Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.248
Filter
1.
Front Plant Sci ; 15: 1417314, 2024.
Article in English | MEDLINE | ID: mdl-39086910

ABSTRACT

Background: The plant root system is critical for the absorption of water and nutrients, and have a direct influence on growth and yield. In cucumber, a globally consumed crop, the molecular mechanism of root development remains unclear, and this has implications for developing stress tolerant varieties. This study sought to determine the genetic patterns and related genes of cucumber root weight. A core cucumber germplasms population was used to do the GWAS analysis in three environments. Results: Here, we investigated four root-weight related traits including root fresh weight (RFW), root dry weight (RDW), ratio of root dry weight to root fresh weight (RDFW) and the comprehensive evaluation index, D-value of root weight (DRW) deduced based on the above three traits for the core germplasm of the cucumber global repository. According to the D-value, we identified 21 and 16 accessions with light and heavy-root, respectively. We also found that the East Asian ecotype accessions had significantly heavier root than other three ecotypes. The genome-wide association study (GWAS) for these four traits reveals that 4 of 10 significant loci (gDRW3.1, gDRW3.2, gDRW4.1 and gDRW5.1) were repeatedly detected for at least two traits. Further haplotype and expression analysis for protein-coding genes positioned within these 4 loci between light and heavy-root accessions predicted five candidate genes (i.e., Csa3G132020 and Csa3G132520 both encoding F-box protein PP2-B1 for gDRW3.1, Csa3G629240 encoding a B-cell receptor-associated protein for gDRW3.2, Csa4G499330 encodes a GTP binding protein for gDRW4.1, and Csa5G286040 encodes a proteinase inhibitor for gDRW5.1). Conclusions: We conducted a systematic analysis of the root genetic basis and characteristics of cucumber core germplasms population. We detected four novel loci, which regulate the root weight in cucumber. Our study provides valuable candidate genes and haplotypes for the improvement of root system in cucumber breeding.

2.
Animal ; 18(9): 101273, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39153441

ABSTRACT

This study addresses the critical issue of high-temperature stress in Japanese flounder (Paralichthys olivaceus), a factor threatening both their survival and the growth of the aquaculture industry. The research aims to identify genetic markers associated with high-temperature tolerance, unravel the genetic regulatory mechanisms, and lay the foundation for breeding Japanese flounder with increased resistance to high temperatures. In this study, using a genome-wide association study was performed to identify single nucleotide polymorphisms (SNPs) and genes associated with high-temperature tolerance for Japanese flounder using 280 individuals with 342 311 high-quality SNPs. The traits of high-temperature tolerance were defined as the survival time and survival status of Japanese flounder at high water temperature (31℃) for 15 days cultivate. A genome-wide association study identified six loci on six chromosomes significantly correlated with survival time under high-temperature stress. Six candidate genes were successfully annotated. Additionally, 34 loci associated with survival status were identified and mapped to 15 chromosomes, with 22 candidate genes annotated. Functional analysis highlighted the potential importance of genes like traf4 and ppm1l in regulating apoptosis, impacting high-temperature tolerance in Japanese flounder. These findings provide a valuable theoretical framework for integrating molecular markers into Japanese flounder breeding programmes, serving as a molecular tool to enhance genetic traits linked to high-temperature tolerance in cultured Japanese flounder.

3.
Sleep Breath ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088141

ABSTRACT

BACKGROUND: Asthma is a heterogeneous disorder. This study aimed to identify changes in gene expression and molecular mechanisms associated with moderate to severe asthma. METHODS: Differentially expressed genes (DEGs) were analyzed in GSE69683 dataset among moderate asthma and its controls as well as between severe asthma and moderate asthma. Key module genes were identified via co-expression analysis, and the molecular mechanism of the module genes was explored through enrichment analysis and gene set enrichment analysis (GSEA). GSE89809 was used to verify the characteristic genes related to moderate and severe asthma. RESULTS: Accordingly, 2540 DEGs were present between moderate asthma and the control group, while 6781 DEGs existed between severe asthma and moderate asthma. These genes were identified into 14 co-expression modules. Module 7 had the highest positive correlation with severe asthma and was recognized to be a key module by STEM. Enrichment analysis demonstrated that the module genes were mainly involved in oxidative stress-related signaling pathways. The expression of HSPA1A, PIK3CG and PIK3R6 was associated with moderate asthma, while MAPK13 and MMP9 were associated with severe asthma. The AUC values were verified by GSE89809. Additionally, 322 drugs were predicted to target five genes. CONCLUSION: These results identified characteristic genes related to moderate and severe asthma and their corresponding molecular mechanisms, providing a basis for future research.

4.
Front Endocrinol (Lausanne) ; 15: 1397794, 2024.
Article in English | MEDLINE | ID: mdl-39104814

ABSTRACT

Background: Thyroid cancer is the most common malignancy of the endocrine system. PANoptosis is a specific form of inflammatory cell death. It mainly includes pyroptosis, apoptosis and necrotic apoptosis. There is increasing evidence that PANoptosis plays a crucial role in tumour development. However, no pathogenic mechanism associated with PANoptosis in thyroid cancer has been identified. Methods: Based on the currently identified PANoptosis genes, a dataset of thyroid cancer patients from the GEO database was analysed. To screen the common differentially expressed genes of thyroid cancer and PANoptosis. To analyse the functional characteristics of PANoptosis-related genes (PRGs) and screen key expression pathways. The prognostic model was established by LASSO regression and key genes were identified. The association between hub genes and immune cells was evaluated based on the CIBERSORT algorithm. Predictive models were validated by validation datasets, immunohistochemistry as well as drug-gene interactions were explored. Results: The results showed that eight key genes (NUAK2, TNFRSF10B, TNFRSF10C, TNFRSF12A, UNC5B, and PMAIP1) exhibited good diagnostic performance in differentiating between thyroid cancer patients and controls. These key genes were associated with macrophages, CD4+ T cells and neutrophils. In addition, PRGs were mainly enriched in the immunomodulatory pathway and TNF signalling pathway. The predictive performance of the model was confirmed in the validation dataset. The DGIdb database reveals 36 potential therapeutic target drugs for thyroid cancer. Conclusion: Our study suggests that PANoptosis may be involved in immune dysregulation in thyroid cancer by regulating macrophages, CD4+ T cells and activated T and B cells and TNF signalling pathways. This study suggests potential targets and mechanisms for thyroid cancer development.


Subject(s)
Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/immunology , Thyroid Neoplasms/pathology , Prognosis , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Pyroptosis/genetics , Gene Expression Profiling , Lymphocytes, Tumor-Infiltrating/immunology
5.
Animal ; 18(9): 101258, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39126800

ABSTRACT

The uncertainty resulting from missing genotypes in low-coverage whole-genome sequencing (LCWGS) data complicates genotype imputation. The aim of this study is to find out an optimal strategy for accurately imputing LCWGS data and assess its effectiveness for genomic prediction (GP) and genome-wide association study (GWAS) on economically important traits of Large White pigs. The LCWGS data of 1 423 Large White pigs were imputed using three different strategies: (1) using the high-coverage whole-genome sequencing (HCWGS) of 30 key progenitors as the reference panel (Ref_LG); (2) mixing HCWGS of key progenitors with LCWGS (Mix_HLG) and (3) self-imputation in LCWGS (Within_LG). Additionally, to compare the imputation effects of LCWGS, we also imputed SNP chip data of 1 423 Large White pigs to the whole-genome sequencing level using the reference panel consisting of key progenitors (Ref_SNP). To evaluate effects of the imputed sequencing data, we compared the accuracies of GP and statistical power of GWAS for four reproductive traits based on the chip data, sequencing data imputed from chip data and LCWGS data using an optimal strategy. The average imputation accuracies of the Within_LG, Ref_LG and Mix_HLG were 0.9893, 0.9899 and 0.9875, respectively, which were higher than that of the Ref_SNP (0.8522). Using the imputed sequencing data from LCWGS with the Ref_LG imputation strategy, the accuracies of GP for four traits improved by approximately 0.31-1.04% compared to the chip data, and by 0.7-1.05% compared to the imputed sequencing data from chip data. Furthermore, by using the sequence data imputed from LCWGS with the Ref_LG, 18 candidate genes were identified to be associated with the four reproductive traits of interest in Large White pigs: total number of piglets born - EPC2, MBD5, ORC4 and ACVR2A; number of piglets born healthy - IKBKE; total litter weight of piglets born alive - HSPA13 and CPA1; gestation length - GTF2H5, ITGAV, NFE2L2, CALCRL, ITGA4, STAT1, HOXD10, MSTN, COL5A2 and STAT4. With the exception of EPC2, ORC4, ACVR2A and MSTN, others represent novel candidates. Our findings can provide a reference for the application of LCWGS data in livestock and poultry.

6.
Animals (Basel) ; 14(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39123689

ABSTRACT

The breeding of high-quality beef cattle breeds is crucial for the development of animal husbandry, and whole-genome resequencing is widely applicated in the field of molecular breeding. Advantages in growth and reproductive traits exist in Pinan cattle compared with other cattle breeds, but there is limited research on its genomic mechanism. Using whole-genome resequencing, the genetic structure and genomic selection signatures in Pinan cattle were investigated in this study. Phylogenetic, cluster, and admixture analysis results indicated that Pinan cattle have a closer genetic relationship with Kholmogory cattle and China north cattle breeds. Through a selective sweep strategy, 207 and 54 candidate genes related to growth and reproduction and immunity, respectively, were identified in the Pinan cattle population. Given the crucial role of the glutamate-cysteine ligase catalytic (GCLC) gene in muscle antioxidative defense, the high frequency of allele T of the GCLC c.429 C>T locus in the Pinan cattle population might partially contribute to the advantages of Pinan cattle in growth performance. This study laid the foundation for the genetic improvement in Chinese local beef cattle and provide background for the studies on the growth and development of Pinan cattle.

7.
Trop Anim Health Prod ; 56(7): 239, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133441

ABSTRACT

Genetic improvement of local rabbit breeds using modern approaches such as marker-assisted selection requires accurate and precise information about marker‒trait associations in animals with different genetic backgrounds. Therefore, this study was designed to estimate the association between two mutations located in the Neuropeptide Y (NPY, g.1778G > C) and Phosphoglycerate Mutase 2 (PGAM2, c.195 C > T) genes in New Zealand White (NZW), Baladi (BR), and V-line rabbits. The first mutation was genotyped using high-resolution melting, and the second mutation was genotyped using the PCR-RFLP method. The results revealed significant associations between the NPY mutation and body weight at 10 (V-line) and 12 weeks of age (NZW, BR, and V-line), body weight gain (BWG) from 10 to 12 weeks of age (BR), BWG from 6 to 12 weeks of age (NZW, BR, and V-line), average daily gain (NZW, BR, and V-line, and BR), growth rate (GR) from 8 to10 weeks (V-line), 10 to 12 weeks (BR), and GR from 6 to 12 weeks of age (BR, and V-line). The PGAM2 mutation was associated with body weight at 10 (V-line) and 12 (NZW, and V-line) weeks of age, with significant positive additive effects at 12 weeks of age in all breeds, and was associated with BWG from 8 to 10 and 10 to 12 in BR, and BWG from 6 to 12 weeks of age (NZW, and BR), and average daily gain (NZW, and BR), and was associated with GR form 8 to 10 weeks (BR), from10 to 12 weeks (BR, and V-line) and from 6 to 12 weeks (BR). The results highlighted the importance of the two mutations in growth development, and the possibility of considering them as candidate genes for late growth in rabbits.


Subject(s)
Neuropeptide Y , Phosphoglycerate Mutase , Polymorphism, Single Nucleotide , Animals , Rabbits/growth & development , Rabbits/genetics , Phosphoglycerate Mutase/genetics , Phosphoglycerate Mutase/metabolism , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Male , Female , Genotype , Body Weight/genetics , Polymorphism, Restriction Fragment Length , Weight Gain/genetics
8.
Sci Rep ; 14(1): 19412, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169077

ABSTRACT

In the past decade, the exploration of genetic resources in rice has significantly enhanced the efficacy of rice breeding. However, the exploration of genetic resources is hindered by the identification of candidate genes. To expedite the identification of candidate genes, this study examined tapetum programmed cell death-related genes OsiWAK1, OsPDT1, EAT1, TDR, and TIP2 to assess the efficacy of the Dual-Luciferase (Dual-LUC) assay in rapidly determining gene relationships. The study found that, in the Dual-LUC assay, OsiWAK1 and its various recombinant proteins exhibit comparable activation abilities on the EAT1 promoter, potentially indicating a false positive. However, the Dual-LUC assay can reveal that OsiWAK1 impacts both the function of its upstream regulatory factor OsPDT1 and the TDR/TIP2 transcription complex. By rapidly studying the relationship between diverse candidate genes and regulatory genes in a well-known trait via the Dual-LUC assay, this study provides a novel approach to expedite the determination of candidate genes such as genome-wide association study.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Plant Proteins , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Luciferases/genetics , Luciferases/metabolism , Promoter Regions, Genetic
9.
BMC Res Notes ; 17(1): 231, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169427

ABSTRACT

OBJECTIVES: Capsicum baccatum and C. chinense are domesticated pepper species originating from Latin America recognized for their unique flavor and taste and widely diffused as spicy food for fresh uses or for processing. Owing to their capacity for adaptation to diverse habitats in tropical regions, these species serve as a valuable resource for agronomic traits and tolerance to both biotic and abiotic challenges in breeding projects. This study aims to dissect the genetic diversity of C. baccatum and C. chinense germplasm and to detect candidate genes underlying the variation of plant morphological and fruit size and shape traits. To that goal, SNP data from genotyping by sequencing have been used to investigate the genetic diversity and population structure of 103 accessions belonging to the two species. Further, plants have been assessed with main plant descriptors and fruit imaging analysis and association between markers and traits has been performed. RESULTS: The population structure based on 29,820 SNPs revealed 4 subclusters separating C. chinense and C. baccatum individuals. A deeper analysis within each species highlighted three subpopulations in C. chinense and two in C. baccatum. Phenotypic characterization of 54 traits provided approximately 125 thousand datapoints highlighting main differences between species for flower and fruit traits rather than plant architecture. Marker-traits association, performed with the CMLM model, revealed a total of 6 robust SNPs responsible for change in flower traits and fruit shape. This is the first attempt for mapping morphological traits and fruit features in the two domesticated species, paving the way for further genomic assisted breeding.


Subject(s)
Capsicum , Fruit , Polymorphism, Single Nucleotide , Capsicum/genetics , Capsicum/anatomy & histology , Fruit/genetics , Polymorphism, Single Nucleotide/genetics , Genome, Plant , Phenotype , Genetic Markers , Quantitative Trait Loci/genetics , Genotype , Genomics/methods , Genetic Variation
10.
Anim Biosci ; 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39164087

ABSTRACT

Objective: The objective of this study was to identify genomic regions and candidate genes associated with the total number of piglets born (TNB), number of piglets born alive (NBA), and total number of stillbirths (TNS) in Berkshire pigs. Methods: : This study used a total of 11,228 records and 2,843 single-nucleotide polymorphism (SNP) data obtained from Illumina porcine 60 K and 80 K chips. The estimated genomic breeding values (GEBVs) and SNP effects were estimated using weighted single-step genomic BLUP (WssGBLUP). Results: : The heritabilities of the TNB, NBA, and TNS were determined using single-step genomic best linear unbiased prediction (ssGBLUP). The heritability estimates were 0.13, 0.12, and 0.015 for TNB, NBA, and TNS, respectively. When comparing the accuracy of breeding value estimates, the results using pedigree-based BLUP (PBLUP) were 0.58, 0.60, and 0.31 for TNB, NBA, and TNS, respectively. In contrast, the accuracy increased to 0.67, 0.66, and 0.42 for TNB, NBA, and TNS, respectively, when using WssGBLUP, specifically in the last three iterations. The results of weighted single-step genome-wide association studies (WssGWAS) showed that the highest variance explained for each trait was predominantly located in the Sus scrofa chromosome 5 (SSC5) region. Specifically, the variance exceeded 4% for TNB, 3% for NBA, and 6% for TNS. Within the SSC5 region (12.26 to 12.76 Mb), which exhibited the highest variance for TNB, 20 SNPs were identified, and five candidate genes were identified: TIMP3, SYN3, FBXO7, BPIFC, and RTCB. Conclusion: : The identified SNP markers for TNB, NBA, and TNS were expected to provide valuable information for genetic improvement as an understanding of their expression and genetic architecture in Berkshire pigs. With the accumulation of more phenotype and SNP data in the future, it is anticipated that more effective SNP markers will be identified.

11.
Animal ; 18(8): 101236, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39096602

ABSTRACT

Tunchang pigs, mainly distributed throughout Hainan Province of China, are well-known for their superior meat quality, crude feed tolerance, and adaptability to high temperatures and humidity. Runs of homozygosity (ROH) can provide valuable information about the inbreeding coefficient in individuals and selection signals that may reveal candidate genes associated with key functional traits. Runs of heterozygosity (ROHet) are commonly associated with balance selection, which can help us understand the adaptive evolutionary history of domestic animals. In this study, we investigated ROHs and ROHets in 88 Tunchang pigs. We also compared the estimates of inbreeding coefficients in individuals calculated based on four methods. In summary, we detected a total of 16 ROH islands in our study, and 100 genes were found within ROH regions. These genes were correlated with economically important traits such as reproduction (e.g., SERPIND1, HIRA), meat quality (e.g., PI4KA, TBX1), immunity (e.g., ESS2, RANBP1), adaption to heat stress (TXNRD2 and DGCR8), and crude food tolerance (TRPM6). Moreover, we discovered 18 ROHet islands harbouring genes associated with reproduction (e.g., ARHGEF12, BMPR2), immune system (e.g., BRD4, DNMT3B). These findings may help us design effective breeding and conservation strategies for this unique breed.


Subject(s)
Heterozygote , Homozygote , Animals , Swine/genetics , Inbreeding , China , Sus scrofa/genetics , Female , Genome , Male
12.
J Dairy Sci ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067750

ABSTRACT

Genome-wide association studies (GWAS) are employed to identify genomic regions and candidate genes associated with several traits. The aim of this study was to perform a GWAS to identify causative variants and genes associated with milk yield, frame, and udder conformation traits in Gir dairy cattle. Body conformation traits were classified as "frame," and "udder" traits for this study. After genotyping imputation and quality control 42,105 polymorphisms were available for analyses and 24,489 cows with pedigree information had phenotypes. First, P-value was calculated based on the variance of the prediction error of the SNP-effects on the first iteration. After that, 2 more iterations were performed to carry out the weighted single-step genome-wide association methodology, performed using genomic moving windows defined based on linkage disequilibrium. The significant SNPs and top 10 windows explaining the highest percentage of additive genetic variance were selected and used for QTL and gene annotation. The variants identified in our work overlapped with QTLs from the animal QTL database on chromosomes 1 to 23, except for chromosome 4. The Gir breed is less studied than the Holstein breed and as such the animal QTL database is biased to Holstein results. Hence it is noteworthy that our GWAS had similarities with previously described QTLs. These previously known QTLs were related to milk yield, body height, rump angle, udder width, and udder depth. In total, 5 genes were annotated. Of these genes, FAM13A and CMSS1 had been previously related to bone and carcass weight in cattle.

13.
Ecol Evol ; 14(7): e11713, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38975264

ABSTRACT

The genetic components of the circadian clock have been implicated as involved in photoperiodic regulation of winter diapause across various insect groups, thereby contributing to adaptation to adverse seasonal conditions. So far, the effects of within-population variation in these genes have not been well explored. Here, we present an experimental test of the effects of within-population variation at two circadian genes, timeless and period, on photoperiodic responses in the butterfly Pararge aegeria. While nonsynonymous candidate SNPs in both of these genes have previously shown to be associated with diapause induction on a between-population level, in the present experiment no such effect was found on a within-population level. In trying to reconcile these results, we examine sequence data, revealing considerable, previously unknown protein-level variation at both timeless and period across Scandinavian populations, including variants unique to the population studied here. Hence, we hypothesize that these variants may counteract the previously observed diapause-averting effect of the candidate SNPs, possibly explaining the difference in results between the experiments. Whatever the cause, these results highlight how the effects of candidate SNPs may sometimes vary across genetic backgrounds, which complicates evolutionary interpretations of geographic patterns of genetic variation.

14.
Anim Biotechnol ; 35(1): 2380766, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39034460

ABSTRACT

Increasing the number of teats in sheep helps to improve the survival rate of sheep lambs after birth. In order to analyze the candidate genes related to the formation of multiple teats in Hu sheep, the present study was conducted to investigate the genetic pattern of multiple teats in Hu sheep. In this study, based on genome-wide data from 157 Hu sheep, Fst, xp-EHH, Pi and iHS signaling were performed, and the top 5% signal regions of each analyzed result were annotated based on the Oar_v4.0 for sheep. The results show that a total of 142 SNP loci were selected. We found that PTPRG, TMEM117 and LRP1B genes were closely associated with polypodium formation in Hu sheep, in addition, among the candidate genes related to polypodium we found genes such as TMEM117, SLC25A21 and NCKAP5 related to milk traits. The present study screened out candidate genes for the formation of multiple teats at the genomic level in Hu sheep.


Subject(s)
Polymorphism, Single Nucleotide , Animals , Sheep/genetics , Polymorphism, Single Nucleotide/genetics , Female , Genome-Wide Association Study/veterinary
15.
Gene ; 927: 148757, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38986751

ABSTRACT

High altitude adapted livestock species (cattle, yak, goat, sheep, and horse) has critical role in the human socioeconomic sphere and acts as good source of animal source products including milk, meat, and leather, among other things. These species sustain production and reproduction even in harsh environments on account of adaptation resulting from continued evolution of beneficial traits. Selection pressure leads to various adaptive strategies in livestock whose footprints are evident at the different genomic sites as the "Selection Signature". Scrutiny of these signatures provides us crucial insight into the evolutionary process and domestication of livestock adapted to diverse climatic conditions. These signatures have the potential to change the sphere of animal breeding and further usher the selection programmes in right direction. Technological revolution and recent strides made in genomic studies has opened the routes for the identification of selection signatures. Numerous statistical approaches and bioinformatics tools have been developed to detect the selection signature. Consequently, studies across years have identified candidate genes under selection region found associated with numerous traits which have a say in adaptation to high-altitude environment. This makes it pertinent to have a better understanding about the selection signature, the ways to identify and how to utilize them for betterment of livestock populations as well as farmers. This review takes a closer look into the general concept, various methodologies, and bioinformatics tools commonly employed in selection signature studies and summarize the results of recent selection signature studies related to high-altitude adaptation in various livestock species. This review will serve as an informative and useful insight for researchers and students in the field of animal breeding and evolutionary biology.


Subject(s)
Altitude , Livestock , Selection, Genetic , Animals , Livestock/genetics , Adaptation, Physiological/genetics , Acclimatization/genetics
16.
Curr Issues Mol Biol ; 46(7): 6508-6521, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39057030

ABSTRACT

Chloroplasts are organelles responsible for photosynthesis in plants, providing energy for growth and development. However, the genetic regulatory mechanisms underlying early chloroplast development in rice remain incompletely understood. In this study, we identified a rice seedling thermosensitive chlorophyll-deficient mutant, osltsa8, and the genetic analysis of two F2 populations suggested that this trait may be controlled by more than one pair of alleles. Through reciprocal F2 populations and QTL-seq technology, OsLTSA8 was mapped to the interval of 24,280,402-25,920,942 bp on rice chromosome 8, representing a novel albino gene in rice. Within the candidate gene region of OsLTSA8, there were 258 predicted genes, among which LOC_Os08g39050, LOC_Os08g39130, and LOC_Os08g40870 encode pentatricopeptide repeat (PPR) proteins. RNA-seq identified 18 DEGs (differentially expressed genes) within the candidate interval, with LOC_Os08g39420 showing homology to the pigment biosynthesis-related genes Zm00001d017656 and Sb01g000470; LOC_Os08g39430 and LOC_Os08g39850 were implicated in chlorophyll precursor synthesis. RT-qPCR was employed to assess the expression levels of LOC_Os08g39050, LOC_Os08g39130, LOC_Os08g40870, LOC_Os08g39420, LOC_Os08g39430, and LOC_Os08g39850 in the wild-type and mutant plants. Among them, the differences in the expression levels of LOC_Os08g39050 and LOC_Os08g39430 were the most significant. This study will contribute to further elucidating the molecular mechanisms of rice chloroplast development.

17.
BMC Genomics ; 25(1): 658, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956486

ABSTRACT

BACKGROUND: The cashmere goat industry is one of the main pillars of animal husbandry in Inner Mongolia Autonomous Region, and plays an irreplaceable role in local economic development. With the change in feeding methods and environment, the cashmere produced by Inner Mongolia cashmere goats shows a tendency of coarser, and the cashmere yield can not meet the consumption demand of people. However, the genetic basis behind these changes is not fully understood. We measured cashmere traits, including cashmere yield (CY), cashmere diameter (CD), cashmere thickness (CT), and fleece length (FL) traits for four consecutive years, and utilized Genome-wide association study of four cashmere traits in Inner Mongolia cashmere goats was carried out using new genomics tools to infer genomic regions and functional loci associated with cashmere traits and to construct haplotypes that significantly affect cashmere traits. RESULTS: We estimated the genetic parameters of cashmere traits in Inner Mongolia cashmere goats. The heritability of cashmere yield, cashmere diameter, and fleece length traits of Inner Mongolia cashmere goats were 0.229, 0.359, and 0.250, which belonged to the medium heritability traits (0.2 ~ 0.4). The cashmere thickness trait has a low heritability of 0.053. We detected 151 genome-wide significantly associated SNPs with four cashmere traits on different chromosomes, which were very close to the chromosomes of 392 genes (located within the gene or within ± 500 kb). Notch3, BMPR1B, and CCNA2 have direct functional associations with fibroblasts and follicle stem cells, which play important roles in hair follicle growth and development. Based on GO functional annotation and KEGG enrichment analysis, potential candidate genes were associated with pathways of hair follicle genesis and development (Notch, P13K-Akt, TGF-beta, Cell cycle, Wnt, MAPK). We calculated the effective allele number of the Inner Mongolia cashmere goat population to be 1.109-1.998, the dominant genotypes of most SNPs were wild-type, the polymorphic information content of 57 SNPs were low polymorphism (0 < PIC < 0.25), and the polymorphic information content of 79 SNPs were moderate polymorphism (0.25 < PIC < 0.50). We analyzed the association of SNPs with phenotypes and found that the homozygous mutant type of SNP1 and SNP3 was associated with the highest cashmere yield, the heterozygous mutant type of SNP30 was associated with the lowest cashmere thickness, the wild type of SNP76, SNP77, SNP78, SNP80, and SNP81 was associated with the highest cashmere thickness, and the wild type type of SNP137 was associated with the highest fleece length. 21 haplotype blocks and 68 haplotype combinations were constructed. Haplotypes A2A2, B2B2, C2C2, and D4D4 were associated with increased cashmere yield, haplotypes E2E2, F1F1, G5G5, and G1G5 were associated with decreased cashmere fineness, haplotypes H2H2 was associated with increased cashmere thickness, haplotypes I1I1, I1I2, J1J4, L5L3, N3N2, N3N3, O2O1, P2P2, and Q3Q3 were associated with increased cashmere length. We verified the polymorphism of 8 SNPs by KASP, and found that chr7_g.102631194A > G, chr10_g.82715068 T > C, chr1_g.124483769C > T, chr24_g.12811352C > T, chr6_g.114111249A > G, and chr6_g.115606026 T > C were significantly genotyped in verified populations (P < 0.05). CONCLUSIONS: In conclusion, the genetic effect of single SNP on phenotypes is small, and SNPs are more inclined to be inherited as a whole. By constructing haplotypes from SNPs that are significantly associated with cashmere traits, it will help to reveal the complex and potential causal variations in cashmere traits of Inner Mongolia cashmere goats. This will be a valuable resource for genomics and breeding of the cashmere goat.


Subject(s)
Genome-Wide Association Study , Goats , Haplotypes , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Goats/genetics , Goats/growth & development , Phenotype , China , Quantitative Trait, Heritable
18.
Front Plant Sci ; 15: 1381387, 2024.
Article in English | MEDLINE | ID: mdl-38978520

ABSTRACT

Plant architecture is a crucial determinant of crop yield. The number of primary (PB) and secondary branches (SB) is particularly significant in shaping the architecture of Indian mustard. In this study, we analyzed a panel of 86 backcross introgression lines (BCILs) derived from the first stable allohexaploid Brassicas with 170 Sinapis alba genome-specific SSR markers to identify associated markers with higher PB and SB through association mapping. The structure analysis revealed three subpopulations, i.e., P1, P2, and P3, in the association panel containing a total of 11, 33, and 42 BCILs, respectively. We identified five novel SSR markers linked to higher PB and SB. Subsequently, we explored the 20 kb up- and downstream regions of these SSR markers to predict candidate genes for improved branching and annotated them through BLASTN. As a result, we predicted 47 complete genes within the 40 kb regions of all trait-linked markers, among which 35 were identified as candidate genes for higher PB and SB numbers in BCILs. These candidate genes were orthologous to ANT, RAMOSUS, RAX, MAX, MP, SEU, REV, etc., branching genes. The remaining 12 genes were annotated for additional roles using BLASTP with protein databases. This study identified five novel S. alba genome-specific SSR markers associated with increased PB and SB, as well as 35 candidate genes contributing to plant architecture through improved branching numbers. To the best of our knowledge, this is the first report of introgressive genes for higher branching numbers in B. juncea from S. alba.

19.
BMC Plant Biol ; 24(1): 724, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080529

ABSTRACT

Maize (Zea mays L.), a staple food and significant economic crop, is enriched with riboflavin, micronutrients and other compounds that are beneficial for human health. As emphasis on the nutritional quality of crops increases maize research has expanded to focus on both yield and quality. This study exploreed the genetic factors influencing micronutrient levels in maize kernels through a comprehensive genome-wide association study (GWAS). We utilized a diverse panel of 244 inbred maize lines and approximately 3 million single nucleotide polymorphisms (SNPs) to investigate the accumulation of essential and trace elements including cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), selenium (Se) and zinc (Zn). Our analysis identified 842 quantitative trait loci (QTLs), with 12 QTLs shared across multiple elements and pinpointed 524 potential genes within a 100 kb radius of these QTLs. Notably ZmHMA3 has emerged as a key candidate gene previously reported to influence the Cd accumulation. We highlighted ten pivotal genes associated with trace element transport including those encoding heavy metal ATPases, MYB transcription factors, ABC transporters and other crucial proteins involved in metal handling. Additionally, haplotype analysis revealed that eight inbred linesaccumulated relatively high levels of beneficial elements while harmful elements were minimized. These findings elucidate the genetic mechanisms underlying trace element accumulation in maize kernels and provide a foundation for the breeding of nutritionally enhanced maize varieties.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Trace Elements , Zea mays , Zea mays/genetics , Zea mays/metabolism , Trace Elements/metabolism , Trace Elements/analysis , Seeds/genetics , Seeds/metabolism , Haplotypes
20.
Animals (Basel) ; 14(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38998095

ABSTRACT

Dissecting the genetics of production traits in livestock is of outmost importance, both to understand biological mechanisms underlying those traits and to facilitate the design of selection programs incorporating that information. For the pig industry, traits related to curing are key for protected designation of origin productions. In particular, appropriate ham weight loss after dry-curing ensures high quality of the final product and avoids economic losses. In this study, we analyzed data (N = 410) of ham weight loss after approximately 20 months of dry-curing. The animals used for ham production were purebred pigs belonging to a commercial line. A genome-wide association study (GWAS) of 29,844 SNP markers revealed the polygenic nature of the trait: 221 loci explaining a small percentage of the variance (0.3-1.65%) were identified on almost all Sus scrofa chromosomes. Post-GWAS analyses revealed 32 windows located within regulatory regions and 94 windows located in intronic regions of specific genes. In total, 30 candidate genes encoding receptors and enzymes associated with ham weight loss (MTHFD1L, DUSP8), proteolysis (SPARCL1, MYH8), drip loss (TNNI2), growth (CDCA3, LSP1, CSMD1, AP2A2, TSPAN4), and fat metabolism (AGPAT4, IGF2R, PTDSS2, HRAS, TALDO1, BRSK2, TNNI2, SYT8, GTF2I, GTF2IRD1, LPCAT3, ATN1, GNB3, CMIP, SORCS2, CCSER1, SPP1) were detected.

SELECTION OF CITATIONS
SEARCH DETAIL