protein of CSN5 with the membrane penetrating peptide into shrimp, WSSV replication was inhibited and the survival rate of shrimp was significantly improved compared with control. We further analyzed the expression of antimicrobial peptides (AMPs) in Csn5-RNAi shrimp, and the results showed that the expression of several AMPs was declined significantly. These results indicate that CSN5 inhibits replication of WSSV via regulating expression of AMPs in shrimp, and the recombinant CSN5 might be used in shrimp aquaculture for the white spot syndrome disease control.


Subject(s)
Arthropod Proteins , COP9 Signalosome Complex , Immunity, Innate , Penaeidae , White spot syndrome virus 1 , Animals , Penaeidae/genetics , Penaeidae/immunology , COP9 Signalosome Complex/genetics , COP9 Signalosome Complex/immunology , White spot syndrome virus 1/physiology , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/chemistry , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary , Sequence Alignment/veterinary , Phylogeny
2.
Cancer Sci ; 115(8): 2515-2527, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38685894

ABSTRACT

Multiple Endocrine Neoplasia 1 gene (MEN1), which is known to be a tumor suppressor gene in lung tissues, encodes a 610 amino acid protein menin. Previous research has proven that MEN1 deficiency promotes the malignant progression of lung cancer. However, the biological role of this gene in the immune microenvironment of lung cancer remains unclear. In this study, we found that programmed cell death-ligand 1 (PD-L1) is upregulated in lung-specific KrasG12D mutation-induced lung adenocarcinoma in mice, after Men1 deficiency. Simultaneously, CD8+ and CD3+ T cells are depleted, and their cytotoxic effects are suppressed. In vitro, PD-L1 is inhibited by the overexpression of menin. Mechanistically, we found that MEN1 inactivation promotes the deubiquitinating activity of COP9 signalosome subunit 5 (CSN5) and subsequently increases the level of PD-L1.


Subject(s)
B7-H1 Antigen , Lung Neoplasms , Proto-Oncogene Proteins , Tumor Escape , Animals , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Mice , Humans , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Tumor Escape/genetics , COP9 Signalosome Complex/genetics , COP9 Signalosome Complex/metabolism , Tumor Microenvironment/immunology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Ubiquitination , Mutation
3.
Cell Commun Signal ; 22(1): 222, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594767

ABSTRACT

Csn5 is subunit 5 of the COP9 signalosome (CSN), but the mechanism by which it strictly controls the pathogenicity of pathogenic fungi through autophagy remains unclear. Here, we found that Csn5 deficiency attenuated pathogenicity and enhanced autophagy in Magnaporthe oryzae. MoCSN5 knockout led to overubiquitination and overdegradation of MoTor (the core protein of the TORC1 complex [target of rapamycin]) thereby promoted autophagy. In addition, we identified MoCsn5 as a new interactor of MoAtg6. Atg6 was found to be ubiquitinated through linkage with lysine 48 (K48) in cells, which is necessary for infection-associated autophagy in pathogenic fungi. K48-ubiquitination of Atg6 enhanced its degradation and thereby inhibited autophagic activity. Our experimental results indicated that MoCsn5 promoted K48-ubiquitination of MoAtg6, which reduced the MoAtg6 protein content and thus inhibited autophagy. Aberrant ubiquitination and autophagy in ΔMocsn5 led to pleiotropic defects in the growth, development, stress resistance, and pathogenicity of M. oryzae. In summary, our study revealed a novel mechanism by which Csn5 regulates autophagy and pathogenicity in rice blast fungus through ubiquitination.


Subject(s)
Ascomycota , Virulence , Proteins , Ubiquitination , Autophagy
4.
Plant Biotechnol J ; 22(3): 698-711, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37929693

ABSTRACT

Flowering time, an important factor in plant adaptability and genetic improvement, is regulated by various genes in tomato (Solanum lycopersicum). In this study, we characterized a tomato mutant, EARLY FLOWERING (EF), that developed flowers much earlier than its parental control. EF is a dominant gain-of-function allele with a T-DNA inserted 139 bp downstream of the stop codon of FANTASTIC FOUR 1/2c (FAF1/2c). The transcript of SlFAF1/2c was at elevated levels in the EF mutant. Overexpressing SlFAF1/2c in tomato plants phenocopied the early flowering trait of the EF mutant. Knocking out SlFAF1/2c in the EF mutant reverted the early flowering phenotype of the mutant to the normal flowering time of the wild-type tomato plants. SlFAF1/2c promoted the floral transition by shortening the vegetative phase rather than by reducing the number of leaves produced before the emergence of the first inflorescence. The COP9 signalosome subunit 5B (CSN5B) was shown to interact with FAF1/2c, and knocking out CSN5B led to an early flowering phenotype in tomato. Interestingly, FAF1/2c was found to reduce the accumulation of the CSN5B protein by reducing its protein stability. These findings imply that FAF1/2c regulates flowering time in tomato by reducing the accumulation and stability of CSN5B, which influences the expression of SINGLE FLOWER TRUSS (SFT), JOINTLESS (J) and UNIFLORA (UF). Thus, a new allele of SlFAF1/2c was discovered and found to regulate flowering time in tomato.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Alleles , Gain of Function Mutation , Mutation , Flowers/genetics , Flowers/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/genetics
5.
Cell Mol Life Sci ; 80(9): 262, 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37597109

ABSTRACT

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is a deNEDDylase controlling ubiquitination activity of cullin-RING-E3 ligases (CRLs) and thus the levels of key cellular proteins. While the CSN and its catalytic subunit CSN5 have been extensively studied in cancer, its role in inflammatory and neurological diseases is less understood. Following verification that CSN5 is expressed in mouse and human brain, here we studied the role of the CSN in neuroinflammation and ischemic neuronal damage employing models of relevant brain-resident cell types, an ex vivo organotypic brain slice culture model, and the CRL NEDDylation state-modifying drugs MLN4924 and CSN5i-3, which mimic and inhibit, respectively, CSN5 deNEDDylase activity. Untargeted mass spectrometry-based proteomics revealed that MLN4924 and CSN5i-3 substantially alter the microglial proteome, including inflammation-related proteins. Applying these drugs and mimicking microglial and endothelial inflammation as well as ischemic neuronal stress by TNF and oxygen-glucose-deprivation/reoxygenation (OGD/RO) treatment, respectively, we could link CSN5/CSN-mediated cullin deNEDDylation to reduction of microglial inflammation, attenuated cerebral endothelial inflammation, improved barrier integrity, as well as protection from ischemic stress-induced neuronal cell death. Specifically, MLN4924 reduced phagocytic activity, motility, and inflammatory cytokine expression of microglial cells, and this was linked to inhibition of inflammation-induced NF-κB and Akt signaling. Inversely, Csn5 knockdown and CSN5i-3 increased NF-κB signaling. Moreover, MLN4924 abrogated TNF-induced NF-κB signaling in cerebral microvascular endothelial cells (hCMECs) and rescued hCMEC monolayers from OGD/RO-triggered barrier leakage, while CSN5i-3 exacerbated permeability. In an ex vivo organotypic brain slice model of ischemia/reperfusion stress, MLN4924 protected from neuronal death, while CSN5i-3 impaired neuronal survival. Neuronal damage was attributable to microglial activation and inflammatory cytokines, as indicated by microglial shape tracking and TNF-blocking experiments. Our results indicate a protective role of the CSN in neuroinflammation via brain-resident cell types involved in ischemic brain disease and implicate CSN activity-mimicking deNEDDylating drugs as potential therapeutics.


Subject(s)
NF-kappa B , Neuroinflammatory Diseases , Humans , Animals , Mice , COP9 Signalosome Complex , Cullin Proteins , Endothelial Cells , Brain , Inflammation/drug therapy , Cytokines
6.
Proc Natl Acad Sci U S A ; 119(36): e2205608119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037385

ABSTRACT

Cop9 signalosome (CSN) regulates the function of cullin-RING E3 ubiquitin ligases (CRLs) by deconjugating the ubiquitin-like protein NEDD8 from the cullin subunit. To understand the physiological impact of CSN function on the CRL network and cell proliferation, we combined quantitative mass spectrometry and genome-wide CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) screens to identify factors that modulate cell viability upon inhibition of CSN by the small molecule CSN5i-3. CRL components and regulators strongly modulated the antiproliferative effects of CSN5i-3, and in addition we found two pathways involved in genome integrity, SCFFBXO5-APC/C-GMNN and CUL4DTL-SETD8, that contribute substantially to the toxicity of CSN inhibition. Our data highlight the importance of CSN-mediated NEDD8 deconjugation and adaptive exchange of CRL substrate receptors in sustaining CRL function and suggest approaches for leveraging CSN inhibition for the treatment of cancer.


Subject(s)
DNA Replication , Ubiquitin-Protein Ligases , Azepines/metabolism , COP9 Signalosome Complex/antagonists & inhibitors , COP9 Signalosome Complex/genetics , COP9 Signalosome Complex/metabolism , Cell Survival , Cullin Proteins/genetics , Cullin Proteins/metabolism , Imidazoles/metabolism , NEDD8 Protein/metabolism , Pyrazoles/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
BMC Cancer ; 22(1): 812, 2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35870903

ABSTRACT

BACKGROUND: Despite the understanding of the COP9 signalosome subunit 5 (CSN5) in tumor genesis, there is no conclusive evidence on its value to predict the survival and prognosis of digestive system tumor patients. Hence this study aimed to evaluate the impact of CSN5 levels on the survival and clinicopathological parameters of digestive system neoplasm patients. METHODS: First, a comprehensive search was conducted in four databases. We utilized the Hazard Ratio (HR) with a 95% confidence interval (CI) to evaluate the prognostic value of CSN5 for the overall survival (OS) and recurrence-free survival (RFS) of patients. Then, we estimated the connection between CSN5 and the clinicopathological parameters based on the Odds Ratio (OR) with the corresponding 95% CI. RESULTS: This meta-analysis included 22 studies and 2193 patients diagnosed with digestive system tumors. High expression of CSN5 was correlated to poorer OS (HR = 2.28, 95% CI: 1.71-3.03; p < 0.00001). Additionally, high CSN5 levels were correlated with worse invasion depth (OR = 0.49, 95% CI: 0.25-0.96, p = 0.04), positive lymphatic metastasis (OR = 0.28, 95% CI: 0.16-0.47, p = 0.00001), positive distant metastasis (OR = 0.32, 95% CI: 0.13-0.76, p = 0.01) and poorer differentiation degree (OR = 0.34, 95% CI: 0.19-0.60, p = 0.0003). However, we did not detect a correlation between CSN5 expression and age, gender, tumor stage, tumor size or vascular invasion. Furthermore, no significant publication bias was detected. CONCLUSION: This meta-analysis demonstrated that the overexpression of CSN5 level might foresee poorer OS in digestive system cancer patients. Additionally, CSN5 levels might be related to the prognosis of digestive system tumors.


Subject(s)
Biomarkers, Tumor , Digestive System Neoplasms , Biomarkers, Tumor/metabolism , Digestive System Neoplasms/diagnosis , Humans , Lymphatic Metastasis , Prognosis , Proportional Hazards Models
8.
Acta Pharm Sin B ; 12(3): 1041-1053, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35530130

ABSTRACT

The immune checkpoint blockade (ICB) targeting on PD-1/PD-L1 has shown remarkable promise in treating cancers. However, the low response rate and frequently observed severe side effects limit its broad benefits. It is partially due to less understanding of the biological regulation of PD-L1. Here, we systematically and comprehensively summarized the regulation of PD-L1 from nuclear chromatin reorganization to extracellular presentation. In PD-L1 and PD-L2 highly expressed cancer cells, a new TAD (topologically associating domain) (chr9: 5,400,000-5,600,000) around CD274 and CD273 was discovered, which includes a reported super-enhancer to drive synchronous transcription of PD-L1 and PD-L2. The re-shaped TAD allows transcription factors such as STAT3 and IRF1 recruit to PD-L1 locus in order to guide the expression of PD-L1. After transcription, the PD-L1 is tightly regulated by miRNAs and RNA-binding proteins via the long 3'UTR. At translational level, PD-L1 protein and its membrane presentation are tightly regulated by post-translational modification such as glycosylation and ubiquitination. In addition, PD-L1 can be secreted via exosome to systematically inhibit immune response. Therefore, fully dissecting the regulation of PD-L1/PD-L2 and thoroughly detecting PD-L1/PD-L2 as well as their regulatory networks will bring more insights in ICB and ICB-based combinational therapy.

9.
FASEB J ; 36(5): e22321, 2022 05.
Article in English | MEDLINE | ID: mdl-35429011

ABSTRACT

Hemocytes are invertebrate immune cells that are similar to blood cells in vertebrates and play a crucial role in innate immunity. Previous work has found that mature circulating hemocytes lack the ability to proliferate. However, recent single-cell RNA sequencing and functional studies in invertebrate have challenged this view. Here, we report that bacteria induced hemocytes proliferation in the Chinese mitten crab, Eriocheir sinensis. Flow cytometry was used to collect non-proliferating and proliferating hemocytes populations, while the expression of EsCyclin E was highly expressed in proliferating hemocytes, but the expression of EsCsn5 was significantly suppressed in proliferating hemocytes. Subsequent studies have found EsCsn5 distributed in two fractions include holo-complex and monomeric form, whereas knockdown of EsCsn5 has little impact on the amount of the holo-complex. EsCsn5 was widely expressed in different crab tissues, while its expression was significantly reduced upon bacterial infection. Crab hemocytes showed significantly enhanced proliferation when EsCsn5 was genetically knocked down, suggesting a critical role for CSN5 in the negative regulation of crab hemocyte proliferation. Moreover, EsCSN5 but not the EsCSN8 was demonstrated to negatively regulate the early G1 phase of the cell cycle by controlling the degradation of EsCyclin E through ubiquitination steps, rather than affecting its transcription. Furthermore, in the EsCyclin E-suppressed crab there was a significantly reduced survival rate and an up-regulated hemolymph bacterial concentration. Taken together, this study provides evidence demonstrating that invertebrate hemocytes down-regulate the expression of EsCsn5 upon bacterial challenge, thus promoting proliferation in an EsCyclin E-dependent manner in order to protect the crab from infection.


Subject(s)
Bacterial Infections , Hemocytes , Animals , Arthropod Proteins/genetics , Cell Proliferation , Cyclin E/genetics , G1 Phase , Hemocytes/metabolism , Immunity, Innate/genetics , Phylogeny
10.
Int J Biol Sci ; 18(5): 2186-2201, 2022.
Article in English | MEDLINE | ID: mdl-35342335

ABSTRACT

TNBC is characterized by high incidence of visceral metastasis and lacks effective clinical targets. This study aims to delineate the molecular mechanisms of SENP1 in TNBC invasion and metastasis. By using IHC to test the SENP1 expression in TNBC tissues, we analyzed the relationship between SENP1 expression and TNBC prognosis. We showed that SENP1 expression was higher in TNBC tumor tissues and related to TNBC prognosis, supporting SENP1 as an independent risk factor. High expression of SENP1 was significantly associated with histologic grade and tumor lymph node invasion. Intriguingly, the expression levels of SENP1 in TNBC tumors were significantly correlated with that of CSN5, GATA1 and ZEB1. Importantly, SENP1 promoted TNBC cell migration and invasion by regulating ZEB1 deubiquitination and expression through CSN5. Further studies showed that deSUMOylation at lysine residue K137 of GATA1 enhanced the binding of GATA1 to the CSN5 promoter and transactivated CSN5 expression. In addition, we showed that ZEB1 is deubiquitinated at lysine residue K1108. Our in vivo studies also indicated that reduction in SENP1 expression upregulated GATA1 SUMOylation, and thus resulted in decreased expression of CSN5 and ZEB1 in the tumor microenvironment, which decelerated TNBC progression and metastasis. SENP1 promoted CSN5-mediated ZEB1 protein degradation via deSUMOylation of GATA1, and thus influenced TNBC progression. These findings suggest that SENP1 could be utilized as a potential target for blockade of TNBC development and thus provide a totally new approach for TNBC treatment.


Subject(s)
Triple Negative Breast Neoplasms , COP9 Signalosome Complex , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , GATA1 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic/genetics , Humans , Intracellular Signaling Peptides and Proteins , Lysine/metabolism , Peptide Hydrolases , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment
11.
Cell Immunol ; 372: 104469, 2022 02.
Article in English | MEDLINE | ID: mdl-35114597

ABSTRACT

Gastric cancer (GC) originates from the stomach and is a prevalent human malignancy. Dysfunction of death associated protein kinase 1 (DAPK1) has been identified as a major regulator involved in the development and progression of GC. However, there's limited data regarding the regulatory mechanism of GC. Herein, we investigated role of DAPK1 in natural killer (NK) cell killing ability and immune evasion of GC cells and mediated pathway. Samples from GC-related gene expression profile and clinical samples from 67 patients with GC were collected to determine the expression of DAPK1, IκB kinase ß (IKKß), programmed death receptor-ligand 1 (PD-L1), and photomorphogenesis 9 (COP9) signalosome 5 (CSN5). The binding affinity among DAPK1, IKKß, CSN5, and PD-L1 was characterized to verify the underlying mechanism. GC lines were transfected with overexpressed plasmid or siRNA to determine the effect of DAPK1/IKKß/CSN5/PD-L1 axis on NK cell killing ability and immune evasion of GC cells. GC cells and tissues presented low expression of DAPK1 and high expression of IKKß, CSN5 and PD-L1. IKKß, negatively regulated by DAPK1, was capable of activating CSN5 and upregulating PD-L1 expression. Overexpression of DAPK1 promoted NK cell killing ability and reduced immune evasion, coupled with reduction of NK cell apoptosis and increases in levels of TNF-α, IFN-γ, CD107a, and Granzyme B cytokines. The tumor-suppressing properties of DAPK1 through downregulation of IKKß/CSN5/PD-L1 axis in GC were further confirmed in vivo. In summary, overexpression of DAPK1 promoted the NK cell killing ability and restrained immune evasion of GC cells, providing a potential therapeutic strategy for GC treatment by modulating immune evasion.


Subject(s)
B7-H1 Antigen/metabolism , COP9 Signalosome Complex/metabolism , Death-Associated Protein Kinases/metabolism , I-kappa B Kinase/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Killer Cells, Natural/immunology , Peptide Hydrolases/metabolism , Stomach Neoplasms/immunology , Stomach Neoplasms/metabolism , Animals , B7-H1 Antigen/genetics , COP9 Signalosome Complex/genetics , Cell Line, Tumor , Death-Associated Protein Kinases/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Heterografts , Humans , I-kappa B Kinase/genetics , Intracellular Signaling Peptides and Proteins/genetics , Killer Cells, Natural/metabolism , Mice , Mice, Nude , Models, Biological , Peptide Hydrolases/genetics , Phosphorylation , Prognosis , Stomach Neoplasms/genetics , Tumor Escape/genetics , Tumor Escape/immunology , Ubiquitination , Up-Regulation
12.
Neoplasia ; 23(9): 912-928, 2021 09.
Article in English | MEDLINE | ID: mdl-34325342

ABSTRACT

Protein Disulfide Isomerase Family A Member 6 (PDIA6) is an endoplasmic reticulum protein that is capable of catalyzing protein folding and disulfide bond formation. Abnormally elevated expression of PDIA6 has been reported to predict poor outcomes in various cancers. Herein, gain-of- and loss-of-function experiments were performed to investigate how PDIA6 participated in the carcinogenesis of pancreatic cancer (PC). By analyzing the protein expression of PDIA6 in 28 paired PC and para carcinoma specimens, we first found that PDIA6 expression was higher in PC samples. Both the overall survival and disease-free survival rates of PC patients with higher PDIA6 expression were poorer than those with lower PDIA6 (n = 178). Furthermore, knockdown of PDIA6 impaired the malignancies of PC cells - suppressed cell proliferation, invasion, migration, cisplatin resistance, and xenografted tumor growth. PDIA6-silenced PC cells were more sensitive to cytotoxic natural killer (NK) cells. Overexpression of PDIA6 had opposite effects on PC cells. Interestingly, COP9 signalosome subunit 5 (CSN5), a regulator of E3 ubiquitin ligases known to promote deubiquitination of its downstream targets, was demonstrated to interact with PDIA6, and its expression was increased in PC cells overexpressing PDIA6. Additionally, PDIA6 overexpression promoted deubiquitination of ß-catenin and PD-L1 and subsequently upregulated their expression in PC cells. These alterations were partly reversed by CSN5 shRNA. Collectively, the above results demonstrate that PDIA6 contributes to PC progression, which may be associated with CSN5-regulated deubiquitination of ß-catenin and PD-L1. Our findings suggest PDIA6 as a potential target for the treatment of PC.


Subject(s)
B7-H1 Antigen/metabolism , COP9 Signalosome Complex/biosynthesis , Intracellular Signaling Peptides and Proteins/biosynthesis , Pancreatic Neoplasms/metabolism , Peptide Hydrolases/biosynthesis , Protein Disulfide-Isomerases/biosynthesis , Tumor Escape/physiology , beta Catenin/metabolism , Adult , Aged , Aged, 80 and over , Animals , B7-H1 Antigen/genetics , COP9 Signalosome Complex/genetics , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Disease Progression , Female , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Neoplasm Grading/methods , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Peptide Hydrolases/genetics , Protein Disulfide-Isomerases/genetics , beta Catenin/genetics
13.
Cancer Cell Int ; 21(1): 369, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34247597

ABSTRACT

BACKGROUND: CSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet. METHODS: Data from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 and clinical relevance in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR-CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. The biological behaviors were analyzed by CCK8, clone formation assay, 3-D spheroid generation assay and cell cycle assay. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. MLN4924 was given in Siha and Hela with CSN5 overexpression. RESULTS: We found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells. CONCLUSIONS: Our findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.

14.
Front Cardiovasc Med ; 8: 654254, 2021.
Article in English | MEDLINE | ID: mdl-33928137

ABSTRACT

Background: Preeclampsia (PE) is a leading cause of maternal and perinatal morbidity and mortality; however, its etiology and pathophysiology remain obscure. PE is initiated by inadequate spiral artery remodeling and subsequent placental ischemia/hypoxia, which stimulates release of bioactive factors into maternal circulation, leading to hypertension and renal damage. Methods and Results: Abundance of key components of cullin 3-ring ubiquitin ligase (CRL3), including cullin 3 (CUL3) and its neddylated modification, and adaptors including Kelch-like 2 (KLHL2) and Rho-related BTB domain containing protein 1 was all decreased in spiral arteries and placentas of PE patients. Similar changes were found in aortic tissues and renal distal tubules of pregnant mice treated with Nω-nitro-l-arginine methyl ester hydrochloride. The downregulation of CRL3 function led to accumulation of with-no-lysine kinases, phosphodiesterase 5, and RhoA in vessels and renal distal tubules, which promoted vasoconstriction and Na-Cl cotransporter activation in the distal convoluted tubule (DCT), as well as vascular and DCT structure remodeling. Proton pump inhibitor esomeprazole partially restored CRL3 function. In vitro studies have shown that increased abundance of JAB1, a component of the COP9 signalosome, inhibited CUL3 neddylation and promoted the expression of hypoxia-inducible factor 1α, which downregulated peroxisome proliferator-activated receptor γ and further promoted CUL3 inactivation. KLHL3/2 was degraded by increased autophagy. Conclusion: These findings support that the downregulation of CRL3 function disrupts the balance of vasoconstriction and vasodilation and aggravates excess reabsorption of sodium in PE.

15.
Biomolecules ; 11(4)2021 03 25.
Article in English | MEDLINE | ID: mdl-33806190

ABSTRACT

The COP9 signalosome (CSN) is a highly conserved eukaryotic multi-subunit enzyme, regulating cullin RING ligase activities and accordingly, substrate ubiquitination and degradation. We showed that the CSN complex of Saccharomyces cerevisiae that is deviated in subunit composition and in sequence homology harbors a highly conserved cullin deneddylase enzymatic core complex. We took advantage of the non-essentiality of the S. cerevisiae CSN-NEDD8/Rub1 axis, together with the enzyme-substrate cross-species activity, to develop a sensitive fluorescence readout assay, suitable for biochemical assessment of cullin deneddylation by CSNs from various origins. We also demonstrated that the yeast catalytic subunit, CSN5/Jab1, is targeted by an inhibitor that was selected for the human orthologue. Treatment of yeast by the inhibitor led to the accumulation of neddylated cullins and the formation of reactive oxygen species. Overall, our data revealed S. cerevisiae as a general platform that can be used for studies of CSN deneddylation and for testing the efficacy of selected CSN inhibitors.


Subject(s)
COP9 Signalosome Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , COP9 Signalosome Complex/chemistry , COP9 Signalosome Complex/genetics , Cullin Proteins/metabolism , Humans , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Substrate Specificity , Ubiquitination , Ubiquitins/chemistry , Ubiquitins/genetics , Ubiquitins/metabolism
16.
Acta Pharm Sin B ; 11(3): 694-707, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33777676

ABSTRACT

Targeting immune checkpoints such as programmed cell death protein 1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved for treating melanoma, gastric cancer (GC) and bladder cancer with clinical benefit. Nevertheless, many patients failed to respond to anti-PD-1/PD-L1 treatment, so it is necessary to seek an alternative strategy for traditional PD-1/PD-L1 targeting immunotherapy. Here with the data from The Cancer Genome Atlas (TCGA) and our in-house tissue library, PD-L1 expression was found to be positively correlated with the expression of ubiquitin-specific processing protease 7 (USP7) in GC. Furthermore, USP7 directly interacted with PD-L1 in order to stabilize it, while abrogation of USP7 attenuated PD-L1/PD-1 interaction and sensitized cancer cells to T cell killing in vitro and in vivo. Besides, USP7 inhibitor suppressed GC cells proliferation by stabilizing P53 in vitro and in vivo. Collectively, our findings indicate that in addition to inhibiting cancer cells proliferation, USP7 inhibitor can also downregulate PD-L1 expression to enhance anti-tumor immune response simultaneously. Hence, these data posit USP7 inhibitor as an anti-proliferation agent as well as a novel therapeutic agent in PD-L1/PD-1 blockade strategy that can promote the immune response of the tumor.

17.
Endocrinology ; 162(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33508120

ABSTRACT

COP9 signalosome subunit 5 (CSN5) plays a key role in carcinogenesis of multiple cancers and contributes to the stabilization of target proteins through deubiquitylation. However, the underlying role of CSN5 in thyroid carcinoma has not been reported. In this research, our data showed that CSN5 was overexpressed in thyroid carcinoma tissues compared with paracancerous tissues. Furthermore, a series of gain/loss functional assays were performed to demonstrate the role of CSN5 in facilitating thyroid carcinoma cell proliferation and metastasis. Additionally, we found there was a positive correlation between CSN5 and angiopoietin-like protein 2 (ANGPTL2) protein levels in thyroid carcinoma tissues and that CSN5 promoted thyroid carcinoma cell proliferation and metastasis through ANGPTL2. We also identified the underlying mechanism that CSN5 elevated ANGPTL2 protein level by directly binding it, decreasing its ubiquitination and degradation. Overall, our results highlight the significance of CSN5 in promoting thyroid carcinoma carcinogenesis and implicate CSN5 as a promising candidate for thyroid carcinoma treatment.


Subject(s)
Angiopoietin-like Proteins/physiology , COP9 Signalosome Complex/physiology , Carcinogenesis/genetics , Intracellular Signaling Peptides and Proteins/physiology , Peptide Hydrolases/physiology , Thyroid Neoplasms/genetics , Angiopoietin-Like Protein 2 , Angiopoietin-like Proteins/metabolism , Animals , Cells, Cultured , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Processing, Post-Translational/genetics , Proteolysis , Signal Transduction/genetics , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Ubiquitination/genetics
18.
J Cell Physiol ; 236(8): 5686-5697, 2021 08.
Article in English | MEDLINE | ID: mdl-33393086

ABSTRACT

We previously reported that the evolutionary conserved transcriptional cofactor Jab1/Cops5 is critical for mouse chondrocyte differentiation by selectively repressing BMP signaling. In this study, we first uncovered that the endogenous Jab1 interacts with endogenous Smad1/5/8. Furthermore, although Jab1 did not directly interact with Acvr1 (Alk2), a key Type I BMP receptor, the interaction between endogenous Smad1/5/8 and Acvr1 was increased in Jab1-null chondrocytes. Thus, Jab1 might negatively regulate BMP signaling during chondrocyte differentiation in part by sequestering Smad1/5/8 away from Acvr1. Next, to identity Jab1 downstream targets in chondrocytes, we performed RNA-sequencing analysis of Jab1-null chondrocytes and discovered a total of 1993 differentially expressed genes. Gene set enrichment analysis revealed that key targets inhibited by Jab1 includes p53, BMP/transforming growth factor beta, and apoptosis pathways. We confirmed that endogenous Jab1 interacts with endogenous p53. There was significantly elevated p53 reporter activity, an enhanced expression of phospho-p53, and an increased expression of a key p53 downstream target, Puma, in Jab1-null chondrocytes. Moreover, treatments with a p53-specific inhibitor and/or a BMP Type I receptor-specific inhibitor reversed the elevated p53 and BMP signaling activities in Jab1-null chondrocytes and partially restored columnar growth plate structure in E17.5 Jab1-null mouse tibia explant cultures. Finally, we demonstrated that the chondrocyte-specific Jab1 overexpression in mice resulted in smaller-sized embryos with disorganized growth plates. In conclusion, our data showed that the delicate Jab1-mediated crosstalk between BMP and p53 pathways is crucial to maintain proper chondrocyte survival and differentiation. Moreover, the appropriate Jab1 expression level is essential for proper skeletal development.


Subject(s)
COP9 Signalosome Complex/metabolism , Cell Differentiation/physiology , Chondrocytes/metabolism , Peptide Hydrolases/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Chondrogenesis/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Transforming Growth Factor beta/metabolism
19.
Dev Comp Immunol ; 114: 103870, 2021 01.
Article in English | MEDLINE | ID: mdl-32937164

ABSTRACT

As an extremely virulent pathogen, white spot syndrome virus (WSSV) greatly threatens shrimp aquaculture worldwide. The interaction between virus and host is important for viral infection. In the present study, a yeast two-hybrid (Y2H) library was constructed to clarify the functions of wsv006, and the interaction between wsv006 and shrimp Litopenaeus vannamei (L. vannamei) was analyzed. Furthermore, we explored the role of the wsv006-interacting molecule L. vannamei COP9 constitutive photomorphogenic-like protein subunit 5 (LvCSN5) in WSSV infection. Y2H assay showed that wsv006 interacted with LvCSN5, and co-immunoprecipitation (Co-IP) assay confirmed such interaction. Multiple alignments of amino acid sequences with other species revealed that the LvCSN5 had high identity with Penaeusmonodon CSN5 (PmCSN5). LvCSN5 was mainly expressed in intestine, eye and hepatopancreas. In addition, the relative expression of LvCSN5 was significantly up-regulated both in intestine and hepatopancreas following the WSSV challenge. Besides, the relative expressions of IE1 and VP28, as well as the viral copy numbers were significantly increased in the LvCSN5-silenced shrimp. Our findings suggested that LvCSN5 was involved in WSSV infection by interacting with wsv006.


Subject(s)
Arthropod Proteins , COP9 Signalosome Complex , DNA Virus Infections , Hepatopancreas , Intestines , Penaeidae , Viral Proteins , White spot syndrome virus 1 , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , COP9 Signalosome Complex/genetics , COP9 Signalosome Complex/metabolism , DNA Virus Infections/immunology , DNA Virus Infections/metabolism , Hepatopancreas/metabolism , Host-Pathogen Interactions , Immediate-Early Proteins/metabolism , Immunity, Innate , Intestines/metabolism , Penaeidae/immunology , Protein Binding , RNA, Small Interfering/genetics , Two-Hybrid System Techniques , Up-Regulation , Viral Envelope Proteins/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication , White spot syndrome virus 1/physiology
20.
Bone ; 143: 115733, 2021 02.
Article in English | MEDLINE | ID: mdl-33157284

ABSTRACT

Jab1, also known as Csn5/Cops5, is a key subunit of the COP9 Signalosome, a highly conserved macromolecular complex. We previously reported that the conditional knockout of Jab1 in mouse limb buds and chondrocytes results in severely shortened limbs and neonatal lethal chondrodysplasia, respectively. In this study, we further investigated the specific role of Jab1 in osteoblast differentiation and postnatal bone growth by characterizing a novel mouse model, the Osx-cre; Jab1flox/flox conditional knockout (Jab1 cKO) mouse, in which Jab1 is deleted in osteoblast precursor cells. Jab1 cKO mutant mice appeared normal at birth, but developed progressive dwarfism. Inevitably, all mutant mice died prior to weaning age. The histological and micro-computed tomography analysis of mutant long bones revealed severely altered bone microarchitecture, with a significant reduction in trabecular thickness. Moreover, Jab1 cKO mouse tibiae had a drastic decrease in mineralization near the epiphyseal growth plates, and Jab1 cKO mice also developed spontaneous fractures near the tibiofibular junction. Additionally, our cell culture studies demonstrated that Jab1 deletion in osteoblast precursors led to decreased mineralization and a reduced response to TGFß and BMP signaling. Moreover, an unbiased reporter screen also identified decreased TGFß activity in Jab1-knockdown osteoblasts. Thus, Jab1 is necessary for proper osteoblast differentiation and postnatal bone growth, likely in part through its positive regulation of the TGFß and BMP signaling pathways in osteoblast progenitor cells.


Subject(s)
Intracellular Signaling Peptides and Proteins , Peptide Hydrolases , Animals , COP9 Signalosome Complex , Intracellular Signaling Peptides and Proteins/genetics , Mice , Osteogenesis , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL