Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Dent Mater ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39068089

ABSTRACT

OBJECTIVES: To evaluate the effects of dentin biomodification agents (Proanthocyanidin (PAC), Cardol (CD) and Cardol-methacrylate (CDMA) on dentin hydrophilicity by contact angle measurement, viability of dental pulp stem cells (DPSCs) and nanomechanical properties of the hybrid layer (HL). METHODS: CDMA monomer was synthesized from cardol through methacrylic acid esterification. Human extracted third molars were used for all experiments. For nanomechanical tests, specimens were divided in four groups according to the primer solutions (CD, CDMA, PAC and control) were applied before adhesive and composite coating. Nanomechanical properties of the HL were analyzed by nanoindentation test using a Berkovich probe in a nanoindenter. Wettability test was performed on dentin surfaces after 1 min biomodification and measured by contact angle analysis. Cytotoxicity was assessed by a MTT assay with DPSCs after 48 and 72 h. Data were analyzed with Student's t test or Two-way ANOVA and Tukey HSD test (p < 0.05). RESULTS: CD and CDMA solutions achieved greater hydrophobicity and increased the water-surface contact angles when compared to PAC and control groups (p < 0.05). PAC group showed a greater reduction of elastic modulus in nanoindentation experiments when compared to CD and CDMA groups (p < 0.05) after 4 months of aging. CD inhibited cell proliferation compared to all further materials (p < 0.05), whilst CDMA and PAC indicated no cell cytotoxicity to human DPSCs. SIGNIFICANCE: Cardol-methacrylate provided significantly higher hydrophobicity to dentin and demonstrated remarkable potential as collagen crosslinking, attaining the lowest decrease of HL's mechanical properties. Furthermore, such monomer did not affect pulp cytotoxicity, thereby highlighting promising feasibility for clinical applications.

2.
Transl Anim Sci ; 8: txad148, 2024.
Article in English | MEDLINE | ID: mdl-38221956

ABSTRACT

The objective of this study was to evaluate the effects of including monensin and two doses of CNSE in a high producing dairy cow diet on ruminal bacterial communities. A dual-flow continuous culture system was used in a replicated 4 × 4 Latin Square design. A basal diet was formulated to meet the requirements of a cow producing 45 kg of milk per d (17% crude protein and 27% starch). There were four experimental treatments: the basal diet without any feed additive (CON), 2.5 µM monensin (MON), 100 ppm CNSE granule (CNSE100), and 200 ppm CNSE granule (CNSE200). Samples were collected from the fluid and solid effluents at 3, 6, and 9 h after feeding; a composite of all time points was made for each fermenter within their respective fractions. Bacterial community composition was analyzed by sequencing the V4 region of the 16S rRNA gene using the Illumina MiSeq platform. Treatment responses for bacterial community structure were analyzed with the PERMANOVA test run with the R Vegan package. Treatment responses for correlations were analyzed with the CORR procedure of SAS. Orthogonal contrasts were used to test the effects of (1) ADD (CON vs. MON, CNSE100, and CNSE200); (2) MCN (MON vs. CNSE100 and CNSE200); and (3) DOSE (CNSE100 vs. CNSE200). Significance was declared at P ≤ 0.05. We observed that the relative abundance of Sharpea (P < 0.01), Mailhella (P = 0.05), Ruminococcus (P = 0.03), Eubacterium (P = 0.01), and Coprococcus (P < 0.01) from the liquid fraction and the relative abundance of Ruminococcus (P = 0.03) and Catonella (P = 0.02) from the solid fraction decreased, while the relative abundance of Syntrophococcus (P = 0.02) increased in response to MON when compared to CNSE treatments. Our results demonstrate that CNSE and monensin have similar effects on the major ruminal bacterial genera, while some differences were observed in some minor genera. Overall, the tested additives would affect the ruminal fermentation in a similar pattern.

3.
J Dairy Sci ; 106(12): 8746-8757, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37678783

ABSTRACT

The objective of this study was to compare cashew nutshell extract (CNSE) to monensin and evaluate changes in in vitro mixed ruminal microorganism fermentation, nutrient digestibility, and microbial nitrogen outflow. Treatments were randomly assigned to 8 fermenters in a replicated 4 × 4 Latin square design with 4 experimental periods of 10 d (7 d for diet adaptation and 3 d for sample collection). Basal diets contained 43.5:56.5 forage: concentrate ratio and each fermenter was fed 106 g of DM/d divided equally between 2 feeding times. Treatments were control (CON, basal diet without additives), 2.5 µM monensin (MON), 0.1 mg CNSE granule/g DM (CNSE100), and 0.2 mg CNSE granule/g DM (CNSE200). On d 8 to10, samples were collected for pH, lactate, NH3-N, volatile fatty acids (VFA), mixed protozoa counts, organic matter (OM), and neutral detergent fiber (NDF) digestibility. Data were analyzed with the GLIMMIX procedure of SAS. Orthogonal contrasts were used to test the effects of (1) ADD (CON vs. MON, CNSE100, and CNSE200); (2) MCN (MON vs. CNSE100 and CNSE200); and (3) DOSE (CNSE100 vs. CNSE200). We observed that butyrate concentration in all treatments was lower compared with CON and the concentration for MON was lower compared with CNSE treatments. Protozoal population in all treatments was lower compared with CON. No effects were observed for pH, lactate, NH3-N, total VFA, OM, or N utilization. Within the 24-h pool, protozoal generation time, tended to be lower, while NDF digestibility tended to be greater in response to all additives. Furthermore, the microbial N flow, and the efficiency of N use tended to be lower for the monensin treatment compared with CNSE treatments. Overall, our results showed that both monensin and CNSE decreased butyrate synthesis and protozoal populations, while not affecting OM digestibility and tended to increase NDF digestibility; however, such effects are greater with monensin than CNSE nutshell.


Subject(s)
Anacardium , Monensin , Animals , Monensin/pharmacology , Monensin/metabolism , Fermentation , Rumen/metabolism , Digestion , Diet , Fatty Acids, Volatile/metabolism , Butyrates/metabolism , Lactates/metabolism , Animal Feed/analysis
4.
Polymers (Basel) ; 15(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37177142

ABSTRACT

The environmental problems generated by pollution due to polymers of petrochemical origin have led to the search for eco-friendly alternatives such as the development of biopolymers or bio-based polymers. The aim of this work was to evaluate the electrochemical behavior of a biopolymer composite made from cassava starch and cardol extracted from cashew nut shell liquid. The biopolymers were prepared using the thermochemical method, varying the synthesis pH and the cardol amounts. The biopolymers were synthesized in the form of films and characterized by cyclic voltamperometry and electrochemical impedance spectroscopy. The biopolymers showed a rich electroactivity, with three oxidation-reduction processes evidenced in the voltamperograms. On the other hand, the equivalent circuit corresponding to the impedance behavior of biopolymers integrated the processes of electron transfer resistance, electric double layer, redox reaction process, and resistance of the biopolymeric matrix. The results allowed us to conclude that the cardol content and the synthesis pH were factors that affect the electrochemical behavior of biopolymer composite films. Electrochemical processes in biopolymers were reversible and involved two-electron transfer and were diffusion-controlled processes.

5.
Int J Pharm ; 619: 121698, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35337904

ABSTRACT

The search for effective and less toxic drugs for the treatment of Cutaneous Leishmaniasis (CL) is desirable due to the emergence of resistant parasites. The present study shows the preparation, characterization and in vitro antileishmanial activity of green-based silver nanoparticles (AgNPs) with Cashew Nutshell Liquid (CNSL, main constituents: anacardic acid (AA) and cardol (CD). The synthesis of silver nanoparticles was achieved by reduction with sodium borohydride in the presence of anacardic acid or cardol under microwave irradiation (400 W, 60 °C, 5 min) resulting in AgAA and AgCD. In vitro assay showed opposite effects for AgAA and AgCD. While AgAA is highly toxic to macrophages (CC50 = 6.910 µg mL-1) and almost non-toxic for L.braziliensis (IC50 = 86.61 µg mL-1), AgCD results very selective toward killing the parasite (CC50 = 195.0 µg mL-1, IC50 = 11.54 µg mL-1). AA's higher polarity and conical shape easily promote cell lysis by increasing cell permeability, while CD has a protective effect: for that reason, AA and AgAA were not further used for tests. CD (EC50 = 2.906 µg mL-1) had higher ability to kill intracellular amastigotes than AgCD (EC50 = 16.00 µg mL-1), however, less intact cells were seen on isolated CD tests. In addition, considering that NO is one of the critical molecular species for the intracellular control of Leishmania, we used Griess colorimetric test to analyze the effect of treatment with AgCD and CD. Overall, the in vitro antileishmanial tests indicate that AgCD should be further explored as a promising non-toxic treatment for CL.


Subject(s)
Antiprotozoal Agents , Leishmaniasis, Cutaneous , Metal Nanoparticles , Anacardic Acids , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Humans , Leishmaniasis, Cutaneous/drug therapy , Resorcinols , Silver/pharmacology
6.
Braz. j. biol ; 82: 1-9, 2022. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468536

ABSTRACT

Since the classic studies of Alexander Flemming, Penicillium strains have been known as a rich source of antimicrobial substances. Recent studies have identified novel metabolites produced by Penicillium sclerotiorum that have antibacterial, antifouling and pharmaceutical activities. Here, we report the isolation of a P. sclerotiorum (LM 5679) from Amazonian soil and carry out a culture-based study to determine whether it can produce any novel secondary metabolite(s) that are not thus-far reported for this genus. Using a submerged culture system, secondary metabolites were recovered by solvent extract followed by thin-layer chromatography, nuclear magnetic resonance, and mass spectroscopy. One novel secondary metabolite was isolated from P. sclerotiorum (LM 5679); the phenolic compound 5-pentadecyl resorcinol widely known as an antifungal, that is produced by diverse plant species. This metabolite was not reported previously in any Penicillium species and was only found once before in fungi (that time, in a Fusarium). Here, we discuss the known activities of 5-pentadecyl resorcinol in the context of its mode-of-action as a hydrophobic (chaotropicity-mediated) stressor.


Desde os estudos clássicos de Alexander Flemming, as cepas de Penicillium são conhecidas como uma fonte rica em substâncias antimicrobianas. Estudos recentes identificaram novos metabólitos produzidos pela espécie Penicillium sclerotiorum com atividades antibacteriana, anti-incrustante e farmacêutica. Aqui, relatamos o isolamento de uma colônia de P. sclerotiorum (LM 5679) do solo amazônico e relatamos também o estudo baseado em cultura para determinar se ele pode produzir qualquer novo metabólito (s) secundário (s) que não foram relatados até agora para este gênero. Usando um sistema de cultura submerso, os metabólitos secundários foram recuperados por extrato de solvente seguido por cromatografia em camada delgada, ressonância magnética nuclear e espectroscopia de massa. Um novo metabólito secundário foi isolado de P. sclerotiorum (LM 5679); o composto fenólico 5-pentadecil resorcinol que é amplamente conhecido como um antifúngico que é produzido por diversas espécies de plantas. Este metabólito não foi relatado anteriormente em nenhuma espécie de Penicillium, e foi encontrado apenas uma vez em fungos (Fusarium). Aqui, discutimos as atividades conhecidas do 5-pentadecil resorcinol no contexto de seu modo de ação como um estressor hidrofóbico (mediado pela caotropicidade).


Subject(s)
Antifungal Agents/isolation & purification , Phenolic Compounds/analysis , Penicillium/chemistry , Fusarium
7.
Braz. j. biol ; 822022.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468723

ABSTRACT

Abstract Since the classic studies of Alexander Flemming, Penicillium strains have been known as a rich source of antimicrobial substances. Recent studies have identified novel metabolites produced by Penicillium sclerotiorum that have antibacterial, antifouling and pharmaceutical activities. Here, we report the isolation of a P. sclerotiorum (LM 5679) from Amazonian soil and carry out a culture-based study to determine whether it can produce any novel secondary metabolite(s) that are not thus-far reported for this genus. Using a submerged culture system, secondary metabolites were recovered by solvent extract followed by thin-layer chromatography, nuclear magnetic resonance, and mass spectroscopy. One novel secondary metabolite was isolated from P. sclerotiorum (LM 5679); the phenolic compound 5-pentadecyl resorcinol widely known as an antifungal, that is produced by diverse plant species. This metabolite was not reported previously in any Penicillium species and was only found once before in fungi (that time, in a Fusarium). Here, we discuss the known activities of 5-pentadecyl resorcinol in the context of its mode-of-action as a hydrophobic (chaotropicity-mediated) stressor.


Resumo Desde os estudos clássicos de Alexander Flemming, as cepas de Penicillium são conhecidas como uma fonte rica em substâncias antimicrobianas. Estudos recentes identificaram novos metabólitos produzidos pela espécie Penicillium sclerotiorum com atividades antibacteriana, anti-incrustante e farmacêutica. Aqui, relatamos o isolamento de uma colônia de P. sclerotiorum (LM 5679) do solo amazônico e relatamos também o estudo baseado em cultura para determinar se ele pode produzir qualquer novo metabólito (s) secundário (s) que não foram relatados até agora para este gênero. Usando um sistema de cultura submerso, os metabólitos secundários foram recuperados por extrato de solvente seguido por cromatografia em camada delgada, ressonância magnética nuclear e espectroscopia de massa. Um novo metabólito secundário foi isolado de P. sclerotiorum (LM 5679); o composto fenólico 5-pentadecil resorcinol que é amplamente conhecido como um antifúngico que é produzido por diversas espécies de plantas. Este metabólito não foi relatado anteriormente em nenhuma espécie de Penicillium, e foi encontrado apenas uma vez em fungos (Fusarium). Aqui, discutimos as atividades conhecidas do 5-pentadecil resorcinol no contexto de seu modo de ação como um estressor hidrofóbico (mediado pela caotropicidade).

8.
Braz. j. biol ; 82: e241863, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1278488

ABSTRACT

Since the classic studies of Alexander Flemming, Penicillium strains have been known as a rich source of antimicrobial substances. Recent studies have identified novel metabolites produced by Penicillium sclerotiorum that have antibacterial, antifouling and pharmaceutical activities. Here, we report the isolation of a P. sclerotiorum (LM 5679) from Amazonian soil and carry out a culture-based study to determine whether it can produce any novel secondary metabolite(s) that are not thus-far reported for this genus. Using a submerged culture system, secondary metabolites were recovered by solvent extract followed by thin-layer chromatography, nuclear magnetic resonance, and mass spectroscopy. One novel secondary metabolite was isolated from P. sclerotiorum (LM 5679); the phenolic compound 5-pentadecyl resorcinol widely known as an antifungal, that is produced by diverse plant species. This metabolite was not reported previously in any Penicillium species and was only found once before in fungi (that time, in a Fusarium). Here, we discuss the known activities of 5-pentadecyl resorcinol in the context of its mode-of-action as a hydrophobic (chaotropicity-mediated) stressor.


Desde os estudos clássicos de Alexander Flemming, as cepas de Penicillium são conhecidas como uma fonte rica em substâncias antimicrobianas. Estudos recentes identificaram novos metabólitos produzidos pela espécie Penicillium sclerotiorum com atividades antibacteriana, anti-incrustante e farmacêutica. Aqui, relatamos o isolamento de uma colônia de P. sclerotiorum (LM 5679) do solo amazônico e relatamos também o estudo baseado em cultura para determinar se ele pode produzir qualquer novo metabólito (s) secundário (s) que não foram relatados até agora para este gênero. Usando um sistema de cultura submerso, os metabólitos secundários foram recuperados por extrato de solvente seguido por cromatografia em camada delgada, ressonância magnética nuclear e espectroscopia de massa. Um novo metabólito secundário foi isolado de P. sclerotiorum (LM 5679); o composto fenólico 5-pentadecil resorcinol que é amplamente conhecido como um antifúngico que é produzido por diversas espécies de plantas. Este metabólito não foi relatado anteriormente em nenhuma espécie de Penicillium, e foi encontrado apenas uma vez em fungos (Fusarium). Aqui, discutimos as atividades conhecidas do 5-pentadecil resorcinol no contexto de seu modo de ação como um estressor hidrofóbico (mediado pela caotropicidade).


Subject(s)
Penicillium , Resorcinols , Anti-Bacterial Agents , Antifungal Agents
9.
Molecules ; 26(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34576912

ABSTRACT

Alzheimer's disease (AD) is a complex neurodegenerative disorder with a multifaceted pathogenesis. This fact has long halted the development of effective anti-AD drugs. Recently, a therapeutic strategy based on the exploitation of Brazilian biodiversity was set with the aim of discovering new disease-modifying and safe drugs for AD. In this review, we will illustrate our efforts in developing new molecules derived from Brazilian cashew nut shell liquid (CNSL), a natural oil and a byproduct of cashew nut food processing, with a high content of phenolic lipids. The rational modification of their structures has emerged as a successful medicinal chemistry approach to the development of novel anti-AD lead candidates. The biological profile of the newly developed CNSL derivatives towards validated AD targets will be discussed together with the role of these molecular targets in the context of AD pathogenesis.


Subject(s)
Alzheimer Disease , Anacardium , Nuts , Phenols
10.
Nat Prod Res ; 35(3): 455-464, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31282749

ABSTRACT

The n-hexane extract of Knema pachycarpa fruits (Myristicaceae family), exhibiting strong anti-acetylcholinesterase activity, was investigated by gas chromatography/mass spectrometry and then purified by column chromatography. Guided by GC/MS profiling and bioassay, chromatographic separations led to the isolation of five new compounds: two anacardic acid derivatives 1-2, two cardanol derivatives 3-4 and a cardol derivative 5, along with mixtures of known phenolic lipids 6-9. The chemical structures were determined by various spectroscopic methods. New isolated compounds 1-5 were evaluated for their cytotoxicity and anti-acetylcholinesterase activity. Cardanol 3 and cardol 5 were the most active compounds in the acetylcholinesterase inhibitory assay with IC50 values of 2.60 ± 0.24 µM and 2.46 ± 0.23 µM, respectively. Cardanol 4 and cardol 5 showed moderate cytotoxicity against Hela and MCF-7 cancer cell lines with IC50 values ranging from 31.36 ± 0.41 µM to 41.30 ± 2.49 µM.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Myristicaceae/chemistry , Anacardic Acids/chemistry , Drug Evaluation, Preclinical , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , HeLa Cells , Humans , MCF-7 Cells , Molecular Structure , Phenols/chemistry , Phenols/pharmacology , Plant Extracts/chemistry , Resorcinols/chemistry , Resorcinols/pharmacology
11.
Rev. bras. farmacogn ; 29(1): 36-39, Jan.-Feb. 2019. tab, graf
Article in English | LILACS | ID: biblio-1042266

ABSTRACT

Abstract The ethanol crude extract from cashew (Anacardium occidentale L. Anacardiaceae) displayed significant antiplasmodial activity (IC50 0.577 µg/ml). Liquid chromatography-high resolution Mass spectrometry analysis was performed to identify the main compounds existing in the ethanol extract. The occurrence of anacardic acids, cardols, and 2-methylcardols derivatives was confirmed in the extract. The IC50 obtained, when the main isolated compounds were evaluated in Plasmodium falciparum D6 strain, ranged from 5.39 µM to >100 µM. Tested here for the first time, the data showed that cardol triene 1 (IC50 = 5.69 µM) and 2-methylcardol triene 4 (IC50 = 5.39 µM) demonstrated good antimalarial activity. In conclusion, Anacardium occidentale nuts presented relevant biological potential, and further studies should be considered.

12.
Environ Sci Pollut Res Int ; 26(6): 5514-5523, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30610586

ABSTRACT

Aedes aegypti and Culex quinquefasciatus are vectors of diseases that constitute public health problems. The discovery of products capable of inhibiting their development which are less harmful to the environment would have a huge impact on vector control. Here, natural cashew nut shell liquid (CNSL), technical CNSL, anacardic acid, cardanol, and cardol were isolated from Anacardium occidentale and evaluated for larvicidal and pupicidal activity against Ae. aegypti and Cx. quinquefasciatus under laboratory and field conditions. The activities of phenol, resorcinol, salicylic acid, and pentadecane, commercial chemicals similar in structure to nut shell derivatives, were also evaluated. All of the fractions extracted from A. occidentale oil exerted larvicidal effects against both mosquito species (LC50 5.4-22.6 mg/L), and two of the aforementioned were effective against pupae (LC50 90.8-109.7 mg/L). Of all the fractions tested, cardol demonstrated the strongest larvicidal and pupicidal effects and presented the most prolonged residual activity against the larvae and pupae of Ae. aegypti and Cx. quinquefasciatus under field conditions. This study suggests that A. occidentale nut shell derivatives are sustainable and promising candidates for the development of novel insecticides to overcome the problem of harmful chemical insecticides.


Subject(s)
Anacardium/chemistry , Arboviruses , Insecticides/toxicity , Mosquito Vectors/drug effects , Plant Extracts/toxicity , Aedes , Anacardic Acids , Animals , Anopheles , Culex , Larva , Lethal Dose 50 , Lipids , Mosquito Vectors/virology , Phenols , Pupa , Resorcinols
13.
BMC Pharmacol Toxicol ; 18(1): 32, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28472978

ABSTRACT

BACKGROUND: Cardol is a major bioactive constituent in the Trigona incisa propolis from Indonesia, with a strong in vitro antiproliferative activity against the SW620 colorectal adenocarcinoma cell line (IC50 of 4.51 ± 0.76 µg/mL). Cardol induced G0/G1 cell cycle arrest and apoptotic cell death. The present study was designed to reveal the mechanism of cardol's antiproliferative effect and induction of apoptosis. METHODS: Changes in cell morphology were observed by light microscopy. To determine whether the mitochondrial apoptotic pathway was involved in cell death, caspase-3 and caspase-9 activities, western blot analysis, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) levels were assayed. RESULTS: Changes in the cell morphology and the significantly increased caspase-3 and caspase-9 activities, plus the cleavage of pro-caspase-3, pro-caspase-9 and PARP, supported that cardol caused apoptosis in SW620 cells within 2 h after treatment by cardol. In addition, cardol decreased the mitochondrial membrane potential while increasing the intracellular ROS levels in a time- and dose-dependent manner. Antioxidant treatment supported that the cardol-induced cell death was dependent on ROS production. CONCLUSION: Cardol induced cell death in SW620 cells was mediated by oxidative stress elevation and the mitochondrial apoptotic pathway, and these could be the potential molecular mechanism for the antiproliferative effect of cardol.


Subject(s)
Antineoplastic Agents/pharmacology , Bees/chemistry , Cell Proliferation/drug effects , Resorcinols/pharmacology , Animals , Caspase 3/genetics , Caspase 3/metabolism , Caspase 9/genetics , Caspase 9/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Shape/drug effects , Drug Screening Assays, Antitumor , Gene Expression/drug effects , Humans , Indonesia , Membrane Potential, Mitochondrial/drug effects , Propolis/chemistry , Reactive Oxygen Species/metabolism
14.
Food Chem ; 166: 270-274, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25053055

ABSTRACT

5-Pentadecatrienylresorcinol, isolated from cashew nuts and commonly known as cardol (C15:3), prevented the generation of superoxide radicals catalysed by xanthine oxidase without the inhibition of uric acid formation. The inhibition kinetics did not follow the Michelis-Menten equation, but instead followed the Hill equation. Cardol (C10:0) also inhibited superoxide anion generation, but resorcinol and cardol (C5:0) did not inhibit superoxide anion generation. The related compounds 3,5-dihydroxyphenyl alkanoates and alkyl 2,4-dihydroxybenzoates, had more than a C9 chain, cooperatively inhibited but alkyl 3,5-dihydroxybenzoates, regardless of their alkyl chain length, did not inhibit the superoxide anion generation. These results suggested that specific inhibitors for superoxide anion generation catalysed by xanthine oxidase consisted of an electron-rich resorcinol group and an alkyl chain having longer than C9 chain.


Subject(s)
Resorcinols/chemistry , Superoxides/chemistry , Xanthine Oxidase/metabolism , Antioxidants
SELECTION OF CITATIONS
SEARCH DETAIL