Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.267
Filter
1.
Transl Oncol ; 48: 102077, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39106550

ABSTRACT

Cytochrome P450 F3 (CYP4F3) is recognized as a disease-associated immune response initiator that is involved in the synthesis of cholesterol, steroids, and lipids. This study identified the upregulation of CYP4F3 expression in colorectal cancer (CRC) and its association with poor patient prognosis through a comparative analysis between CRC tumor tissues with normal tissues from public databases. The overexpression of CYP4F3 in CT26.wt and SW620, promoted cell proliferation and migration, a reduction of cellular oxidative stress, an up-regulation of the oxidative stress-related pathway NRF2, and an inhibition of cellular ferroptosis. Additionally, inhibition of NRF2 activity stimulated cellular ferroptosis when CYP4F3 was overexpressed. Ferroptosis, characterized by iron-dependent lipid peroxidation, is a non-apoptotic way of cell death with a critical role in cancer development. When given a ferroptosis agonist to CYP4F3-overexpression CRC cells, NRF2 was activated, and cell proliferation and migration were reduced. Furthermore, the mice subcutaneously injected with CYP4F3-overexpression CT26.wt cells formed significantly larger tumors compared to the CYP4F3-vector CT26.wt cell group. This study systematically identified an important role of CYP4F3 in CRC development as a regulator of CRC cells to escape ferroptosis via NRF2, highlighting the significance of CYP4F3 as a potential therapeutic target for CRC.

2.
Chemosphere ; : 143121, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39154768

ABSTRACT

INTRODUCTION: Benzo[a]pyrene (B[a]P) is a carcinogenic polycyclic aromatic hydrocarbon that poses significant risks to human health. B[a]P influences cellular processes via intricate interactions; however, a comprehensive understanding of B[a]P's effects on the transcriptome remains elusive. This study aimed to conduct a comprehensive analysis focused on identifying relevant genes and signaling pathways affected by B[a]P exposure and their impact on human gene expression. METHODS: We searched the Gene Expression Omnibus database and identified four studies involving B[a]P exposure in human cells (T lymphocytes, hepatocellular carcinoma cells, and C3A cells). We utilized two approaches for differential expression analysis: the LIMMA package and linear regression. A meta-analysis was utilized to combine log fold changes (FC) and p-values from the identified studies using a random effects model. We identified significant genes at a Bonferroni-adjusted significance level of 0.05 and determined overlapping genes across datasets. Pathway enrichment analysis elucidated key cellular processes modulated by B[a]P exposure. RESULTS: The meta-analysis revealed significant upregulation of CYP1B1 (log FC = 1.15, 95% CI: 0.51-1.79, P < 0.05, I2 = 82%) and ASB2 (log FC = 0.44, 95% CI: 0.20-0.67, P < 0.05, I2 = 40%) in response to B[a]P exposure. Pathway analyses identified 26 significantly regulated pathways, with the top including Aryl Hydrocarbon Receptor Signaling (P = 0.00214) and Xenobiotic Metabolism Signaling (P = 0.00550). Key genes CYP1A1, CYP1B1, and CDKN1A were implicated in multiple pathways, highlighting their roles in xenobiotic metabolism, oxidative stress response, and cell cycle regulation. CONCLUSION: The results provided insights into the mechanisms of B[a]P toxicity, highlighting CYP1B1's key role in B[a]P bioactivation. The findings underscored the complexity of B[a]P's mechanisms of action and their potential implications for human health. The identified genes and pathways provided a foundation for further exploration and enhanced our understanding of the multifaceted biological activities associated with B[a]P exposure.

3.
Toxicology ; 508: 153923, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147090

ABSTRACT

Deoxynivalenol (DON), one of the most common mycotoxins in food and feed, can cause acute and chronic liver injury, posing a serious health risk to humans and animals. One of the important manifestations of DON-induced hepatotoxicity is ferroptosis. It has been reported that CYP2E1 can mediated ferroptosis, but the role of DON-induced CYP2E1 in DON-induced ferroptosis in hepatocytes is unknown. In the present study, we observed that DON significantly increased the expression of CYP2E1 and decreased the expression of the ferroptosis inhibitory proteins GPX4 and SLC7A11, as well as GCLC and NQO1. This resulted in an increase in the levels of cell lipid ROS and FeII, 4-HNE, which ultimately led to cell ferroptosis. Notably, knockdown of CYP2E1 resulted in an increase in DON-induced low levels of GPX4 and SLC7A11, a decrease in DON-induced high levels of lipid ROS, FeII and cell secreted 4-HNE, thus ameliorating cell ferroptosis. Moreover, the ferroptosis inhibitor ferrostatin-1 was observed to antagonise the cell growth inhibitory toxicity induced by DON exposure. This was achieved by blocking the increase in lipid ROS and FeII overload, which in turn reduced the extent of ferroptosis and increased IGF-1 protein expression. In conclusion, the present study demonstrated that CYP2E1 played a regulatory role in DON-induced ferroptosis in hepatocytes. Targeting ferroptosis may prove an effective strategy for alleviating DON-induced cell growth retardation toxicity. These findings provided a potential target and strategies to mitigate DON hepatotoxicity in the future.

4.
Front Pharmacol ; 15: 1433506, 2024.
Article in English | MEDLINE | ID: mdl-39148552

ABSTRACT

Background: Toxic epidermal necrolysis (TEN) and Stevens-Johnson syndrome (SJS) are rare, life-threatening immunologic reactions. Previous relevant literature has provided limited information regarding this disease's genetic susceptibility and management principles. Objectives: This study aimed to describe a phenobarbital-induced TEN case report with HLA-B*15:02 and HLA-B*58:01 negative, CYP2C19*1/*2. In addition, we revised the existing literature on phenobarbital-induced SJS/TEN to explore its clinical characteristics. Methods: We describe a woman undergoing treatment with Phenobarbital for status epilepticus who developed classic cutaneous findings of TEN. A systematic search was conducted in the PubMed, Medline, WanFang, and CNKI databases from 1995 to 2023. The search terms used were "Stevens-Johnson Syndrome," "Toxic Epidermal Necrolysis," and "Phenobarbital." Results: We report a case of TEN resulting from phenobarbital; it tested negative for the HLA-B*15:02 and HLA-B*58:01 allele and CYP2C19*1/*2 intermediate metabolism. Supportive treatment with steroids and antihistamines resulted in complete resolution of the skin lesions and improvement in clinical symptoms after 14 days. Physicians and clinical pharmacists should be aware of these potential phenobarbital-related adverse events and closely monitor patients with first-time use of phenobarbital. Among 19 cases were identified in the literature, with 11 (57.9%) cases of SJS, 6 (31.6%) cases of TEN, and 2 (7.2%) cases of SJS-TEN/DRESS overlap. A total of 5 (26.3%) did not survive, of which 4 (21.1%) were under 12 years old and 1 (5.3%) was over 12 years old. Conclusion: Phenobarbital-induced SJS/TEN may still occur in patients who test negative for HLA-B*15:02 and HLA-B*58:01, CYP2C19*1/*2. Most cutaneous adverse events occur early in the course of Phenobarbital therapy and should be closely monitored early in the course of treatment. In addition, Phenobarbital should be used with caution in patients with a history of asthma and allergy to antipyretics and analgesics.

5.
J Pharm Health Care Sci ; 10(1): 48, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103904

ABSTRACT

BACKGROUND: Drug-drug interactions (DDIs) increase the incidence of adverse drug reactions (ADRs). In a previous report, we revealed that the incidence of potential DDIs due to the same CYP molecular species in one prescription exceeds 90% among patients taking six or more drugs and that CYP3A4 markedly influences the increase in the number of potential DDIs in clinical practice. However, the factors contributing to an increased number of potential DDIs in prescriptions from multiple clinical departments remain poorly clarified. METHODS: This observational study was performed at five pharmacies in Okayama Prefecture, Japan. Patients who visited these pharmacies from 11 April 2022 to 24 April 2022 were included, except those who had prescriptions only from a single clinical department. A stratified analysis was performed to determine the incidence of CYP3A4-related potential DDIs according to the number of drugs taken. Additionally, factors associated with an increase in the number of drugs involved in CYP3A4-related potential DDIs were identified using multiple linear regression analysis. In this study, potential DDIs for the prescription data subdivided by clinical department, containing two or more drugs, were used as control data. RESULTS: Overall, 372 outpatients who received prescriptions from multiple clinical departments were included in the current study. The number of drugs contributing to CYP3A4-related potential DDIs increased with an increase in the number of clinical departments. Notably, in cases taking fewer than six drugs, prescriptions from multiple clinical departments had a higher frequency of CYP3A4-related potential DDIs than those in prescriptions subdivided by clinical department. Multiple regression analysis identified "Cardiovascular agents", "Agents affecting central nervous system", and "Urogenital and anal organ agents" as the top three drug classes that increase CYP3A4-related potential DDIs. CONCLUSION: Collectively, these results highlight the importance of a unified management strategy for prescribed drugs and continuous monitoring of ADRs in outpatients receiving prescriptions from multiple clinical departments even if the number of drugs taken is less than six.

6.
Pharmacogenomics ; : 1-13, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109483

ABSTRACT

Calcineurin inhibitors (CNIs) are the mainstay of immunosuppression in kidney transplantation. Interpatient variability in the disposition of calcineurin inhibitors is a well-researched phenomenon and has a well-established genetic contribution. There is great diversity in the makeup of African genomes, but very little is known about the pharmacogenetics of CNIs and transplant outcomes. This review focuses on genetic variants of calcineurin inhibitors' metabolizing enzymes (CYP3A4, CYP3A5), related molecules (POR, PPARA) and membrane transporters involved in the metabolism of calcineurin inhibitors. Given the genetic diversity across the African continent, it is imperative to generate pharmacogenetic data, especially in the era of personalized medicine and emphasizes the need for studies specific to African populations. The study of allelic variants in populations where they have greater frequencies will help answer questions regarding their impact. We aim to fill the knowledge gaps by reviewing existing research and highlighting areas where African research can contribute.


Research on the pharmacogenetics of calcineurin inhibitors in kidney transplant recipients is truly wanting in data from the African continent. Given Africa's vast genetic diversity, it is necessary to intensify efforts to generate data from Africa in this field.

7.
J Oncol Pharm Pract ; : 10781552241269722, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110035

ABSTRACT

BACKGROUND: Despite evidence demonstrating the effectiveness of aprepitant for chemotherapy-induced nausea and vomiting (CINV), its use in stem cell transplant settings across Canada is not standard. While pharmacokinetic data exists, the clinical significance of cytochrome P450 3A4 (CYP 3A4) inhibition of cyclophosphamide by aprepitant is unclear. Reduced activation of cyclophosphamide may reduce the effectiveness of dose-intensive cyclophosphamide, etoposide, and cisplatin (DICEP). OBJECTIVES: To compare response rates to DICEP in patients with Hodgkin lymphoma (HL) and diffuse large B-cell lymphoma (DLBCL) in the presence and absence of aprepitant. METHODS: A retrospective review of patients who received full-dose DICEP for relapsed/refractory HL or DLBCL between June 1995 and September 2018 at the Foothills Medical Centre (FMC) in Calgary, Alberta, Canada was conducted. Descriptive statistics were used to assess response rate, as defined by the 2007 International Working Group response criteria. RESULTS: Of the 218 patients included in this study, 87.6% of patients in the control group and 88.5% of patients in the aprepitant group responded to DICEP (difference 0.025 [95% CI, -0.066 to 0.114], p = 0.827). Univariate analyses for age, sex, type of cancer, stage of cancer, number of prior relapses, and relapse status were not significant. No significant differences were observed for secondary outcomes. CONCLUSION: Response rates to DICEP in relapsed/refractory HL and DLBCL patients were similar regardless of aprepitant use. Considering these results and the effectiveness of aprepitant in CINV, its addition to standard antiemetic therapy in patients receiving DICEP should be given strong consideration in the transplant setting.

8.
Article in English | MEDLINE | ID: mdl-39110203

ABSTRACT

PURPOSE: Midostaurin, approved for FLT3-mutated acute myeloid leukemia and advanced systemic mastocytosis, is mainly metabolized by cytochrome P450 (CYP) 3A4. Midostaurin exhibited potential inhibitory effects on P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion-transporting polyprotein 1B1, and CYP2D6 in in vitro studies. This study investigated the pharmacokinetic (PK) effects of midostaurin on P-gp (digoxin), BCRP (rosuvastatin) and CYP2D6 (dextromethorphan) substrates in healthy adults. METHODS: This was an open-label, single-sequence, phase I clinical study evaluating the effect of single-dose midostaurin (100 mg) on the PK of digoxin and rosuvastatin (Arm 1), and dextromethorphan (Arm 2). Participants were followed up for safety 30 days after last dose. In addition, the effect of midostaurin on the PK of dextromethorphan metabolite (dextrorphan) was assessed in participants with functional CYP2D6 genes in Arm 2. RESULTS: The effect of midostaurin on digoxin was minor and resulted in total exposure (AUC) and peak plasma concentration (Cmax) that were only 20% higher. The effect on rosuvastatin was mild and led to an increase in AUCs of approximately 37-48% and of 100% in Cmax. There was no increase in the primary PK parameters (AUCs and Cmax) of dextromethorphan in the presence of midostaurin. The study treatments were very well tolerated with no occurance of severe adverse events (AEs), AEs of grade ≥ 2, or deaths. CONCLUSION: Midostaurin showed only a minor inhibitory effect on P-gp, a mild inhibitory effect on BCRP, and no inhibitory effect on CYP2D6. Study treatments were well tolerated in healthy adults.

9.
Cell Rep ; 43(8): 114566, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39088320

ABSTRACT

Novel insecticides were recently introduced to counter pyrethroid resistance threats in African malaria vectors. To prolong their effectiveness, potential cross-resistance from promiscuous pyrethroid metabolic resistance mechanisms must be elucidated. Here, we demonstrate that the duplicated P450s CYP6P9a/-b, proficient pyrethroid metabolizers, reduce neonicotinoid efficacy in Anopheles funestus while enhancing the potency of chlorfenapyr. Transgenic expression of CYP6P9a/-b in Drosophila confirmed that flies expressing both genes were significantly more resistant to neonicotinoids than controls, whereas the contrasting pattern was observed for chlorfenapyr. This result was also confirmed by RNAi knockdown experiments. In vitro expression of recombinant CYP6P9a and metabolism assays established that it significantly depletes both clothianidin and chlorfenapyr, with metabolism of chlorfenapyr producing the insecticidally active intermediate metabolite tralopyril. This study highlights the risk of cross-resistance between pyrethroid and neonicotinoid and reveals that chlorfenapyr-based control interventions such as Interceptor G2 could remain efficient against some P450-based resistant mosquitoes.

10.
Chem Biol Drug Des ; 104(2): e14598, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39090783

ABSTRACT

Acne caused by inflammation of hair follicles and sebaceous glands is a common chronic skin disease. Arctigenin (ATG) is an extract of Arctium lappa L., which has significant anti-inflammatory effects. However, the effect and mechanism of ATG in cutaneous inflammation mediated by Cutibacterium acnes (C. acnes) has not been fully evaluated. The purpose of this study was to explore the effect and potential mechanism of ATG in the treatment of acne through network pharmacology and experimental confirmation. An acne model was established by injected live C. acnes into living mice and treated with ATG. Our data showed that ATG effectively improved acne induced by live C. acnes, which was confirmed by determining ear swelling rate, estradiol concentration and hematoxylin and eosin (H&E) staining. In addition, ATG inhibited the NLRP3 inflammasome signaling pathway in mice ear tissues and reduced the secretion of pro-inflammatory cytokines IL-1ß to relieve inflammation. The results of network pharmacology and molecular docking confirmed that ATG can regulate 17ß-Estradiol (E2) levels through targeted to CYP19A1, and finally inhibited skin inflammation. Taken together, our results confirmed that ATG regulated E2 secretion by targeting CYP19A1, thereby inhibiting the NLRP3 inflammasome signaling pathway and improving inflammation levels in acne mice. This study provides a basis for the feasibility of ATG in treating acne in clinical practice.


Subject(s)
Acne Vulgaris , Aromatase , Furans , Lignans , Molecular Docking Simulation , Network Pharmacology , Animals , Furans/chemistry , Furans/pharmacology , Mice , Lignans/pharmacology , Lignans/chemistry , Lignans/therapeutic use , Acne Vulgaris/drug therapy , Acne Vulgaris/microbiology , Aromatase/metabolism , Aromatase/chemistry , Signal Transduction/drug effects , Skin/pathology , Skin/drug effects , Skin/metabolism , Inflammation/drug therapy , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Inflammasomes/metabolism , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Propionibacterium acnes/drug effects , Interleukin-1beta/metabolism , Disease Models, Animal
11.
Biomol Ther (Seoul) ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39091013

ABSTRACT

Tofacitinib, a Janus kinase (JAK) inhibitor used to treat rheumatoid arthritis, is metabolized through hepatic cytochrome P450 (CYP), specifically CYP3A1/2 and CYP2C11. Prolonged administration of rheumatoid arthritis medications is generally associated with an increased risk of renal toxicity. Loganin (LGN), an iridoid glycoside, has hepatorenal regenerative properties. This study investigates the potential of LGN to mitigate acute kidney injury (AKI) and its effects on the pharmacokinetics of tofacitinib in rats with cisplatin-induced AKI. Both intravenous and oral administration of tofacitinib to AKI rats significantly increased the area under the plasma concentration-time curve from time 0 to infinity (AUC) compared with control (CON) rats, an increase attributed to the decelerated non-renal clearance (CLNR) and renal clearance (CLR) of tofacitinib. Administration of LGN to AKI rats, however, protected kidneys from severe impairment, restoring the pharmacokinetic parameters (AUC, CLNR, and CLR) of tofacitinib to those observed in untreated CON rats, with partial recovery of kidney function, as evidenced by an increase in creatinine clearance (CLCR). Possible interactions between drugs and natural components should be considered, especially when co-administering both a drug and a natural extract containing LGN or iridoid glycosides to patients with kidney injury.

12.
Future Cardiol ; : 1-17, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093436

ABSTRACT

Cardiovascular disease is the leading cause of death worldwide. Dual antiplatelet therapy (DAPT), with aspirin plus a P2Y12 inhibitor, is currently recommended as a default for patients after acute coronary syndrome (ACS) and following percutaneous coronary intervention (PCI). However, controversies arise over the role of aspirin, the optimal duration of DAPT after drug-eluting stent (DES) implantation, the choice of P2Y12 inhibitor and the variability in individual responses to antiplatelet agents. Recent data indicate that monotherapy with a P2Y12 inhibitor may have adequate anti-ischemic effects with lower bleeding risk. Additionally, discrepancies in DAPT duration recommendations and the optimal P2Y12 inhibitor, provides more uncertainty. We ask the question "does one size really fits all?" or should a more personalized strategy should be implemented.


Diseases affecting the heart and blood circulation are the leading cause of death worldwide. Treatment with drugs that prevents platelets from clumping (called antiplatelets) like aspirin plus another drug group (called P2Y12 inhibitors) like clopidogrel, ticagrelor and prasugrel, is currently recommended as a default for patients after heart attack and/or in whom coronary stents are inserted. However, it is very well documented that the response of any individual to these drugs is highly variable, and that the patients who don't respond as well to them are at increased risk of having clot events in their coronary arteries. On the other hand, people who respond to the drugs very sensitively have a higher bleeding risk. Despite these observations, there is no attempt to test the response of individuals patients to their antiplatelet drugs in routine practice. This review article looks in detail and whether the currently used strategy of "One size fits all" should be changed, given that there may well now be the chance to perform routine testing on everyone, and personalize their treatment accordingly.

13.
Ecotoxicol Environ Saf ; 284: 116865, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39137461

ABSTRACT

Tebuconazole (TEB), a prominent chiral triazole fungicide, has been extensively utilized for plant pathogen control globally. Despite experimental evidence of TEB metabolism in mammals, the enantioselectivity in the biotransformation of R- and S-TEB enantiomers by specific CYP450s remains elusive. In this work, integrated in silico simulations were employed to unveil the binding interactions and enantioselective metabolic fate of TEB enantiomers within human CYP1A2, 2B6, 2E1, and 3A4. Molecular dynamics (MD) simulations clearly delineated the binding specificity of R- and S-TEB to the four CYP450s, crucially determining their differences in metabolic activity and enantioselectivity. The primary driving force for robust ligand binding was identified as van der Waals interactions with CYP450s, particularly involving the hydrophobic residues. Mechanistic insights derived from quantum mechanics/molecular mechanics (QM/MM) calculations established C2-methyl hydroxylation as the predominant route of R-/S-TEB metabolism, while C6-hydroxylation and triazol epoxidation were deemed kinetically infeasible pathways. Specifically, the resulting hydroxy-R-TEB metabolite primarily originates from R-TEB biotransformation by 1A2, 2E1 and 3A4, whereas hydroxy-S-TEB is preferentially produced by 2B6. These findings significantly contribute to our comprehension of the binding specificity and enantioselective metabolic fate of chiral TEB by CYP450s, potentially informing further research on human health risk assessment associated with TEB exposure.

14.
Xenobiotica ; : 1-6, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39105612

ABSTRACT

Cytochrome P450 (CYP) 2J2 is responsible for the epoxidation of arachidonic acid, producing epoxyeicosatrienoic acids (EETs) that are known to enhance tumorigenesis. CYP2J2 is prominently expressed in the heart and also found in the lungs. Furthermore, the expression level of CYP2J2 in tumour tissues is higher than that in adjacent normal tissues. Non-small cell lung carcinoma is a common cancer, and tyrosine kinase inhibitors (TKIs) are powerful tools for its treatment. This study aimed to elucidate the inhibitory effects of 17 TKIs on CYP2J2 activity using LC-MS/MS.Seventeen TKIs exhibited different inhibitory effects on CYP2J2-catalysed astemizole O-demethylation in recombinant CYP2J2. Pralsetinib and selpercatinib showed strong competitive inhibition, with inhibition constant values of 0.48 and 1.1 µM, respectively. They also inhibited other CYP2J2 activities, including arachidonic acid epoxidation, hydroxyebastine carboxylation, and rivaroxaban hydroxylation.In conclusion, we showed that pralsetinib and selpercatinib strongly inhibit CYP2J2 activity. Inhibition of 14,15-EET production by these TKIs may be a novel mechanism for suppressing tumour growth and proliferation. Additionally, when these TKIs are co-administered with a CYP2J2 substrate, we may consider the possibility of drug-drug interactions via CYP2J2 inhibition.

15.
Sci Total Environ ; 950: 175312, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39122034

ABSTRACT

The disruption of per- and polyfluoroalkyl substances (PFASs) on bile acid (BA) homeostasis has raised public concerns, making the evaluation of their effects and underlying mechanisms a high priority. Although the use of perfluorooctanoic acid (PFOA) has been restricted, it remains a widespread legacy PFAS in the environment. Concurrently, the use of its prevalent short-chain alternative, perfluorobutanoic acid (PFBA), is increasing, yet the toxicity assessment of PFBA remains inadequate. In this study, C57BL/6N mice were exposed to PFOA and PFBA (0.4 or 10 mg/kg body weight) by gavage for 28 days. The results showed that both PFOA and PFBA significantly increased hepatic weight, although PFBA exhibited lower bioaccumulation than PFOA in the liver. Targeted metabolomics revealed that PFOA significantly decreased total BA levels and altered their composition. Conversely, PFBA, without significantly altering total BA levels, notably changed their composition, such as increasing the proportion of cholic acid. Further investigations using in vivo and in vitro assays suggested that PFOA inhibited the expression of Cyp7A1, a key BA synthetase, potentially via PPARα activation, thereby reducing BA levels. In contrast, PFBA enhanced Cyp7A1 expression, associated with the inhibition of intestinal Farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF15) pathway. This study evaluated the differences in the BA-interfering effects of PFOA and PFBA and shed light on the potential mechanisms, which will provide new insights into the health risks of legacy PFASs and their alternatives.

16.
Arch Toxicol ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136732

ABSTRACT

Despite extensive research on the metabolism of polychlorinated biphenyls (PCBs), knowledge gaps persist regarding their isoform-specific biotransformation pathways. This study aimed to elucidate the role of different cytochrome P450 enzymes in PCB metabolism, focusing on WHO-congeners 2,4,4'-trichlorobiphenyl (PCB28), 2,2',5,5'-tetrachlorobiphenyl (PCB52), and 2,2',4,5,5'-pentachlorobiphenyl (PCB101). Utilizing engineered HEK293 cell lines, we investigated the in vitro metabolism of these PCBs by CYP1A2, CYP2C8, CYP2C9, CYP3A4, CYP2A6, and CYP2E1, revealing robust production of hydroxylated metabolites. Our results show that CYP2A6 plays a major role in the metabolism of these congeners responsible for predominant formation of para-position hydroxylated metabolites, with concentrations reaching up to 1.61 µg/L (5,89 nM) for PCB28, 316.98 µg/L (1,03 µM) for PCB52, and 151.1 µg/L (441 nM) for PCB101 from a 20 µM parent PCB concentration. Moreover, concentration-dependent cytotoxic and cytostatic effects induced by reactive intermediates of the PCB hydroxylation pathway were observed in HEK293CYP2A6 cells, for all three congeners tested. CYP2A6 was specifically capable of activating PCBs 28 and 101 to genotoxic metabolites which produced genetic defects which were propagated to subsequent generations, potentially contributing to carcinogenesis. In a clinical study examining CYP2A6 enzyme activity in formerly exposed individuals with elevated internal PCB levels, a participant with increased enzyme activity showed a direct association between the phenotypic activity of CYP2A6 and the metabolism of PCB28, confirming the role of CYP2A6 in the in vivo metabolism of PCB28 also in humans. These results altogether reinforce the concept that CYP2A6 plays a pivotal role in PCB congener metabolism and suggest its significance in human health, particularly in the metabolism of lower chlorinated, volatile PCB congeners.

17.
Kardiol Pol ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140670

ABSTRACT

Clopidogrel remains the most widely used P2Y12 receptor inhibitor worldwide and is often used in combination with aspirin for secondary prevention in patients with arterial disease. The drug is associated with a wide response variability with one on three patients exhibiting little or no inhibition of adenosine diphosphate-induced platelet aggregation. It is a prodrug that is mainly metabolized by hepatic cytochrome P450 (CYP) 2C19. Patients who carry a CYP2C19 loss-of-function (LoF) allele have reduced metabolism of clopidogrel that is associated with reduced platelet inhibition compared to non-carriers that is associated with increased risk for thrombotic event occurrences, particularly, stent thrombosis. The United States Food and Drug Administration (US FDA) issued a black box warning in the clopidogrel label highlighting the importance of presence of CYP2C19 LOF allele during the insufficient metabolism of clopidogrel and availability of other potent P2Y12 inhibitor for the treatment in CYP2C19 poor metabolizers. Clinical trials have conclusively demonstrated greater anti-ischemic benefits of prasugrel/ticagrelor in the treatment of patients carrying the CYP2C19 LoF allele. However, uniform use of these more potent P2Y12 inhibitors has been associated with greater bleeding and cost, and lower adherence. The latter information provides a strong rationale for personalizing P2Y12 inhibitor therapy based on the laboratory determination of CYP2C19 genotype. However, cardiologists have been slow to take up pharmacogenetic testing possibly due to lack of provider and patient education, clear cardiology guidelines and, and lack of positive results from adequately sized randomized clinical trials. However, current evidence strongly supports genotyping of patients who are candidates for clopidogrel. Physicians should strongly consider performing genetic tests to identify LoF carriers and treat these patients with more pharmacodynamically predictable P2Y12 inhibitors than clopidogrel.

18.
Neotrop Entomol ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141216

ABSTRACT

This study investigates the toxic effects of the insecticide spinetoram on the model organism Bombyx mori (Linnaeus) and explores the potential ameliorative properties of O-Vanillin. Sub-lethal concentrations of spinetoram were given to silkworm larvae via oral feed, resulting in reduced body weight, larval length, and impaired cocoon characteristics. A study of the enzymatic and non-enzymatic antioxidants revealed oxidative stress in the gut, fat body, and silk gland tissues, characterized by decreased antioxidants and increased lipid peroxidation. However, post-treatment with O-Vanillin effectively mitigated these toxic effects, preserving antioxidant capacities and preventing lipid peroxidation. Additionally, O-Vanillin prevented the loss of body weight and improved cocoon characteristics. At the histological level, spinetoram exposure caused mild histological damage in the gut, fat body, and silk gland. However, O-Vanillin post-treatment had ameliorative effects and mitigated the histological damages. To delve deeper into the mechanism of amelioration of O-Vanillin, in silico studies were used to study the interaction between an important xenobiotic metabolism protein of the Bombyx mori, i.e., Cytochrome p450, specifically CYP9A19, and O-Vanillin. We performed blind molecular docking followed by molecular dynamic simulation, and the results demonstrated stable binding interactions between O-Vanillin and CYP9A19, a cytochrome P450 protein in silkworm, belonging to the subfamily CYP9A, suggesting a potential role for O-vanillin in modulating xenobiotic metabolism.

19.
Clin Genet ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39099467

ABSTRACT

There are few cerebrotendineous xanthomatosis (CTX) case series and observational studies including a significant number of Latin American patients. We describe a multicenter Brazilian cohort of patients with CTX highlighting their clinical phenotype, recurrent variants and assessing possible genotype-phenotype correlations. We analyzed data from all patients with clinical and molecular or biochemical diagnosis of CTX regularly followed at six genetics reference centers in Brazil between March 2020 and August 2023. We evaluated 38 CTX patients from 26 families, originating from 4 different geographical regions in Brazil. Genetic analysis identified 13 variants in the CYP27A1 gene within our population, including 3 variants that had not been previously described. The most frequent initial symptom of CTX in Brazil was cataract (27%), followed by xanthomas (24%), chronic diarrhea (13.5%), and developmental delay (13.5%). We observed that the median age at loss of ambulation correlates with the age of onset of neurological symptoms, with an average interval of 10 years (interquartile range 6.9 to 11 years). This study represents the largest CTX case series ever reported in South America. We describe phenotypic characteristics and report three new pathogenic or likely pathogenic variants.

20.
Eur J Clin Invest ; : e14297, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39099542

ABSTRACT

BACKGROUND: An individual's genetic fingerprint is emerging as a pivotal predictor of numerous disease- and treatment-related factors. Single nucleotide polymorphisms (SNPs) in drug-metabolizing enzymes play key roles in an individual's exposure to a malignancy-associated risk, such as Aflatoxin B1 (AFB1)-induced hepatocellular carcinoma (HCC). AIM: This study aimed at reviewing literature on the polymorphisms that exist in CYP enzymes and their possible link with susceptibility to AFB1-induced HCC. MATERIALS & METHODS: A set of keywords associated with the study subject of interest was used to search the Google Scholar and the PubMed database. The last ten years' worth of research projects were included in the results filter. The research involved HCC patients and any connection between polymorphic forms of CYP enzymes and their susceptibility to AFB1-induced HCC, including older but significant data. RESULTS: Variations in CYP1A2 and CYP3A4 were reported to impact the rate and magnitude of AFB1 bio-activation, thus influencing an individual's vulnerability to develop HCC. In HCC patients, the activity of CYP isoforms varies, where increased activity has been reported with CYP2C9, CYP2D6, and CYP2E1, while CYP1A2, CYP2C8, and CYP2C19 exhibit decreased activity. CYP2D6*10 frequency has been discovered to differ considerably in HCC patients. Rs2740574 (an upstream polymorphism in CYP3A4 as detected in CYP3A4*1B) and rs776746 (which affects CYP3A5 RNA splicing), both of which influence CYP3A expression, thus impacting the variability of AFB1-epoxide adducts in HCC patients. DISCUSSION: CYP1A2 is the primary enzyme accountable for the formation of harmful AFBO globally. CYP3A4, CYP3A5, CYP3A7, CYP2B7, and CYP3A3 are also implicated in the bio-activation of AFB1 to mutagenic metabolites. It is thought that CYP3A4 is the protein that interacts with AFB1 metabolism the most. CONCLUSION: Polymorphic variants of CYP enzymes have a functional impact on the susceptibility to AFB1-induced HCC. Outlining such variation and their implications may provide deeper insights into approaching HCC in a more personalized manner for guiding future risk-assessment, diagnosis, and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL