Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(19)2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39409130

ABSTRACT

Thyroid hormone binds to specific nuclear receptors, regulating the expression of target genes, with major effects on cardiac function. Triiodothyronine (T3) increases the expression of key proteins related to calcium homeostasis, such as the sarcoplasmic reticulum calcium ATPase pump, but the detailed mechanism of gene regulation by T3 in cardiac voltage-gated calcium (Cav1.2) channels remains incompletely explored. Furthermore, the effects of T3 on Cav1.2 auxiliary subunits have not been investigated. We conducted quantitative reverse transcriptase polymerase chain reaction, Western blot, and immunofluorescence experiments in H9c2 cells derived from rat ventricular tissue, examining the effects of T3 on the expression of α1c, the principal subunit of Cav1.2 channels, and Cavß4, an auxiliary Cav1.2 subunit that regulates gene expression. The translocation of phosphorylated cyclic adenosine monophosphate response element-binding protein (pCREB) by T3 was also examined. We found that T3 has opposite effects on these channel proteins, upregulating α1c and downregulating Cavß4, and that it increases the nuclear translocation of pCREB while decreasing the translocation of Cavß4. Finally, we found that overexpression of Cavß4 represses the mRNA expression of α1c, suggesting that T3 upregulates the expression of the α1c subunit in response to a decrease in Cavß4 subunit expression.


Subject(s)
Calcium Channels, L-Type , Myocytes, Cardiac , Animals , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Rats , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Triiodothyronine/pharmacology , Triiodothyronine/metabolism , Down-Regulation/drug effects , Thyroid Hormones/metabolism , Cell Line , Up-Regulation/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression Regulation/drug effects , Protein Subunits/metabolism , Protein Subunits/genetics
2.
Front Physiol ; 13: 834220, 2022.
Article in English | MEDLINE | ID: mdl-35360237

ABSTRACT

In mesenteric arteries (MAs), aldosterone (ALDO) binds to the endogenous mineralocorticoid receptor (MR) and increases the expression of the voltage-gated L-type Cav1.2 channel, an essential ion channel for vascular contraction, sarcoplasmic reticulum (SR) Ca2+ store refilling, and Ca2+ spark generation. In mesenteric artery smooth muscle cells (MASMCs), Ca2+ influx through Cav1.2 is the indirect mechanism for triggering Ca2+ sparks. This process is facilitated by plasma membrane-sarcoplasmic reticulum (PM-SR) nanojunctions that drive Ca2+ from the extracellular space into the SR via Sarco/Endoplasmic Reticulum Ca2+ (SERCA) pump. Ca2+ sparks produced by clusters of Ryanodine receptors (RyRs) at PM-SR nanodomains, decrease contractility by activating large-conductance Ca2+-activated K+ channels (BKCa channels), which generate spontaneous transient outward currents (STOCs). Altogether, Cav1.2, SERCA pump, RyRs, and BKCa channels work as a functional unit at the PM-SR nanodomain, regulating intracellular Ca2+ and vascular function. However, the effect of the ALDO/MR signaling pathway on this functional unit has not been completely explored. Our results show that short-term exposure to ALDO (10 nM, 24 h) increased the expression of Cav1.2 in rat MAs. The depolarization-induced Ca2+ entry increased SR Ca2+ load, and the frequencies of both Ca2+ sparks and STOCs, while [Ca2+]cyt and vasoconstriction remained unaltered in Aldo-treated MAs. ALDO treatment significantly increased the mRNA and protein expression levels of the SERCA pump, which counterbalanced the augmented Cav1.2-mediated Ca2+ influx at the PM-SR nanodomain, increasing SR Ca2+ content, Ca2+ spark and STOC frequencies, and opposing to hyperpolarization-induced vasoconstriction while enhancing Acetylcholine-mediated vasorelaxation. This work provides novel evidence for short-term ALDO-induced upregulation of the functional unit comprising Cav1.2, SERCA2 pump, RyRs, and BKCa channels; in which the SERCA pump buffers ALDO-induced upregulation of Ca2+ entry at the superficial SR-PM nanodomain of MASMCs, preventing ALDO-triggered depolarization-induced vasoconstriction and enhancing vasodilation. Pathological conditions that lead to SERCA pump downregulation, for instance, chronic exposure to ALDO, might favor the development of ALDO/MR-mediated augmented vasoconstriction of mesenteric arteries.

3.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 289-296, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29126879

ABSTRACT

The L-type calcium channel (LTCC) is an important determinant of cardiac contractility. Therefore, changes in LTCC activity or protein levels could be expected to affect cardiac function. Several studies describing LTCC regulation are available, but only a few examine LTCC protein stability. Polycystin-1 (PC1) is a mechanosensor that regulates heart contractility and is involved in mechanical stretch-induced cardiac hypertrophy. PC1 was originally described as an unconventional Gi/o protein-coupled receptor in renal cells. We recently reported that PC1 regulates LTCC stability in cardiomyocytes under stress; however, the mechanism underlying this effect remains unknown. Here, we use cultured neonatal rat ventricular myocytes and hypo-osmotic stress (HS) to model mechanical stretch. The model shows that the Cavß2 subunit is necessary for LTCC stabilization in cardiomyocytes during mechanical stretch, acting through an AKT-dependent mechanism. Our data also shows that AKT activation depends on the G protein-coupled receptor activity of PC1, specifically its G protein-binding domain, and the associated Gßγ subunit of a heterotrimeric Gi/o protein. In fact, over-expression of the human PC1 C-terminal mutant lacking the G protein-binding domain blunted the AKT activation-induced increase in Cav1.2 protein in cardiomyocytes. These findings provide novel evidence that PC1 is involved in the regulation of cardiac LTCCs through a Gißγ-AKT-Cavß2 pathway, suggesting a new mechanism for regulation of cardiac function.


Subject(s)
Calcium Channels, L-Type/metabolism , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Stress, Mechanical , TRPP Cation Channels/metabolism , Animals , Calcium Channels, L-Type/genetics , Proto-Oncogene Proteins c-akt/genetics , Rats , TRPP Cation Channels/genetics
4.
Biophys Rev ; 9(5): 807-825, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28836190

ABSTRACT

Lead ions (Pb2+) possess characteristics similar to Ca2+. Because of this and its redox capabilities, lead causes different toxic effects. The neurotoxic effects have been well documented; however, the toxic effects on cardiac tissues remain allusive. We utilized isolated guinea pig hearts and measured the effects of Pb2+ on their contractility and excitability. Acute exposure to extracellular Pb2+ had a negative inotropic effect and increased diastolic tension. The speed of contraction and relaxation were affected, though the effects were more dramatic on the speed of contraction. Excitability was also altered. Heart beat frequency increased and later diminished after lead ion exposure. Pro-arrhytmic events, such as early after-depolarization and a reduction of the action potential plateau, were also observed. In isolated cardiomyocytes and tsA 201 cells, extracellular lead blocked currents through Cav1.2 channels, diminished their activation, and enhanced their fast inactivation, negatively affecting their gating currents. Thus, Pb2+ was cardiotoxic and reduced cardiac contractility, making the heart prone to arrhythmias. This was due, in part, to Pb2+ effects on the Cav1.2 channels; however, other channels, transporters or pathways may also be involved. Acute cardiotoxic effects were observed at Pb2+ concentrations achievable during acute lead poisoning. The results suggest how Cav1.2 gating can be affected by divalent cations, such as Pb2, and also suggest a more thorough evaluation of heart function in individuals affected by lead poisoning.

5.
Oncology ; 93(1): 1-10, 2017.
Article in English | MEDLINE | ID: mdl-28355609

ABSTRACT

Extensive research is currently underway, seeking better diagnostic methods and treatments and a better understanding of the molecular mechanisms involved in cancer, from the role of specific genetic mutations to the intricate biochemical and molecular pathways involved. Because of their role in regulating relevant physiological events such as cell proliferation, migration, and invasion, ion channels have recently been recognized as important elements in cancer initiation and progression. Moreover, it has been reported that pharmacological intervention in ion channel activity might provide protection against diverse types of cancer, and that ion channels could be used as targets to counteract tumor growth, prevent metastasis, and overcome the therapy resistance of tumor cells. In this context, Ca2+ channels have been found to play a role in tumorigenesis and tumor progression. Specifically, L-type Ca2+ channel inhibition may affect cell proliferation, differentiation, and apoptosis. This review aims to provide insights into the potential role of these channels in cancer cell lines, emphasizing their participation in cell proliferation, migration, and autophagy induction, as well as their potential as rational targets for new cancer therapeutics.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Signaling , Cell Movement , Cell Proliferation , Neoplasms/genetics , Neoplasms/pathology , Autophagy , Calcium Channels, L-Type/genetics , Calcium Signaling/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL