Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Curr Drug Metab ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38984579

ABSTRACT

One of the biggest obstacles to the treatment of diseases, particularly serious conditions like cancer, is therapeutic resistance. The process of drug resistance is influenced by a number of important variables, including MDR genes, drug efflux, low-quality medications, inadequate dosage, etc. Drug resistance must be addressed, and new combinations based on the pharmacokinetics/pharmacodynamics (PK-PD) characteristics of the partner pharmaceuticals must be developed in order to extend the half-lives of already available medications. The primary mechanism of drug elimination is hepatic biotransformation of medicines by cytochrome P450 (CYP) enzymes; of these CYPs, CYP3A4 makes up 30-40% of all known cytochromes that metabolize medications. Induction or inhibition of CYP3A4-mediated metabolism affects the pharmacokinetics of most anticancer drugs, but these details are not fully understood and highlighted because of the complexity of tumor microenvironments and various influencing patient related factors. The involvement of CYPs, particularly CYP3A4 and other drug-metabolizing enzymes, in cancer medication resistance will be covered in the current review.

2.
Toxicology ; 506: 153884, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39004336

ABSTRACT

Cannabidiol (CBD) is one of the primary cannabinoids present in extracts of the plant Cannabis sativa L. A CBD-based drug, Epidiolex, has been approved by the U.S. FDA for the treatment of seizures in childhood-onset epileptic disorders. Although CBD-associated liver toxicity has been reported in clinical studies, the underlying mechanisms remain unclear. In this study, we demonstrated that CBD causes cytotoxicity in primary human hepatocytes and hepatic HepG2 cells. A 24-h CBD treatment induced cell cycle disturbances, cellular apoptosis, and endoplasmic reticulum (ER) stress in HepG2 cells. A potent ER stress inhibitor, 4-phenylbutyrate, markedly attenuated CBD-induced apoptosis and cell death. Additionally, we investigated the role of cytochrome P450 (CYP)-mediated metabolism in CBD-induced cytotoxicity using HepG2 cell lines engineered to express 14 individual CYPs. We identified CYP2C9, 2C19, 2D6, 2C18, and 3A5 as participants in CBD metabolism. Notably, cells overexpressing CYP2C9, 2C19, and 2C18 produced 7-hydroxy-CBD, while cells overexpressing CYP2C9, 2C19, 2D6, and 2C18 generated 7-carboxy-CBD. Furthermore, CBD-induced cytotoxicity was significantly attenuated in the cells expressing CYP2D6. Taken together, these data suggest that cell cycle disturbances, apoptosis, and ER stress are associated with CBD-induced cytotoxicity, and CYP2D6-mediated metabolism plays a critical role in decreasing the cytotoxicity of CBD.


Subject(s)
Apoptosis , Cannabidiol , Endoplasmic Reticulum Stress , Hepatocytes , Humans , Cannabidiol/pharmacology , Cannabidiol/toxicity , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Cell Survival/drug effects , Cytochrome P-450 Enzyme System/metabolism , Cell Cycle/drug effects
3.
Mol Genet Metab Rep ; 38: 101049, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38469085

ABSTRACT

CYP-dependent metabolites play a critical role in regulating the cell cycle, as well as the proliferative, invasive, and migratory activity of cancer cells. We conducted a study to analyze the relative gene expression of various CYPs (CYP7B1, CYP27A1, CYP39A1, CYP51, CYP1B1, CYP3A5, CYP4F8, CYP5A1, CYP4F2, CYP2J2, CYP2E1, CYP2R1, CYP27B1, CYP24A1) in 41 pairs of prostate samples (tumor and conventional normal tissues) using qPCR. Our analysis determined significant individual variability in the expression levels of all studied CYPs, both in the tumor and in conventionally normal groups. However, when we performed a paired test between the tumor and normal groups, we found no significant difference in the expression of the studied genes. We did observe a tendency to increase the level of CYP1B1 expression in the tumor group. We also did not find any significant difference between the levels of the studied CYPs in the tumor and conventional normal groups at different stages of prostate cancer and pathomorphological indicators. Correlation analysis revealed the presence of a positive relationship between the expressions of some cholesterol-metabolizing CYP genes, as well as between genes responsible for vitamin D biosynthesis and cholesterol biosynthesis. We observed significant correlative relationships between the expression of CYPs and some prostate cancer-related genes (CDH2, MMP9, SCHLAP1, GCR, CYP17A1, ACTA2, CXCL14, FAP, CCL17, MSMB, IRF1, VDR). Therefore, the expression of CYPs is not directly associated with prostate cancer but is largely determined by genetic, epigenetic factors, as well as endogenous substrates and xenobiotics. The significant correlative relationship between CYPs and genes associated with cancer may indicate common regulatory pathways that may have a synergistic effect on the tumor, ensuring the survival of cancer cells.

4.
Nefrologia (Engl Ed) ; 44(3): 382-395, 2024.
Article in English | MEDLINE | ID: mdl-38448299

ABSTRACT

BACKGROUND: There are evidence indicating that some metabolites of arachidonic acid produced by cytochromes P450 (CYP) and epoxide hydroxylase (EPHX2), such as hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic acids (EETs) or dihydroxyeicosatrienoic acids (DHETEs), play an important role in blood pressure regulation and they could contribute to the development of hypertension (HT) and kidney damage. Therefore, the main aim of the study was to evaluate whether the genetic polymorphisms of CYP2C8, CYP2C9, CYP2J2, CYP4F2, CYP4F11 and EPHX2, responsible for the formation of HETEs, EETs and DHETEs, are related to the progression of impaired renal function in a group of patients with hypertension. METHODS: 151HT patients from a hospital nephrology service were included in the study. Additionally, a group of 87 normotensive subjects were involved in the study as control group. For HT patients, a general biochemistry analysis, estimated glomerular filtration rate and genotyping for different CYPs and EPHX2 variant alleles was performed. RESULTS: CYP4A11 rs3890011, rs9332982 and EPHX2 rs41507953 polymorphisms, according to the dominant model, presented a high risk of impaired kidney function, with odds ratios (OR) of 2.07 (1.00-4.32; P=0.049) 3.02 (1.11-8.23; P=0.030) and 3.59 (1.37-9.41; P=0.009), respectively, and the EPHX2 rs1042032 polymorphism a greater risk according to the recessive model (OR=6.23; 95% CI=1.50-25.95; P=0.007). However, no significant differences in allele frequencies between HT patients and in normotensive subjects for any of the SNP analysed. In addition, the patients with diagnosis of dyslipidemia (n=90) presented higher frequencies of EPHX2 K55R (rs41507953) and *35A>G (rs1042032) variants than patients without dyslipidemia, 4% vs. 14% (P=0.005) and 16 vs. 27% (P=0.02), respectively. CONCLUSIONS: In this study has been found higher odds of impaired renal function progression associated with rs3890011 and rs9332982 (CYP4A11) and rs41507953 and rs1042032 (EPHX2) polymorphisms, which may serve as biomarkers for improve clinical interventions aimed at avoiding or delaying, in chronic kidney disease patients, progress to end-stage kidney disease needing dialysis or kidney transplant.


Subject(s)
Cytochrome P-450 CYP4A , Disease Progression , Epoxide Hydrolases , Hypertension , Polymorphism, Genetic , Renal Insufficiency, Chronic , Humans , Male , Female , Middle Aged , Renal Insufficiency, Chronic/genetics , Hypertension/genetics , Epoxide Hydrolases/genetics , Cytochrome P-450 CYP4A/genetics , Aged , Cytochrome P-450 Enzyme System/genetics
5.
J Hazard Mater ; 465: 133163, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38064945

ABSTRACT

Arsenic (As) is a highly cytotoxic element impairing normal cellular functions, and its bioremediation has become one of the environmental concerns. This study explored the molecular and physiological responses of thyme (Thymus kotschyanus) seedlings to incorporating As (0 and 10 mgl-1) and methyl jasmonate (MJ; 0 and 10 µM) into the culture medium. The MJ treatment reinforced root system and mitigated the As cytotoxicity risk. MJ contributed to hypomethylation, a potential adaptation mechanism for conferring the As tolerance. Two cytochrome P450 monooxygenases, including CYP71D178 and CYP71D180 genes, were upregulated in response to As and MJ. The MJ treatment contributed to up-regulation in the γ-terpinene synthase (TPS) gene, a marker gene in the terpenoid metabolism. The As presence reduced photosynthetic pigments (chlorophylls and carotenoids), while the MJ utilization alleviated the As toxicity. The MJ supplementation increased proline accumulation and soluble phenols. The application of MJ declined the toxicity sign of As on the concentration of proteins. The activities of peroxidase, catalase, and phenylalanine ammonia-lyase (PAL) enzymes displayed an upward trend in response to As and MJ treatments. Taken collective, MJ can confer the As tolerance by triggering DNA hypomethylation, regulating CYPs, and stimulating primary and secondary metabolism, especially terpenoid.


Subject(s)
Arsenic , Cyclopentanes , Oxylipins , Thymus Plant , Thymus Plant/metabolism , Secondary Metabolism , Acetates/metabolism , Cytochrome P-450 Enzyme System/metabolism , Terpenes , DNA
6.
Microorganisms ; 11(10)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37894248

ABSTRACT

Lichens are unique organisms that exhibit a permanent symbiosis between fungi and algae or fungi and photosynthetic bacteria. Lichens have been found to produce biotechnologically valuable secondary metabolites. A handful of studies showed that tailoring enzymes such as cytochrome P450 monooxygenases (CYPs/P450s) play a key role in synthesizing these metabolites. Despite the critical role of P450s in the biosynthesis of secondary metabolites, the systematic analysis of P450s in lichens has yet to be reported. This study is aimed to address this research gap. A genome-wide analysis of P450s in five lichens from the fungal class Lecanoromycetes revealed the presence of 434 P450s that are grouped into 178 P450 families and 345 P450 subfamilies. The study indicated that none of the P450 families bloomed, and 15 P450 families were conserved in all five Lecanoromycetes. Lecanoromycetes have more P450s and higher P450 family diversity compared to Pezizomycetes. A total of 73 P450s were found to be part of secondary metabolite gene clusters, indicating their potential involvement in the biosynthesis of secondary metabolites. Annotation of P450s revealed that CYP682BG1 and CYP682BG2 from Cladonia grayi and Pseudevernia furfuracea (physodic acid chemotype) are involved in the synthesis of grayanic acid and physodic acid, CYP65FQ2 from Stereocaulon alpinum is involved in the synthesis of atranorin, and CYP6309A2 from Cladonia uncialis is involved in the synthesis of usnic acid. This study serves as a reference for future annotation of P450s in lichens.

7.
Chembiochem ; 24(12): e202300065, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37171207

ABSTRACT

Oxyfunctionalization of non-activated carbon bonds by P450 monooxygenases has drawn great industrial attraction. Self-sufficient P450s containing catalytic heme and reductase domains in a single polypeptide chain offer many advantages since they do not require external electron transfer partners. Here, we report the first P450 enzyme identified and expressed from Azorhizobium caulinodans. Firstly, expression conditions of P450 AZC1 were optimized for enhanced expression in E.coli. The highest P450 content was obtained in E.coli Rosetta DE3 plysS when it was incubated in TB media supplemented with 0.75 mM IPTG, 0.5 mM ALA, and 0.75 mM FeCl3 at 25 °C for 24 hours. Subsequently, the purified enzyme showed a broad substrate spectrum including fatty acids, linear and cyclic alkanes, aromatics, and pharmaceuticals. Finally, P450 AZC1 showed optimal activity at pH 6.0 and 40 °C and a broad pH and temperature profile, making it a promising candidate for industrial applications.


Subject(s)
Azorhizobium caulinodans , Azorhizobium caulinodans/metabolism , Cytochrome P-450 Enzyme System/metabolism , Electron Transport , Catalysis , Fatty Acids
8.
Expert Opin Drug Metab Toxicol ; 19(3): 139-148, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37060323

ABSTRACT

INTRODUCTION: Berberine (BBR) possesses a wide variety of pharmacological activities. However, the oral bioavailability of BBR is low due to extensive intestinal first-pass metabolism by cytochrome P450s (CYPs), insufficient absorption due to low solubility and P-glycoprotein (P-gp)-mediated efflux transport, and hepatic first-pass metabolism in rats. AREAS COVERED: Various dosage formulations were developed to increase the oral bioavailability of BBR by overcoming the reducing factors. This article provides the developing strategy of oral dosage formulations of BBR based on the physicochemical (low solubility, formation of salts/ion-pair complex) and pharmacokinetic properties (substrate of P-gp/CYPs, extensive intestinal first-pass metabolism). Literature was searched using PubMed. EXPERT OPINION: Here, formulations increasing the dissolution rates/solubility; formulations containing a P-gp inhibitor; formulations containing solubilizer exhibiting P-gp and/or CYPs inhibitors; formulations containing absorption enhancers; gastro/duodenal retentive formulations; lipid-based formulations; formulations targeting lymphatic transport; and physicochemical modifications increasing lipophilicity were reviewed. Among these formulations, formulations that can reduce intestinal first-pass metabolisms such as formulations containing CYPs inhibitor(s) and formulations containing absorption enhancer(s) significantly increased the oral bioavailability of BBR. Further studies on other dosing routes that can avoid first-pass metabolism such as the rectal route would also be important to increase the bioavailability of BBR.


Subject(s)
Antineoplastic Agents , Berberine , Rats , Humans , Animals , Berberine/chemistry , Berberine/pharmacology , Biological Availability , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Isoquinolines , Administration, Oral
9.
Front Pharmacol ; 14: 1099093, 2023.
Article in English | MEDLINE | ID: mdl-37101544

ABSTRACT

Cytochrome P450 (CYP) is a superfamily of heme-containing oxidizing enzymes involved in the metabolism of a wide range of medicines, xenobiotics, and endogenous compounds. Five of the CYPs (1A2, 2C9, 2C19, 2D6, and 3A4) are responsible for metabolizing the vast majority of approved drugs. Adverse drug-drug interactions, many of which are mediated by CYPs, are one of the important causes for the premature termination of drug development and drug withdrawal from the market. In this work, we reported in silicon classification models to predict the inhibitory activity of molecules against these five CYP isoforms using our recently developed FP-GNN deep learning method. The evaluation results showed that, to the best of our knowledge, the multi-task FP-GNN model achieved the best predictive performance with the highest average AUC (0.905), F1 (0.779), BA (0.819), and MCC (0.647) values for the test sets, even compared to advanced machine learning, deep learning, and existing models. Y-scrambling testing confirmed that the results of the multi-task FP-GNN model were not attributed to chance correlation. Furthermore, the interpretability of the multi-task FP-GNN model enables the discovery of critical structural fragments associated with CYPs inhibition. Finally, an online webserver called DEEPCYPs and its local version software were created based on the optimal multi-task FP-GNN model to detect whether compounds bear potential inhibitory activity against CYPs, thereby promoting the prediction of drug-drug interactions in clinical practice and could be used to rule out inappropriate compounds in the early stages of drug discovery and/or identify new CYPs inhibitors.

10.
Mol Carcinog ; 62(6): 786-802, 2023 06.
Article in English | MEDLINE | ID: mdl-36929853

ABSTRACT

Dynamin 1 Like (DNM1L), a member of dynamin superfamily capable of mediating mitochondrial outer membrane division, plays a key role in the progression of different types of tumors. However, the prognostic value, clinical significance of DNM1L and its specific mechanism involved in tumorigenesis of hepatocellular carcinoma (HCC) have not been investigated clearly. In this study, we found that the expression of DNM1L were significantly higher in HCC tissues than adjacent/normal liver tissues based on multiple data sets obtained from TCGA, GEO and ONCOMINE database, also its protein expression form Drp1 is significantly higher in HCC tissues than adjacent tissues, and is related to the degree of differentiation. Kaplan-Meier curves suggested that high DNM1L expression prominently correlated with poorer overall survival, progression-free survival, relapse-free survival and disease-specific survival. Multivariate analysis showed that higher DNM1L expression was independent prognostic factors of shorter overall survival and disease-free survival. Kyoto Encyclopedia of Genes and Genomes and Gene set enrichment analysis analysis combined with validation experiments revealed the regulatory role of DNM1L on key molecules in the metabolism of xenobiotics by cytochrome p450 pathway, and DNM1L may also affects invasion and metastasis capability of HCC by mediating extracellular matrix -receptor interaction pathway. Moreover, analysis showed that higher DNM1L, CYP2C9, CYP3A4, CYP1A2 expression were associated with the resistance to sorafenib therapy. TIMER and CIBERSORT analysis indicated that the increase of DNM1L expression may affect the infiltration of immune cells in the tumor microenvironment. Taken together, the above results indicated that DNM1L could be able to serve as a promising independent predictor and therapeutic target for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Dynamins , Liver Neoplasms , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Neoplasm Recurrence, Local/genetics , Prognosis , Tumor Microenvironment , Dynamins/genetics
11.
Pharmacogenomics ; 24(1): 27-57, 2023 01.
Article in English | MEDLINE | ID: mdl-36628952

ABSTRACT

Anxiety and depression coexist with cognitive impairment in Alzheimer's disease along with other concomitant disorders (>60%), which require multipurpose treatments. Polypharmaceutical regimens cause drug-drug interactions and adverse drug reactions, potentially avoidable in number and severity with the implementation of pharmacogenetic procedures. The accumulation of defective variants (>30 genes per patient in more than 50% of cases) in pharmagenes (pathogenic, mechanistic, metabolic, transporter, pleiotropic) influences the therapeutic response to antidementia, antidepressant and anxiolytic drugs in polyvalent regimens. APOE, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP4F2, COMT, MAOB, CHAT, GSTP1, NAT2, SLC30A8, SLCO1B1, ADRA2A, ADRB2, BCHE, GABRA1, HMGCR, HTR2C, IFNL3, NBEA, UGT1A1, ABCB1, ABCC2, ABCG2, SLC6A2, SLC6A3, SLC6A4, MTHFR and OPRM1 variants affect anxiety and depression in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Arylamine N-Acetyltransferase , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Pharmacogenetics/methods , Depression/drug therapy , Depression/genetics , Cytochrome P-450 CYP2D6/genetics , Anxiety/drug therapy , Anxiety/genetics , Liver-Specific Organic Anion Transporter 1 , Carrier Proteins , Nerve Tissue Proteins , Serotonin Plasma Membrane Transport Proteins
12.
Chem Biol Interact ; 372: 110357, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36693444

ABSTRACT

The antioxidant activity of nine lichen substances, including methylatrarate (1), methyl haematommate (2), lobaric acid (3), fumarprotocetraric acid (4), sphaerophorin (5), subsphaeric acid (6), diffractaic acid (7), barbatolic acid (8) and salazinic acid (9) has been determined through cyclic voltammetry. The compounds 1-4 presented slopes close to the Nernst constant of 0.059 V, indicating a 2H+/2e- relation between protons and electrons, as long as the compounds 5, 6, 7, 8, and 9 present slopes between 0.037 V and 0.032 V, indicating a 1H+/2e- relation between protons and electrons. These results show a high free radical scavenging activity by means of the release of H+, suggesting an important antioxidant capacity of these molecules. Theoretical calculations of hydrogen bond dissociation enthalpies (BDE), proton affinities (PA), and Proton Transfer (PT) mechanisms, at M06-2x/6-311+G(d,p) level complement the experimental results. Computations support that the best antioxidant activity is obtained for the molecules (3, 4, 5, 6, 7 and 8), that have a carboxylic acid group close to a phenolic hydroxyl group, through hydrogen atomic transfer (HAT) and sequential proton loss electron transfer (SPLET) mechanisms. Additional computations were performed for modelling binding affinity of the lichen substances with CYPs enzymes, mainly CYP1A2, CYP51, and CYP2C9*2 isoforms, showing strong affinity for all the compounds described in this study.


Subject(s)
Antioxidants , Lichens , Antioxidants/pharmacology , Antioxidants/chemistry , Protons , Hydrogen/chemistry , Electron Transport , Thermodynamics
13.
Environ Res ; 220: 115256, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36634892

ABSTRACT

Metabolism generally transforms xenobiotics into more polar and hydrophilic products, facilitating their elimination from the body. Recently, a new metabolic pathway that transforms phenolic xenobiotics into more lipophilic and bioactive dimer products was discovered. To elucidate the role of cytochrome P450 (CYP) enzymes in mediating this cross-coupling metabolism, we used high-throughput screening to identify the metabolites generated from the coupling of 20 xenobiotics with four endogenous metabolites in liver microsomes. Endogenous vitamin E (VE) was the most reactive metabolite, as VE reacted with seven phenolic xenobiotics containing various structures (e.g., an imidazoline ring or a diphenol group) to generate novel lipophilic ethers such as bakuchiol-O-VE, phentolamine-O-VE, phenylethyl resorcinol-O-VE, 2-propanol-O-VE, and resveratrol-O-VE. Seven recombinant CYP enzymes were successfully expressed and purified in Escherichia coli. Integration of the results of recombinant human CYP incubation and molecular docking identified the central role of CYP3A4 in the cross-coupling metabolic pathway. Structural analysis revealed the π-π interactions, hydrogen bonds, and hydrophobic interactions between reactive xenobiotics and VE in the malleable active sites of CYP3A4. The consistency between the molecular docking results and the in vitro human cytochrome P450 evaluation shows that docking calculations can be used to screen molecules participating in cross-coupling metabolism. The results of this study provide supporting evidence for the overlooked toxicological effects induced by direct reactions between xenobiotics and endogenous metabolites during metabolic processes.


Subject(s)
Cytochrome P-450 CYP3A , Xenobiotics , Humans , Cytochrome P-450 CYP3A/metabolism , Molecular Docking Simulation , Xenobiotics/metabolism , Cytochrome P-450 Enzyme System/metabolism , Microsomes, Liver/metabolism
14.
Turk J Med Sci ; 52(5): 1425-1447, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36422483

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is an idiopathic, chronic inflammatory disease with multiple genetic and a variety of environmental risk factors. Although current drugs significantly aid in controlling the disease, many people have led to the application of complementary therapies due to the common belief that they are natural and safe, as well as due to the consideration of the side effect of current drugs. Curcumin, cannabinoids, wheatgrass, Boswellia, wormwood and Aloe vera are among the most commonly used complementary medicines in UC. However, these treatments may have adverse and toxic effects due to unintended interactions with drugs or drug-metabolizing enzymes such as cytochrome P450s; thus, being ignorant of these interactions might cause deleterious effects with severe consequences. In addition, the lack of complete and controlled long-term studies with the use of these complementary medicines regarding drug metabolism pose additional risk and unsafety. Thus, this review aims to give an overview of the potential interactions of drug-metabolizing enzymes with the complementary botanical medicines used in UC, drawing attention to possible adverse effects.


Subject(s)
Colitis, Ulcerative , Complementary Therapies , Curcumin , Drug-Related Side Effects and Adverse Reactions , Humans , Colitis, Ulcerative/drug therapy , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Curcumin/therapeutic use
15.
Planta ; 256(6): 119, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36378350

ABSTRACT

MAIN CONCLUSION: Cytochorme P450s (CYPs) play a critical role in the catalysis of secondary metabolite biosynthetic pathways. For their commercial use, various strategies for metabolic pathway engineering using CYP as a potential target have been explored. Plants produce a vast diversity of secondary metabolites which are being used to treat various ailments and diseases. Some of these metabolites are difficult to obtain in large quantities limiting their industrial use. Cytochrome P450 enzymes (CYPs) are important catalysts in the biosynthesis of highly valued secondary metabolites, and are found in all domains of life. With the development of high-throughput sequencing and high-resolution mass spectrometry, new biosynthetic pathways and associated CYPs are being identified. In this review, we present CYPs identified from medicinal plants as a potential game changer in the metabolic engineering of secondary metabolic pathways. We present the achievements made so far in enhancing the production of important bioactivities through pathway engineering, giving some popular examples. At last, current challenges and possible strategies to overcome the limitations associated with CYP engineering to enhance the biosynthesis of target secondary metabolites are also highlighted.


Subject(s)
Plants, Medicinal , Plants, Medicinal/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Biosynthetic Pathways , Metabolic Engineering , Secondary Metabolism
16.
Beilstein J Org Chem ; 18: 1289-1310, 2022.
Article in English | MEDLINE | ID: mdl-36225725

ABSTRACT

The cytochrome P450 monooxygenase (CYP) superfamily comprises hemethiolate enzymes that perform remarkable regio- and stereospecific oxidative chemistry. As such, CYPs are key agents for the structural and functional tailoring of triterpenoids, one of the largest classes of plant natural products with widespread applications in pharmaceuticals, food, cosmetics, and agricultural industries. In this review, we provide a full overview of 149 functionally characterised CYPs involved in the biosynthesis of triterpenoids and steroids in primary as well as in specialised metabolism. We describe the phylogenetic distribution of triterpenoid- and steroid-modifying CYPs across the plant CYPome, present a structure-based summary of their reactions, and highlight recent examples of particular interest to the field. Our review therefore provides a comprehensive up-to-date picture of CYPs involved in the biosynthesis of triterpenoids and steroids in plants as a starting point for future research.

17.
Arch Toxicol ; 96(12): 3219-3231, 2022 12.
Article in English | MEDLINE | ID: mdl-36083301

ABSTRACT

Perhexiline is a prophylactic antianginal agent developed in the 1970s. Although, therapeutically, it remained a success, the concerns of its severe adverse effects including hepatotoxicity caused the restricted use of the drug, and eventually its withdrawal from the market in multiple countries. In the clinical setting, cytochrome P450 (CYP) 2D6 is considered as a possible risk factor for the adverse effects of perhexiline. However, the role of CYP-mediated metabolism in the toxicity of perhexiline, particularly in the intact cells, remains unclear. Using our previously established HepG2 cell lines that individually express 14 CYPs (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7) and human liver microsomes, we identified that CYP2D6 plays a major role in the hydroxylation of perhexiline. We also determined that CYP1A2, 2C19, and 3A4 contribute to the metabolism of perhexiline. The toxic effect of perhexiline was reduced significantly in CYP2D6-overexpressing HepG2 cells, in comparison to the control cells. In contrast, overexpression of CYP1A2, 2C19, and 3A4 did not show a significant protective effect against the toxicity of perhexiline. Pre-incubation with quinidine, a well-recognized CYP2D6 inhibitor, significantly attenuated the protective effect in CYP2D6-overexpressing HepG2 cells. Furthermore, perhexiline-induced mitochondrial damage, apoptosis, and ER stress were also attenuated in CYP2D6-overexpressing HepG2 cells. These findings suggest that CYP2D6-mediated metabolism protects the cells from perhexiline-induced cytotoxicity and support the clinical observation that CYP2D6 poor metabolizers may have higher risk for perhexiline-induced hepatotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury , Cytochrome P-450 CYP1A2 , Humans , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2D6/metabolism , Perhexiline/toxicity , Perhexiline/metabolism , Cytochrome P-450 CYP2D6 Inhibitors , Quinidine/metabolism , Cytochrome P-450 Enzyme System/metabolism , Microsomes, Liver/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism
18.
Pharmgenomics Pers Med ; 15: 765-773, 2022.
Article in English | MEDLINE | ID: mdl-36004008

ABSTRACT

Purpose: Pharmacogenetic counselling is a complex task and requires the efforts of an interdisciplinary team, which cannot be implemented in most cases. Therefore, simple rules could help to minimize the risk of medications incompatible with each other or with frequent genetic variants. Patients and Methods: One hundred and eighty-four multi-morbid Caucasian patients suffering from side effects or inefficient therapy were enrolled and genotyped. Their medication was analyzed by a team of specialists using Drug-PIN® (medication support system) and individual recommendations for 34 drug classes were generated. Results: In each of the critical drug classes, 50% of the drugs cannot be recommended to be prescribed in typical drug cocktails. PPIs and SSRI/SNRIs represent the most critical drug classes without showing a single favorable drug. Among the well-tolerated drugs (not recommended for less than 5% of the patients) are metamizole, celecoxib, olmesartan and famotidine. For each drug class, a ranking of active ingredients according to their suitability is presented. Conclusion: Genotyping and its profound analysis are not available in many settings today. The consideration of frequent alterations of metabolic elimination routes and drug-drug-gene interactions by using simple rankings can help to avoid many incompatibilities, side effects and inefficient therapies.

19.
Environ Mol Mutagen ; 63(5): 255-264, 2022 06.
Article in English | MEDLINE | ID: mdl-35638572

ABSTRACT

To investigate the role of interaction of tobacco metabolizing polymorphic cytochrome P450s (CYPs) and glutathione S-transferase M1 (GSTM1) with environmental risk factors in modifying the susceptibility to head and neck squamous cell carcinoma (HNSCC), a case-control study with 1250 proven cases of HNSCC and equal number of healthy controls was planned. A small but significant increase in the risk to HNSCC (1-2 fold) in the cases with variant genotypes of CYPs (1A1 or 1B1 or 2E1) increased several folds (up to 13 fold) in regular tobacco or alcohol users. This several fold increase in risk could be due to more than multiplicative interaction observed between the risk genotypes of CYPs and tobacco or alcohol. A synergistic effect was also observed between tobacco as well as alcohol users among cases with risk genotypes of CYPs and GSTM1 that resulted in a further increase in risk (up to 29 fold) to HNSCC. Interestingly, the increase in the risk in tobacco users among cases with variant genotypes of CYPs or a combination of CYPs & GSTM1 (-) was associated with a higher mRNA expression of CYPs when compared to nontobacco users in controls with wild type of genotypes of CYPs & GSTM1. The data suggest that the interaction of genetic and environmental risk factors leads to increased expression of CYPs which may increase the levels of tobacco-derived carcinogens thereby modifying the risk to HNSCC.


Subject(s)
Cytochrome P-450 Enzyme System , Genetic Predisposition to Disease , Head and Neck Neoplasms , Alcohol Drinking/adverse effects , Case-Control Studies , Cytochrome P-450 Enzyme System/genetics , Genotype , Glutathione Transferase/genetics , Head and Neck Neoplasms/genetics , Humans , Risk Factors , Squamous Cell Carcinoma of Head and Neck/genetics , Tobacco Use/adverse effects
20.
Toxicol Appl Pharmacol ; 445: 116039, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35489524

ABSTRACT

Efforts in precision medicine to combat aberrant epigenome have led to the development of epigenetic targeting drugs. We have previously reported the capability of the BZD9L1 epigenetic modulator to impede colorectal tumour growth in vitro and in vivo through sirtuin (SIRT) inhibition. Although most benzimidazole derivatives are commonly less toxic, their effects on SIRTs and cytochrome P450 (CYP) regulations have not been explored alongside toxicity assessments. SIRTs are histone deacetylases that are crucial in maintaining metabolic homeostasis, whereas CYP is essential in drug metabolism. This study aims to determine the toxicology profile of BZD9L1 through oral acute and repeated dose toxicity evaluations, along with molecular analyses of SIRT, CYP and relevant toxicity markers through western blot and quantitative polymerase chain reaction (qPCR). BZD9L1 demonstrated no sign of acute toxicity at the limit dose (2000 mg/kg). The 28-day toxicity study highlighted the tolerability of repeated dose administration without adverse effects. BZD9L1 showed a sex-divergent regulation of hepatic SIRT1-7, CYP2A5 and CYP2D proteins. Furthermore, BZD9L1 did not induce the expression of organ injury proteins or alter the gene expression of cellular function indicators in mouse liver and kidneys, hence demonstrating, at least in part, the safety of BZD9L1 in short-term evaluations. The present study cautions for personalised strategies when employing benzimidazole-derived epigenetic therapeutics.


Subject(s)
Benzimidazoles , Cytochrome P-450 Enzyme System , Sex Characteristics , Sirtuins , Animals , Benzimidazoles/toxicity , Cytochrome P-450 Enzyme System/metabolism , Epigenesis, Genetic , Female , Liver , Male , Mice , Piperidines , Sirtuins/genetics , Sirtuins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL