Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047812

ABSTRACT

Inadequate wound healing of ocular surface injuries can lead to permanent visual impairment. The relaxin ligand-receptor system has been demonstrated to promote corneal wound healing through increased cell migration and modulation of extracellular matrix formation. Recently, C1q/tumor necrosis factor-related protein (CTRP) 8 was identified as a novel interaction partner of relaxin receptor RXFP1. Additional data also suggest a role for CTRP1 and CTRP6 in RXFP1-mediated cAMP signaling. However, the role of CTRP1, CTRP6 and CTRP8 at the ocular surface remains unclear. In this study, we investigated the effects of CTRP1, CTRP6, and CTRP8 on epithelial ocular surface wound closure and their dependence on the RXFP1 receptor pathway. CTRP1, CTRP6, and CTRP8 expression was analyzed by RT-PCR and immunohistochemistry in human tissues and cell lines derived from the ocular surface and lacrimal apparatus. In vitro ocular surface wound modeling was performed using scratch assays. We analyzed the effects of recombinant CTRP1, CTRP6, and CTRP8 on cell proliferation and migration in human corneal and conjunctival epithelial cell lines. Dependence on RXFP1 signaling was established by inhibiting ligand binding to RXFP1 using a specific anti-RXFP1 antibody. We detected the expression of CTRP1, CTRP6, and CTRP8 in human tissue samples of the cornea, conjunctiva, meibomian gland, efferent tear ducts, and lacrimal gland, as well as in human corneal, conjunctival, and meibomian gland epithelial cell lines. Scratch assays revealed a dose-dependent increase in the closure rate of surface defects in human corneal epithelial cells after treatment with CTRP1, CTRP6, and CTRP8, but not in conjunctival epithelial cells. Inhibition of RXFP1 fully attenuated the effect of CTRP8 on the closure rate of surface defects in human corneal epithelial cells, whereas the CTRP1 and CTRP6 effects were not completely suppressed. Conclusions: Our findings demonstrate a novel role for CTRP1, CTRP6, and CTRP8 in corneal epithelial wound closure and suggest an involvement of the relaxin receptor RXFP1 signaling pathway. This could be a first step toward new approaches for pharmacological and therapeutic intervention.


Subject(s)
Corneal Injuries , Lacrimal Apparatus , Relaxin , Humans , Complement C1q/metabolism , Ligands , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Lacrimal Apparatus/metabolism , Corneal Injuries/metabolism , Vision Disorders/metabolism , Relaxin/metabolism , Receptors, Peptide/genetics , Receptors, Peptide/metabolism
2.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166681, 2023 06.
Article in English | MEDLINE | ID: mdl-36921737

ABSTRACT

The adipokine C1q Tumor Necrosis Factor 8 (CTRP8) is the least known member of the 15 CTRP proteins and a ligand of the relaxin receptor RXFP1. We previously demonstrated the ability of the CTRP8-RXFP1 interaction to promote motility, matrix invasion, and drug resistance. The lack of specific tools to detect CTRP8 protein severely limits our knowledge on CTRP8 biological functions in normal and tumor tissues. Here, we have generated and characterized the first specific antiserum to human CTRP8 which identified CTRP8 as a novel marker of tryptase+ mast cells (MCT) in normal human tissues and in the prostate cancer (PC) microenvironment. Using human PC tissue microarrays composed of neoplastic and corresponding tumor-adjacent prostate tissues, we have identified a significantly higher number of CTRP8+ MCT in the peritumor versus intratumor compartment of PC tissues of Gleason scores 6 and 7. Higher numbers of CTRP8+ MCT correlated with the clinical parameter of biochemical recurrence. We showed that the human MC line ROSAKIT WT expressed RXFP1 transcripts and responded to CTRP8 treatment with a small but significant increase in cell proliferation. Like the cognate RXFP1 ligand RLN-2 and the small molecule RXFP1 agonist ML-290, CTRP8 reduced degranulation of ROSAKIT WT MC stimulated by the Ca2+-ionophore A14187. In conclusion, this is the first report to identify the RXFP1 agonist CTRP8 as a novel marker of MCT and autocrine/paracrine oncogenic factor within the PC microenvironment.


Subject(s)
Complement C1q , Prostatic Neoplasms , Humans , Male , Ligands , Mast Cells , Prostate , Prostatic Neoplasms/genetics , Tryptases , Tumor Microenvironment , Tumor Necrosis Factors
3.
Mol Oncol ; 16(2): 368-387, 2022 01.
Article in English | MEDLINE | ID: mdl-33960104

ABSTRACT

C1q tumor necrosis factor-related peptide 8 (CTRP8) is the least studied member of the C1Q-TNF-related peptide family. We identified CTRP8 as a ligand of the G protein-coupled receptor relaxin family peptide receptor 1 (RXFP1) in glioblastoma multiforme (GBM). The CTRP8-RXFP1 ligand-receptor system protects human GBM cells against the DNA-alkylating damage-inducing temozolomide (TMZ), the drug of choice for the treatment of patients with GBM. The DNA protective role of CTRP8 was dependent on a functional RXFP1-STAT3 signaling cascade and targeted the monofunctional glycosylase N-methylpurine DNA glycosylase (MPG) for more efficient base excision repair of TMZ-induced DNA-damaged sites. CTRP8 also improved the survival of GBM cells by upregulating anti-apoptotic BCl-2 and BCL-XL. Here, we have identified Janus-activated kinase 3 (JAK3) as a novel member of a novel CTRP8-RXFP1-JAK3-STAT3 signaling cascade that caused an increase in cellular protein content and activity of the small Rho GTPase Cdc42. This is associated with significant F-actin remodeling and increased GBM motility. Cdc42 was critically important for the upregulation of the actin nucleation complex N-Wiskott-Aldrich syndrome protein/Arp3/4 and actin elongation factor profilin-1. The activation of the RXFP1-JAK3-STAT3-Cdc42 axis by both RXFP1 agonists, CTRP8 and relaxin-2, caused extensive filopodia formation. This coincided with enhanced activity of ezrin, a key factor in tethering F-actin to the plasma membrane, and inhibition of the actin filament severing activity of cofilin. The F-actin remodeling and pro-migratory activities promoted by the novel RXFP1-JAK3-STAT3-Cdc42 axis were blocked by JAK3 inhibitor tofacitinib and STAT3 inhibitor STAT3 inhibitor VI. This provides a new rationale for the design of JAK3 and STAT3 inhibitors with better brain permeability for clinical treatment of the pervasive brain invasiveness of GBM.


Subject(s)
Actins/metabolism , Adiponectin/metabolism , Brain Neoplasms/pathology , Cell Movement , Glioblastoma/pathology , Janus Kinase 3/metabolism , Pseudopodia/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism , STAT3 Transcription Factor/metabolism , cdc42 GTP-Binding Protein/metabolism , Brain Neoplasms/metabolism , Cell Line, Tumor , Glioblastoma/metabolism , Humans , Signal Transduction
4.
Mol Cell Endocrinol ; 487: 85-93, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30763603

ABSTRACT

A role for the hormone relaxin in cancer was described well before the receptor was identified. Relaxin predominantly increases the growth and invasive potential in cancers of different origins. However, relaxin was also shown to promote cell differentiation and to act in a dose-and time-dependent manner in different cancer cell models used. Following the discovery of the relaxin like family peptide receptor 1 (RXFP1) as the cellular receptor for RLN1 and RLN2, research has focussed on the ligand interaction with the large extracellular domain of RXFP1 and resulting molecular signaling mechanisms. RXFP1 activation mediates anti-apoptotic functions, angiogenesis and chemoresistance in cancer cells. This minireview summarizes the known biological functions of RXFP1 activation in different cancer entities in-vitro and in-vivo and outlines possible mechanisms to therapeutically address the relaxin-RXFP1 system in cancer cells.


Subject(s)
Neoplasms/therapy , Receptors, G-Protein-Coupled/metabolism , Relaxin/metabolism , Animals , Humans , Ligands , Molecular Targeted Therapy , Neoplasms/pathology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry
5.
Mol Oncol ; 12(9): 1464-1479, 2018 09.
Article in English | MEDLINE | ID: mdl-29949238

ABSTRACT

The C1q/TNF-related peptide 8 (CTRP8) has recently emerged as a novel ligand of the G protein-coupled receptor RXFP1 in the fatal brain tumor glioblastoma (GBM). We previously demonstrated that the CTRP8-RXFP1 ligand-receptor system promotes motility and matrix invasion of patient GBM and U87 MG cells by specific phosphorylation of PI3 kinase and protein kinase C. Here, we demonstrate a novel role for CTRP8 in protecting human GBM cells against the DNA alkylating damage of temozolomide (TMZ), the standard chemotherapy drug used to treat GBM. This DNA protective role of CTRP8 required a functional RXFP1-STAT3 signaling cascade in GBM cells. We identified N-methylpurine DNA glycosylase (MPG), a monofunctional glycosylase that initiates base excision repair pathway by generating an apurinic/apyrimidinic (AP) site, as a new CTRP8-RXFP1-STAT3 target in GBM. Upon TMZ exposure, treatment with CTRP8 reduced the formation of AP sites and double-strand DNA breaks in GBM cells. This CTRP8 effect was independent of cellular MGMT levels and was associated with decreased caspase 3/7 activity and increased survival of human GBM. CTRP8-induced RXFP1 activation caused an increase in cellular protein levels of the anti-apoptotic Bcl members and STAT3 targets Bcl-2 and Bcl-XL in human GBM. Collectively, our results demonstrate a novel multipronged and clinically relevant mechanism by which the CTRP8-RXFP1 ligand-receptor system exerts a DNA protective function against TMZ chemotherapeutic stress in GBM. This CTRP8-RXFP1-STAT3 axis is a novel determinant of TMZ responsiveness/chemoresistance and an emerging new drug target for improved treatment of human GBM.


Subject(s)
Adiponectin/metabolism , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism , STAT3 Transcription Factor/metabolism , Temozolomide/therapeutic use , Apoptosis/drug effects , Caspase 3/metabolism , Caspase 7/metabolism , Cell Line, Tumor , DNA Breaks, Double-Stranded/drug effects , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA Repair , Humans , Molecular Targeted Therapy , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , bcl-X Protein/metabolism
6.
Article in English | MEDLINE | ID: mdl-26322020

ABSTRACT

The relaxin-like RXFP1 ligand-receptor system has important functions in tumor growth and tissue invasion. Recently, we have identified the secreted protein, CTRP8, a member of the C1q/tumor necrosis factor-related protein (CTRP) family, as a novel ligand of the relaxin receptor, RXFP1, with functions in brain cancer. Here, we review the role of CTRP members in cancers cells with particular emphasis on CTRP8 in glioblastoma.

7.
J Pathol ; 231(4): 466-79, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24014093

ABSTRACT

We report a novel ligand-receptor system composed of the leucine-rich G-protein-coupled relaxin receptor, RXFP1, and the C1q-tumour necrosis factor-related protein 8 (CTRP8) in human primary brain cancer, a tumour entity devoid of the classical RXFP1 ligands, RLN1-3. In structural homology studies and computational docking experiments we delineated the N-terminal region of the globular C1q region of CTRP8 and the leucine-rich repeat units 7 and 8 of RXFP1 to mediate this new ligand-receptor interaction. CTRP8 secreted from HEK293T cells, recombinant human (rh) CTRP8, and short synthetic peptides derived from the C1q globular domain of human CTRP8 caused the activation of RXFP1 as determined by elevated intracellular cAMP levels and the induction of a marked pro-migratory phenotype in established glioblastoma (GB) cell lines and primary cells from GB patients. Employing a small competitor peptide, we were able to disrupt the CTRP8-RXFP1-induced increased GB motility. The CTRP8-RXFP1-mediated migration in GB cells involves the activation of PI3K and specific protein kinase C pathways and the increased production/secretion of the potent lysosomal protease cathepsin B (cathB), a known prognostic marker of GB. Specific inhibition of CTRP8-induced cathB activity effectively blocked the ability of primary GB to invade laminin matrices. Finally, co-immunoprecipitation studies revealed the direct interaction of human CTRP8 with RXFP1. Our results support a therapeutic approach in GB aimed at targeting multiple steps of the CTRP8-RXFP1 signalling pathway by a combined inhibitor and peptide-based strategy to block GB dissemination within the brain.


Subject(s)
Adiponectin/metabolism , Brain Neoplasms/metabolism , Glioblastoma/metabolism , Neoplasm Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism , Adiponectin/pharmacology , Binding Sites , Biomarkers, Tumor/metabolism , Brain Neoplasms/pathology , Cathepsin B/metabolism , Cell Movement/drug effects , Cell Movement/physiology , Enzyme Activation/physiology , Glioblastoma/pathology , Humans , Neoplasm Invasiveness/physiopathology , Phosphatidylinositol 3-Kinases/physiology , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/physiology , Protein Kinase Inhibitors/pharmacology , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL