Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Biomedicines ; 12(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38540195

ABSTRACT

Defined as systemic hypotension caused by intense vasodilation due to the loss of systemic vascular resistance, vasoplegic syndrome (VS) is associated with elevated morbidity and mortality in humans. Although vasopressors such as norepinephrine and vasopressin are the first-choice drugs for VS treatment, several other drugs such as methylene blue (MB) can be used as adjuvant therapy including rescue therapy. To develop new pharmacological strategies to reduce the risk of VS, we investigated the effects of treatments with MB (2 mg/kg/IV), omeprazole (OME, 10 mg/kg/IV), and their combination in an animal model of cardiac ischemia-reperfusion (CIR). The ventricular arrhythmia (VA), atrioventricular block (AVB), and lethality (LET) incidence rates caused by CIR (evaluated via ECG) and serum levels of the cardiac lesion biomarkers creatine kinase-MB (CK-MB) and troponin I (TnI) in adult rats pretreated with saline solution 0.9% and submitted to CIR (SS + CIR group) were compared to those pretreated with MB (MB + CIR group), OME (OME + CIR group), or the MB + OME combination (MB + OME + CIR group). The AVB and LET incidence rates in the MB + CIR (100%), OME + CIR (100%), and MB + OME + CIR (100%) groups were significantly higher compared to the SS + CIR group (60%). The serum level of CK-MB in these groups were also significantly higher compared to the SS + CIR group, demonstrating that the treatments before CIR with MB, OME, and MB + OME produced similar effects in relation to cardiac function and the occurrence of lesions. These results demonstrate that the treatment of animals subjected to the CIR protocol with OME produced the same effects promoted by the treatment with MB, which may suggest the possibility of using OME alone or in combination with MB in medical clinics in treatment of VS.

2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37895945

ABSTRACT

Acute myocardial infarction (AMI) is the main cause of morbidity and mortality worldwide and is characterized by severe and fatal arrhythmias induced by cardiac ischemia/reperfusion (CIR). However, the molecular mechanisms involved in these arrhythmias are still little understood. To investigate the cardioprotective role of the cardiac Ca2+/cAMP/adenosine signaling pathway in AMI, L-type Ca2+ channels (LTCC) were blocked with either nifedipine (NIF) or verapamil (VER), with or without A1-adenosine (ADO), receptors (A1R), antagonist (DPCPX), or cAMP efflux blocker probenecid (PROB), and the incidence of ventricular arrhythmias (VA), atrioventricular block (AVB), and lethality (LET) induced by CIR in rats was evaluated. VA, AVB and LET incidences were evaluated by ECG analysis and compared between control (CIR group) and intravenously treated 5 min before CIR with NIF 1, 10, and 30 mg/kg and VER 1 mg/kg in the presence or absence of PROB 100 mg/kg or DPCPX 100 µg/kg. The serum levels of cardiac injury biomarkers total creatine kinase (CK) and CK-MB were quantified. Both NIF and VER treatment were able to attenuate cardiac arrhythmias caused by CIR; however, these antiarrhythmic effects were abolished by pretreatment with PROB and DPCPX. The total serum CK and CK-MB were similar in all groups. These results indicate that the pharmacological modulation of Ca2+/cAMP/ADO in cardiac cells by means of attenuation of Ca2+ influx via LTCC and the activation of A1R by endogenous ADO could be a promising therapeutic strategy to reduce the incidence of severe and fatal arrhythmias caused by AMI in humans.

3.
J Cardiovasc Dev Dis ; 10(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36975867

ABSTRACT

BACKGROUND: Although several studies suggest that heparins prevent arrhythmias caused by acute myocardial infarction (AMI), the molecular mechanisms involved remain unclear. To investigate the involvement of pharmacological modulation of adenosine (ADO) signaling in cardiac cells by a low-molecular weight heparin (enoxaparin; ENOX) used in AMI therapy, the effects of ENOX on the incidences of ventricular arrhythmias (VA), atrioventricular block (AVB), and lethality (LET) induced by cardiac ischemia and reperfusion (CIR) were evaluated, with or without ADO signaling blockers. METHODS: To induce CIR, adult male Wistar rats were anesthetized and subjected to CIR. Electrocardiogram (ECG) analysis was used to evaluate CIR-induced VA, AVB, and LET incidence, after treatment with ENOX. ENOX effects were evaluated in the absence or presence of an ADO A1-receptor antagonist (DPCPX) and/or an inhibitor of ABC transporter-mediated cAMP efflux (probenecid, PROB). RESULTS: VA incidence was similar between ENOX-treated (66%) and control rats (83%), but AVB (from 83% to 33%) and LET (from 75% to 25%) incidences were significantly lower in rats treated with ENOX. These cardioprotective effects were blocked by either PROB or DPCPX. CONCLUSION: These results indicate that ENOX was effective in preventing severe and lethal arrhythmias induced by CIR due to pharmacological modulation of ADO signaling in cardiac cells, suggesting that this cardioprotective strategy could be promising in AMI therapy.

4.
Biochim Biophys Acta Mol Basis Dis ; 1867(1): 165986, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33065236

ABSTRACT

During ischemia/reperfusion (I/R), cardiomyocytes activate pathways that regulate cell survival and death and release factors that modulate fibroblast-to-myofibroblast differentiation. The mechanisms underlying these effects are not fully understood. Polycystin-1 (PC1) is a mechanosensor crucial for cardiac function. This work aims to assess the role of PC1 in cardiomyocyte survival, its role in profibrotic factor expression in cardiomyocytes, and its paracrine effects on I/R-induced cardiac fibroblast function. In vivo and ex vivo I/R and simulated in vitro I/R (sI/R) were induced in wild-type and PC1-knockout (PC1 KO) mice and PC1-knockdown (siPC1) neonatal rat ventricular myocytes (NRVM), respectively. Neonatal rat cardiac fibroblasts (NRCF) were stimulated with conditioned medium (CM) derived from NRVM or siPC1-NRVM supernatant after reperfusion and fibroblast-to-myofibroblast differentiation evaluated. Infarcts were larger in PC1-KO mice subjected to in vivo and ex vivo I/R, and necrosis rates were higher in siPC1-NRVM than control after sI/R. PC1 activated the pro-survival AKT protein during sI/R and induced PC1-AKT-pathway-dependent CTGF expression. Furthermore, conditioned media from sI/R-NRVM induced PC1-dependent fibroblast-to-myofibroblast differentiation in NRCF. This novel evidence shows that PC1 mitigates cardiac damage during I/R, likely through AKT activation, and regulates CTGF expression in cardiomyocytes via AKT. Moreover, PC1-NRVM regulates fibroblast-to-myofibroblast differentiation during sI/R. PC1, therefore, may emerge as a new key regulator of I/R injury-induced cardiac remodeling.


Subject(s)
Connective Tissue Growth Factor/biosynthesis , Gene Expression Regulation , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TRPP Cation Channels/metabolism , Animals , Connective Tissue Growth Factor/genetics , Male , Mice , Mice, Knockout , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/pathology , Proto-Oncogene Proteins c-akt/genetics , Rats , Rats, Sprague-Dawley , TRPP Cation Channels/genetics
5.
Antioxid Redox Signal ; 27(1): 57-69, 2017 07 01.
Article in English | MEDLINE | ID: mdl-27604998

ABSTRACT

AIMS: Mitochondrial supercomplexes (SCs) are the large supramolecular assembly of individual electron transport chain (ETC) complexes that apparently provide highly efficient ATP synthesis and reduce electron leakage and reactive oxygen species (ROS) production. Oxidative stress during cardiac ischemia-reperfusion (IR) can result in degradation of SCs through oxidation of cardiolipin (CL). Also, IR induces calcium overload and enhances reactive oxygen species (mitROS) in mitochondria that result in the opening of the nonselective permeability transition pores (PTP). The opening of the PTP further compromises cellular energetics and increases mitROS ultimately leading to cell death. Here, we examined the role of PTP-induced mitROS in disintegration of SCs during cardiac IR. The relationship between mitochondrial PTP, ROS, and SCs was investigated using Langendorff-perfused rat hearts subjected to global ischemia (25 min) followed by short-time (5 min) or long-time (60 min) reperfusion in the presence or absence of the PTP inhibitor, sanglifehrin A (SfA), and the mitochondrial targeted ROS and electron scavenger, XJB-5-131. Also, the effects of CL deficiency on SC degradation, PTP, and mitROS were investigated in tafazzin knockdown (TazKD) mice. RESULTS: Cardiac IR induced PTP opening and mitROS generation, inhibited by SfA. Percent distributions of SCs were significantly affected by IR, and the effects were dependent on the reperfusion time and reversed by SfA and XJB-5-131. TazKD mice demonstrated a 40% lower SC I + III+IV with reduced basal mitochondrial PTP, ROS, and ETC complex activity. Innovation and Conclusion: Sustained reperfusion after cardiac ischemia induces disintegration of mitochondrial SCs, and PTP-induced ROS presumably play a causal role in SC disassembly. Antioxid. Redox Signal. 27, 57-69.


Subject(s)
Electron Transport , Mitochondria, Heart/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Animals , Cyclic N-Oxides/pharmacology , Disease Models, Animal , Female , Lactones/pharmacology , Male , Mitochondrial Permeability Transition Pore , Oxidative Stress , Rats , Reactive Oxygen Species/metabolism , Spiro Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL