Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
Add more filters











Publication year range
1.
Ecol Evol ; 14(8): e11335, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39165538

ABSTRACT

Urban areas experience higher temperatures compared to rural areas and as such, are increasingly considered places of acclimatization and adaptation to warming. Small ectotherms, such as insects, whose body temperature rises with habitat temperature, are directly affected by temperature changes. Thus, warming could have a profound effect on insect behavior and physiology. To test if the urban heat island effect drives higher thermal tolerance and activity changes, we used globally distributed and abundant insects-ants. We measured the heat and cold tolerance of 14 ant species distributed across urban and peri-urban areas. As thermal traits are often correlated with ant foraging, we measured foraging activity during three consecutive years across eight sites. Contrary to our prediction, ants exposed to the urban heat island effect did not have a higher heat tolerance than peri-urban ants. Instead, cold tolerance varied across habitats, with ants from the cooler, peri-urban habitats being able to tolerate lower temperatures. We recorded the same pattern of invariant heat and higher cold tolerance for ants in the canopy, compared to ground nesting ants. Ant activity was almost 10 times higher in urban sites and best predicted by cold, not heat tolerance. These unexpected results suggest that we need to rethink predictions about urban heat islands increasing insect heat tolerance in urban habitats, as cold tolerance might be a more plastic or adaptable trait, particularly in the temperate zone.

2.
J Therm Biol ; 123: 103930, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39116624

ABSTRACT

Thermal limits are often used as proxies to assess the vulnerability of ectotherms to environmental change. While meta-analyses point out a relatively low plasticity of heat limits and a large interspecific variability, only few studies have compared the heat tolerance of interacting species. The present study focuses on the thermal limits, and their plasticity (heat hardening), of three species co-occurring in Western Africa: two ectoparasitoid species, Dinarmus basalis (Rondani) (Hymenoptera: Pteromalidae) and Eupelmus vuilleti (Crawford) (Hymenoptera: Eupelmidae), and their common host, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). The investigation delves into the Critical Thermal Maximum (CTmax), representing the upper tolerance limit, to understand how these species may cope with extreme thermal events. The CTmax of all three species appeared similarly high, hovering around 46.5 °C, exceeding the global mean CTmax observed in insects by 3.5 °C. Short-term exposure to moderate heat stress showed no impact on CTmax, suggesting a potential lack of heat hardening in these species. Therefore, we emphasized the similarity of heat tolerance in these interacting species, potentially stemming from both evolutionary adaptations to high temperatures during development and the stable and similar microclimate experienced by the three species over the years. While the high thermal tolerance should allow these species to endure extreme temperature events, the apparent lack of plasticity raises concerns about their ability to adapt to future climate change scenarios. Overall, this research provides valuable insights into the thermal physiology of these interacting species, providing a basis for understanding their responses to climate change and potential implications for the host-parasitoid system.


Subject(s)
Coleoptera , Host-Parasite Interactions , Thermotolerance , Animals , Coleoptera/physiology , Coleoptera/parasitology , Wasps/physiology , Species Specificity , Tropical Climate , Hot Temperature , Hymenoptera/physiology
3.
J Therm Biol ; 124: 103963, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39216191

ABSTRACT

Marine animals are challenged by chronically raised temperatures alongside an increased frequency of discrete, severe warming events. Exposure to repeated heat shocks could result in heat hardening, where sub-lethal exposure to thermal stress temporarily enhances thermotolerance, and may be an important mechanism by which marine species will cope with future thermal challenges. However, we have relatively little understanding of the effects of heat hardening in comparison to chronic exposure to elevated temperatures. Therefore, we compared the effects of heat hardening from repeated exposure to acute heat shocks and chronic exposure to elevated temperatures on thermal tolerance in the European abalone, Haliotis tuberculata. Adult abalones were exposed to either control temperature (15 °C), chronic warming (20 °C) or a regime of two events of repeated acute heat shock cycles (23-25 °C) during six months, and their thermal tolerance and performance, based upon cardiac activity, compared using a dynamic ramping assay. The cost associated with each treatment was also estimated via measurements of condition index (CI). Abalone exposed to both temperature treatments had higher upper thermal limits than the control, but heat-hardened individuals had significantly higher CI values, indicating an enhancement in condition status. Differences in the shape of the thermal performance curve suggest different mechanisms may be at play under different temperature exposure treatments. We conclude that heat hardening can boost thermal tolerance in this species, without performance trade-offs associated with chronic warming.

4.
PeerJ ; 12: e17343, 2024.
Article in English | MEDLINE | ID: mdl-38948212

ABSTRACT

Tolerance against acute warming is an essential trait that can determine how organisms cope during heat waves, yet the mechanisms underlying it remain elusive. Water salinity has previously been suggested to modulate warming tolerance in fish and may therefore provide clues towards these limiting mechanisms. Here, using the critical thermal maximum (CTmax) test, we investigated whether short (2 hours) and long (10 days) term exposure to different water salinities (2 hours: 0-5 ppt, 10 days: 0-3 ppt) affected acute warming tolerance in zebrafish (N = 263). We found that water salinity did not affect the warming tolerance of zebrafish at either time point, indicating that salinity does not affect the mechanism limiting acute warming tolerance in zebrafish at these salinity ranges, and that natural fluctuations in salinity levels might not have a large impact on acute warming tolerance in wild zebrafish.


Subject(s)
Salinity , Zebrafish , Zebrafish/physiology , Animals , Hot Temperature/adverse effects , Thermotolerance , Water/metabolism
5.
Animals (Basel) ; 14(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38998074

ABSTRACT

Climate change, driven by increased human greenhouse gas emissions since the beginning of the industrial revolution up to the present day, is considered one of the major threats to biodiversity in the twenty-first century. One of the most affected groups is the ectotherms due to their direct dependence on environmental temperatures. In recent years, several studies have analysed the effects of temperature and thermal tolerance on several species of ectotherms. However, there are species whose thermal tolerances are still unknown. Such is the case of the critically endangered species, the Montseny Brook Newt (Calotriton arnoldi), endemic to the Montseny massif in Spain and whose thermal biology is unknown. Its critical situation makes it essential to know its tolerance to cooling, warming and thermopreferendum in water environments where the newt lives. Three experimental procedures were conducted from the western and eastern subspecies of C. arnoldi, considering four classes separately (males, females, juveniles and larvae). The results obtained showed that the CTmax of the species exceeded 31 °C, with a significant difference between the two subspecies. We found that the species tolerates low temperatures (<1 °C) well because the genera Calotriton is adapted to live in cold waters with temperatures below 15 °C. Although the thermopreference of the species was expected to trend to cold temperatures, some individuals chose relatively high temperatures, obtaining a range of 11.7 °C to 21.6 °C. The results presented in this study are an advance in the knowledge of the thermal physiology of this species and support the importance of the temperature of the torrent on its survival. Knowing their thermal limits and their preferred temperature range will help to propose management measures that promote the conservation of streams and riparian forest cover to mitigate temperature increases due to climate change.

6.
J Exp Biol ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034690

ABSTRACT

Heart failure is among the first major consequences of heat stress in aquatic ectotherms. Mitochondria produce most of the ATP used by the heart and represent almost half of the volume in cardiac cells. It has therefore been hypothesized that mitochondrial dysfunctions may be highly involved in heart failure associated with heat stress. The present study aims to investigate if CTmax is linked to the thermal sensitivity of three-spined sticklebacks' (G. aculeatus) cardiac mitochondria, and if it is influenced by heart fatty acid composition and age. To do so, we measured the CTmax of 30 fish. The cardiac mitochondrial oxygen consumption was measured by high resolution respirometry at three temperatures and heart lipid profiles were obtained by Gas chromatography (GC) coupled with a Flame Ionization Detector (FID). Fish age was estimated via otolith readings. Fatty acid profiles showed no correlation with CTmax, but EPA levels were higher in older individuals. Mitochondrial respiration was measured in 35 fish using high resolution respirometry. It was strongly affected by temperature and showed a drastic drop in OXPHOS respiration fed by Complex I and Complex I+II, while uncoupled respiration plateaued at CTmax temperature. Our results suggest that Complex I is an important modulator of the impact of temperature on mitochondrial respiration at high temperatures but is not the main limiting factor in physiological conditions (maximal OXPHOS). Mitochondrial respiration was also affected by fish age, showing a general decrease in older individuals.

7.
Ecol Evol ; 14(6): e11451, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826161

ABSTRACT

Rapid changes in thermal environments are threatening many species worldwide. Thermal acclimatisation may partially buffer species from the impacts of these changes, but currently, the knowledge about the temporal dynamics of acclimatisation remains limited. Moreover, acclimatisation phenotypes are typically determined in laboratory conditions that lack the variability and stochasticity that characterise the natural environment. Through a distributed lag non-linear model (DLNM), we use field data to assess how the timing and magnitude of past thermal exposures influence thermal tolerance. We apply the model to two Scottish freshwater Ephemeroptera species living in natural thermal conditions. Model results provide evidence that rapid heat hardening effects are dramatic and reflect high rates of change in temperatures experienced over recent hours to days. In contrast, temperature change magnitude impacted acclimatisation over the course of weeks but had no impact on short-term responses. Our results also indicate that individuals may de-acclimatise their heat tolerance in response to cooler environments. Based on the novel insights provided by this powerful modelling approach, we recommend its wider uptake among thermal physiologists to facilitate more nuanced insights in natural contexts, with the additional benefit of providing evidence needed to improve the design of laboratory experiments.

8.
J Therm Biol ; 122: 103880, 2024 May.
Article in English | MEDLINE | ID: mdl-38850621

ABSTRACT

Winter climate is changing rapidly in northern latitudes, and these temperature events have effects on salmonid thermal biology. Stressors during winter egg incubation could reduce hatching success and physiological performance of fall-spawning fishes. Here we quantified the potential for ontogenic carryover effects from embryonic thermal stress in multiple wild and hatchery-origin populations of brook trout (Salvelinus fontinalis), a temperate ectotherm native to northeastern North America. Fertilized eggs from four populations were incubated over the winter in the laboratory in four differing thermal regimes: ambient stream-fed water, chronic warming (+2 °C), ambient with a mid-winter cold-shock, and short-term warming late during embryogenesis (to stimulate an early spring). We examined body size and upper thermal tolerance at the embryonic, fry (10 weeks post-hatch and 27-30 weeks post-hatch) and gravid adult (age 2+) life stages (overall N = 1482). In a separate experiment, we exposed developing embryos to acute seven-day heat stress events immediately following fertilization and at the eyed-egg stage, and then assessed upper thermal tolerance (CTmax) 37 weeks post-hatch. In all cases, fish were raised in common garden conditions after hatch (i.e., same temperatures). Our thermal treatments during incubation had effects that varied by life stage, with incubation temperature and life stage both affecting body size and thermal tolerance. Embryos incubated in warmer treatment groups had higher thermal tolerance; there was no effect of the mid-winter melt event on embryo CTmax. Ten weeks after hatch, fry from the ambient and cold-shock treatment groups had higher and less variable thermal tolerance than did the warmer treatment groups. At 27-30 post-hatch and beyond, differences in thermal tolerance among treatment groups were negligible. Collectively, our study suggests that brook trout only exhibit short-term carryover effects from thermal stressors during embryo incubation, with no lasting effects on phenotype beyond the first few months after hatch.


Subject(s)
Embryo, Nonmammalian , Trout , Animals , Trout/physiology , Trout/growth & development , Trout/embryology , Embryo, Nonmammalian/physiology , Heat-Shock Response , Thermotolerance , Female , Embryonic Development , Body Size
9.
J Exp Biol ; 227(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841909

ABSTRACT

Increased average temperatures and extreme thermal events (such as heatwaves) brought forth by climate change impose important constraints on aerobic metabolism. Notably, mitochondrial metabolism, which is affected by both long- and short-term temperature changes, has been put forward as an important determinant for thermal tolerance of organisms. This study examined the influence of phenotypic plasticity on metabolic and physiological parameters in Drosophila melanogaster and the link between mitochondrial function and their upper thermal limits. We showed that D. melanogaster acclimated to 15°C have a 0.65°C lower critical thermal maximum (CTmax) compared with those acclimated to 24°C. Drosophila melanogaster acclimated to 15°C exhibited a higher proportion of shorter saturated and monounsaturated fatty acids, concomitant with lower proportions of polyunsaturated fatty acids. No mitochondrial quantitative changes (fractional area and number) were detected between acclimation groups, but changes of mitochondrial oxidation capacities were observed. Specifically, in both 15°C- and 24°C-acclimated flies, complex I-induced respiration was increased when measured between 15 and 24°C, but drastically declined when measured at 40°C. When succinate and glycerol-3-phosphate were added, this decrease was however compensated for in flies acclimated to 24°C, suggesting an important impact of acclimation on mitochondrial function related to thermal tolerance. Our study reveals that the use of oxidative substrates at high temperatures is influenced by acclimation temperature and strongly related to upper thermal tolerance as a difference of 0.65°C in CTmax translates into significant mitochondrial changes.


Subject(s)
Acclimatization , Drosophila melanogaster , Mitochondria , Oxidation-Reduction , Animals , Drosophila melanogaster/physiology , Drosophila melanogaster/metabolism , Acclimatization/physiology , Mitochondria/metabolism , Hot Temperature , Male , Female
10.
J Therm Biol ; 121: 103863, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38723312

ABSTRACT

Climate change is predicted to change not only the temperature of many freshwater systems but also flow dynamics. Understanding how fishes will fare in the future requires knowing how they will respond to both extended variations of temperature and flow. Arctic charr have had their thermal tolerance measured, but never with respect to flow. Additionally, this circumpolar species has multiple populations exhibiting dramatic phenotypic plasticity which may mean that regional differences in thermal tolerance are unaccounted for. In Iceland, Arctic charr populations have experienced highly variable flow and temperature conditions over the past 10,000 years. The Icelandic climate, topography and geothermal activity have created a mosaic of freshwater habitats inhabited by charr that vary substantially in both temperature and flow. Our purpose was to test whether populations from these varied environments had altered thermal tolerance and whether phenotypic plasticity of thermal tolerance in charr depends on flow. We raised cultured Icelandic charr from hatch under a 2 X 2 matrix of flow and temperature and compared them to wild charr captured from matching flow and temperature environments. Wild fish were more thermally tolerant than cultured fish at both acclimation temperatures and were more thermally plastic. Icelandic Arctic charr were more thermally tolerant than comparison charr populations across Europe and North America, but only when acclimated to 13 °C; fish acclimated to 5 °C compared equably with comparison charr populations. Icelandic Arctic charr were also more thermally plastic than all but one other salmonine species. Neither flow of rearing or the flow selected during a thermal tolerance (CTmax) test factored into thermal tolerance. Thermal tolerance was also independent of body size, condition factor, heart and gill size. In summary, wild Icelandic Arctic charr have greater thermal tolerance and plasticity than predicted from the literature and their latitude, but artificial selection for properties like growth rate or fecundity may be breeding that increased tolerance out of cultured fish. As the world moves toward a warmer climate and increased dependence on cultured fish, this is a noteworthy result and merits further study.


Subject(s)
Thermotolerance , Trout , Animals , Trout/physiology , Iceland , Acclimatization , Temperature
11.
Conserv Physiol ; 12(1): coae026, 2024.
Article in English | MEDLINE | ID: mdl-38779432

ABSTRACT

The mechanisms that determine the temperature tolerances of fish are poorly understood, creating barriers to disentangle how additional environmental challenges-such as CO2-induced aquatic acidification and fluctuating oxygen availability-may exacerbate vulnerability to a warming climate and extreme heat events. Here, we explored whether two acute exposures (~0.5 hours or ~72 hours) to increased CO2 impact acute temperature tolerance limits in a freshwater fish, rainbow trout (Oncorhynchus mykiss). We separated the potential effects of acute high CO2 exposure on critical thermal maximum (CTmax), caused via either respiratory acidosis (reduced internal pH) or O2 supply capacity (aerobic scope), by exposing rainbow trout to ~1 kPa CO2 (~1% or 10 000 µatm) in combination with normoxia or hyperoxia (~21 or 42 kPa O2, respectively). In normoxia, acute exposure to high CO2 caused a large acidosis in trout (blood pH decreased by 0.43 units), while a combination of hyperoxia and ~1 kPa CO2 increased the aerobic scope of trout by 28%. Despite large changes in blood pH and aerobic scope between treatments, we observed no impacts on the CTmax of trout. Our results suggest that the mechanisms that determine the maximum temperature tolerance of trout are independent of blood acid-base balance or the capacity to deliver O2 to tissues.

12.
Glob Chang Biol ; 30(5): e17318, 2024 May.
Article in English | MEDLINE | ID: mdl-38771091

ABSTRACT

Amphibians and fishes play a central role in shaping the structure and function of freshwater environments. These organisms have a limited capacity to disperse across different habitats and the thermal buffer offered by freshwater systems is small. Understanding determinants and patterns of their physiological sensitivity across life history is, therefore, imperative to predicting the impacts of climate change in freshwater systems. Based on a systematic literature review including 345 experiments with 998 estimates on 96 amphibian (Anura/Caudata) and 93 freshwater fish species (Teleostei), we conducted a quantitative synthesis to explore phylogenetic, ontogenetic, and biogeographic (thermal adaptation) patterns in upper thermal tolerance (CTmax) and thermal acclimation capacity (acclimation response ratio, ARR) as well as the influence of the methodology used to assess these thermal traits using a conditional inference tree analysis. We found globally consistent patterns in CTmax and ARR, with phylogeny (taxa/order), experimental methodology, climatic origin, and life stage as significant determinants of thermal traits. The analysis demonstrated that CTmax does not primarily depend on the climatic origin but on experimental acclimation temperature and duration, and life stage. Higher acclimation temperatures and longer acclimation times led to higher CTmax values, whereby Anuran larvae revealed a higher CTmax than older life stages. The ARR of freshwater fishes was more than twice that of amphibians. Differences in ARR between life stages were not significant. In addition to phylogenetic differences, we found that ARR also depended on acclimation duration, ramping rate, and adaptation to local temperature variability. However, the amount of data on early life stages is too small, methodologically inconsistent, and phylogenetically unbalanced to identify potential life cycle bottlenecks in thermal traits. We, therefore, propose methods to improve the robustness and comparability of CTmax/ARR data across species and life stages, which is crucial for the conservation of freshwater biodiversity under climate change.


Subject(s)
Acclimatization , Amphibians , Fishes , Fresh Water , Global Warming , Animals , Acclimatization/physiology , Fishes/physiology , Amphibians/physiology , Amphibians/growth & development , Phylogeny , Climate Change , Temperature
13.
J Exp Biol ; 227(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38629207

ABSTRACT

Photosynthetic animals produce oxygen, providing an ideal lens for studying how oxygen dynamics influence thermal sensitivity. The algivorous sea slug Elysia viridis can steal and retain chloroplasts from the marine alga Bryopsis sp. for months when starved, but chloroplast retention is mere weeks when they are fed another green alga, Chaetomorpha sp. To examine plasticity in thermal tolerance and changes in net oxygen exchange when fed and starving, slugs fed each alga were acclimated to 17°C (the current maximum temperature to which they are exposed in nature) and 22°C (the increase predicted for 2100) and measured at different points during starvation. We also examined increased illumination to evaluate a potential tradeoff between increased oxygen production but faster chloroplast degradation. Following acclimation, we subjected slugs to acute thermal stress to determine their thermal tolerance. We also measured net oxygen exchange before and after acute thermal stress. Thermal tolerance improved in slugs acclimated to 22°C, indicating they can acclimate to temperatures higher than they naturally experience. All slugs exhibited net oxygen uptake, and rates were highest in recently fed slugs before exposure to acute thermal stress. Oxygen uptake was suppressed following acute thermal stress. Under brighter light, slugs exhibited improved thermal tolerance, possibly because photosynthetic oxygen production alleviated oxygen limitation. Accordingly, this advantage disappeared later in starvation when photosynthesis ceased. Thus, E. viridis can cope with heatwaves by suppressing metabolism and plastically adjusting heat tolerance; however, starvation influences a slug's thermal tolerance and oxygen uptake such that continuous access to algal food for its potential nutritive and oxygenic benefits is critical when facing thermal stress.


Subject(s)
Chloroplasts , Gastropoda , Oxygen , Photosynthesis , Animals , Gastropoda/physiology , Gastropoda/metabolism , Chloroplasts/metabolism , Oxygen/metabolism , Acclimatization , Chlorophyta/metabolism , Chlorophyta/physiology , Hot Temperature , Oxygen Consumption , Thermotolerance , Temperature
14.
J Therm Biol ; 121: 103837, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38552447

ABSTRACT

Hypoxic aquatic environments occur more frequently as a result of climate change, thereby exerting challenges on the physiological and metabolic functions of aquatic animals. In this study, a model fish, zebrafish (Danio rerio) was used to observe the climate-induced hypoxic effect on the upper thermal limit (critical thermal maximum; CTmax), hemoglobin, and blood glucose levels, and abnormalities of erythrocytes at cellular and nuclear level. The value of CTmax decreased significantly under hypoxia (39.10 ± 0.96 °C) compared to normoxia (43.70 ± 0.91 °C). At CTmax, hemoglobin levels were much lower (9.33 ± 0.60 g/dL) and blood glucose levels were significantly higher (194.20 ± 11.33 mg/L) under hypoxia than they were under normoxia and at the beginning of the experiment. Increased frequencies of abnormalities in the erythrocytes at both cellular (fusion, twin, elongated, spindle and tear drop shaped) and nuclear (micronucleus, karyopyknosis, binuclei, nuclear degeneration and notched nuclei) levels were also found under hypoxia compared to normoxia. These results suggest that hypoxic conditions significantly alter the temperature tolerance and subsequent physiology in zebrafish. Our findings will aid in the development of effective management techniques for aquatic environments with minimum oxygen availability.


Subject(s)
Blood Glucose , Erythrocytes , Hemoglobins , Zebrafish , Animals , Zebrafish/physiology , Hemoglobins/metabolism , Erythrocytes/metabolism , Erythrocytes/physiology , Blood Glucose/metabolism , Blood Glucose/analysis , Hypoxia/physiopathology , Thermotolerance , Oxygen/metabolism , Oxygen/blood , Temperature
15.
Proc Biol Sci ; 291(2016): 20232700, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38320612

ABSTRACT

Mounting evidence suggests that ectotherms are already living close to their upper physiological thermal limits. Phenotypic plasticity has been proposed to reduce the impact of climate change in the short-term providing time for adaptation, but the tolerance-plasticity trade-off hypothesis predicts organisms with higher tolerance have lower plasticity. Empirical evidence is mixed, which may be driven by methodological issues such as statistical artefacts, nonlinear reaction norms, threshold shifts or selection. Here, we examine whether threshold shifts (organisms with higher tolerance require stronger treatments to induce maximum plastic responses) influence tolerance-plasticity trade-offs in hardening capacity for desiccation tolerance and critical thermal maximum (CTMAX) across Drosophila species with varying distributions/sensitivity to desiccation/heat stress. We found evidence for threshold shifts in both traits; species with higher heat/desiccation tolerance required longer hardening treatments to induce maximum hardening responses. Species with higher heat tolerance also showed reductions in hardening capacity at higher developmental acclimation temperatures. Trade-off patterns differed depending on the hardening treatment used and the developmental temperature flies were exposed to. Based on these findings, studies that do not consider threshold shifts, or that estimate plasticity under a narrow set of environments, will have a limited ability to assess trade-off patterns and differences in plasticity across species/populations more broadly.


Subject(s)
Adaptation, Physiological , Thermotolerance , Animals , Temperature , Adaptation, Physiological/physiology , Hot Temperature , Drosophila/physiology , Acclimatization/physiology
16.
Ecol Evol ; 14(2): e10937, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38405410

ABSTRACT

Climate change involves increases in mean temperature and changes in temperature variability at multiple temporal scales but research rarely considers these temporal scales. The climate variability hypothesis (CVH) provides a conceptual framework for exploring the potential effects of annual scale thermal variability across climatic zones. The CVH predicts ectotherms in temperate regions tolerate a wider range of temperatures than those in tropical regions in response to greater annual variability in temperate regions. However, various other aspects of thermal regimes (e.g. diel variability), organisms' size and taxonomic identity are also hypothesised to influence thermal tolerance. Indeed, high temperatures in the tropics have been proposed as constraining organisms' ability to tolerate a wide range of temperatures, implying that high annual maximum temperatures would be associated with tolerating a narrow range of temperatures. We measured thermal regimes and critical thermal limits (CTmax and CTmin) of freshwater insects in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) along elevation gradients in streams in temperate and tropical regions of eastern Australia and tested the CVH by determining which variables were most correlated with thermal breadth (T br = CTmax - CTmin). Consistent with the CVH, T br tended to increase with increasing annual temperature range. T br also increased with body size and T br was generally wider in Plecoptera than in Ephemeroptera or Trichoptera. We also find some support for a related hypothesis, the climate extreme hypothesis (CEH), particularly for predicting upper thermal limits. We found no evidence that higher annual maximum temperature constrained individuals' abilities to tolerate a wide range of temperatures. The support for the CVH we document suggests that temperate organisms may be able to tolerate wider ranges of temperatures than tropical organisms. There is an urgent need to investigate other aspects of thermal regimes, such as diel temperature cycling and minimum temperature.

17.
J Therm Biol ; 119: 103806, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38335848

ABSTRACT

Experimental studies on the thermal biology of organisms have become crucial to investigate the impact of climate warming. However, most laboratory studies are carried out under constant temperatures and assume a negligible effect from daily fluctuating temperatures. We tested this assumption on multiple fitness traits of the moth Spodoptera littoralis, and a literature review on insects complements this study. Tests on S. littoralis focused on its optimal and maximal critical temperatures by comparing constant and daily fluctuating temperatures (±5 °C) at mean temperatures of 25, 29 and 33 °C. The nine fitness parameters investigated were influenced by mean temperature. The overall effect was a maximal multiplication rate at 29 °C and a marked decrease under the fluctuating regime at 33 °C. Effects of fluctuating temperatures differed between mean temperatures. Developmental and larval survival rates at 33 °C were lower under the fluctuating thermal regime than under a constant temperature. Our literature review also illustrates that ignoring daily fluctuations based on constant temperatures commonly leads to overestimate fitness traits at high temperatures. Overlooking the experimental bias associated with constant temperatures minimizes the expected impact of climate warming on fitness traits.


Subject(s)
Insecta , Moths , Animals , Temperature , Larva , Climate
18.
J Therm Biol ; 119: 103807, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38340465

ABSTRACT

While many ectotherms improve thermal tolerance in response to prolonged thermal stress, little is known about the lasting effects of warm acclimation after returning to cooler temperatures. Furthermore, thermal stress may disproportionately impact threatened and endangered species. To address this, we repeatedly measured critical thermal maxima (CTmax; °C) and associated stress responses (hematocrit, hemoglobin concentration, plasma cortisol) of endangered subadult white sturgeon (Acipenser transmontanus) in response to control temperature (pre-acclimation; 14°C), after 1 month at either control or warm temperature (acclimation; 14°C or 20°C), and after one smonth following return to control temperature (post-acclimation; 14°C). While control fish demonstrated fairly repeatable thermal tolerance (interclass correlation coefficient = 0.479), warm-acclimated fish experienced a ∼3.1°C increase in thermal tolerance and when re-acclimated to control temperature, decreased thermal tolerance ∼1.9°C. Hematocrit, hemoglobin concentration, and final splenic somatic index (spleen mass relative to whole body mass, collected after post-acclimation CTmax) were not significantly different between control and treatment fish, suggesting no effects of warm acclimation on aerobic capacity. Plasma cortisol was significantly higher in control fish after pre-acclimation and post-acclimation CTmax trials, but importantly, acclimation temperature did not affect this response. Strikingly, final hepatosomatic index (relative liver size) was 45% lower in treatment fish, indicating warm acclimation may have lasting effects on energy usage and metabolism, even after reacclimating to control temperature. To our knowledge, these 10-year-old subadult sturgeon are the oldest sturgeon experimentally tested with regards to thermal plasticity and demonstrate incredible capacity for thermal acclimation relative to other fishes. However, more research is needed to determine whether the ability to acclimate to warm temperature may come with a persistent cost.


Subject(s)
Fishes , Hydrocortisone , Animals , Fishes/physiology , Temperature , Acclimatization/physiology , Hemoglobins
19.
Mar Environ Res ; 195: 106350, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219380

ABSTRACT

Recent evidence suggests that the adult phenotype is influenced by temperatures experienced in early life. However, our understanding of the extent to which the embryonic environment can modulate thermal tolerance later in life is limited, owing to the paucity of studies with appropriate experimental designs to test for this form of developmental plasticity. We investigated whether the thermal environment experienced during embryonic development affects thermal limits in later life. Embryos of the estuarine amphipod Gammarus chevreuxi were incubated until hatching to 15 °C, 20 °C and 25 °C, then reared under a common temperature. Using thermal ramping assays, we determined upper thermal limits in juveniles, four weeks post-hatch. Individuals exposed to higher temperatures during embryonic development displayed greater thermal tolerance as juveniles (acclimation response ratio ≈ 0.10-0.25 for upper lethal temperature). However, we suggest that the degree of developmental plasticity observed is limited, and will provide little benefit under future climate change scenarios.


Subject(s)
Amphipoda , Humans , Animals , Acclimatization/physiology , Temperature , Hot Temperature , Embryonic Development
20.
Sci Total Environ ; 917: 170165, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38242475

ABSTRACT

The "climate extremes hypothesis" is a major assumption of geographic studies of heat tolerance and climatic vulnerability. However, this assumption remains vastly untested across taxa, and multiple factors may contribute to uncoupling heat tolerance estimates and geographic limits. Our dataset includes 1000 entries of heat tolerance data and maximum temperatures for each species' known geographic limits (hereafter, Tmax). We gathered this information across major animal taxa, including marine fish, terrestrial arthropods, amphibians, non-avian reptiles, birds, and mammals. We first tested if heat tolerance constrains the Tmax of sites where species could be observed. Secondly, we tested if the strength of such restrictions depends on how high Tmax is relative to heat tolerance. Thirdly, we correlated the different estimates of Tmax among them and across species. Restrictions are strong for amphibians, arthropods, and birds but often weak or inconsistent for reptiles and mammals. Marine fish describe a non-linear relationship that contrasts with terrestrial groups. Traditional heat tolerance measures in thermal vulnerability studies, like panting temperatures and the upper set point of preferred temperatures, do not predict Tmax or are inversely correlated to it, respectively. Heat tolerance restricts the geographic warm edges more strongly for species that reach sites with higher Tmax for their heat tolerance. These emerging patterns underline the importance of reliable species' heat tolerance indexes to identify their thermal vulnerability at their warm range edges. Besides, the tight correlations of Tmax estimates across on-land microhabitats support a view of multiple types of thermal challenges simultaneously shaping ranges' warm edges for on-land species. The heterogeneous correlation of Tmax estimates in the ocean supports the view that fish thermoregulation is generally limited, too. We propose new hypotheses to understand thermal restrictions on animal distribution.


Subject(s)
Arthropods , Thermotolerance , Animals , Acclimatization , Climate Change , Temperature , Amphibians , Fishes , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL